黑龙江多宝山铜(钼)矿床流体成矿作用及区域远景评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑龙江多宝山斑岩铜(钼)矿床是大兴安岭中北部多宝山-阿尔山铜(钼)成矿带内最大的斑岩型矿床,位于兴蒙造山带的最东端。本文通过对多宝山矿床的精细解剖及矿田内典型矿床的对比研究,理清了多宝山斑岩铜钼矿床蚀变和矿化的关系;明确提出了多宝山斑岩铜钼矿床蚀变-矿化阶段;诠释了早阶段石英脉体缺少高盐度包裹体的成因;约束了流体性质及物化条件;建立了最新的流体P-T演化模式图,再塑了流体演化过程;探讨了成矿物质来源;在提出多宝山矿田多期成矿作用的基础上,建立了新的成矿模式图;概括出找矿勘查模型;开展了区域找矿评价。
     多宝山斑岩铜(钼)矿床的蚀变-矿化阶段划分为4个阶段:Ⅰ钾硅化阶段、Ⅱ硅化-钼矿化阶段、Ⅲ绢英岩化-铜矿化阶段、Ⅳ碳酸盐石英阶段。各阶段石英中包裹体类型主要有水溶液包裹体、富CO2包裹体、含子晶多相包裹体、纯CO2包裹体。测温结果表明,阶段Ⅰ到Ⅳ均一温度范围分别为245-400℃、260-300℃、200-280℃、125-170℃;盐度分别为6-10%、1.7%-39%、0.1%-24.8%、0.5-12.8%NaCleqv.。阶段Ⅰ到Ⅲ压力分别为110-160MPa,58-80MPa,8-17MPa。早阶段流体总体为H2O-CO2-NaCl体系,晚阶段逐渐演变为H2O-NaCl体系。钼矿化主要和CO2与H2O不混溶作用有关,铜矿化与流体的沸腾和混合作用有关。早阶段包裹体与典型斑岩矿床相比高盐度包裹体很少,主要与燕山期的改造破坏有关,仅有的含石盐子晶包裹体出现在阶段Ⅱ而非钾硅化阶段Ⅰ,可能与阶段Ⅱ的CO2与H2O不混溶过程有关。
     黄铜矿、黄铁矿δ34S为-4.6~-1.6,成矿物质主要来自深部岩浆房,也有部分硫来自多宝山组或铜山组地层中。阶段I流体D和18O组成分别为-87.2-95.5和7.28.1,阶段III流体分别为-82.2-104.2和2.03.4。总体上含矿热液由岩浆热液演化为岩浆热液加地下水热液。稀土元素特征表明含矿岩体可能与洋壳的俯冲及部分熔融有关,在上升过程中受到了地壳的混染。蚀变-矿化岩石微量元素聚类分析、因子分析表明:①Mo、Bi、Cu、W相关性较好,为矿化的指示元素;②北西向片理化带为斑岩矿化的中心,绢英岩化蚀变与其关系密切,同时还受燕山期片理化构造的影响。年代学数据表明多宝山地区分别在早二叠世(280Ma±)受古亚洲洋俯冲及晚三叠-中侏罗世(200Ma-160Ma)的太平洋俯冲影响至少存在两期矿化。
     多宝山区域资源预测及综合评价工作中,应用改进的综合地质变量统计法优选出4个铜钼成矿有利异常区,这四处异常区总体上呈北东向排列,基本上与区域构造及岩层走向一致,说明区域构造对铜钼矿化异常控制作用最强,为主要的控矿因素,局部受多宝山矿田北西向构造控制,异常区域排列方向也为北西向,但北西向各异常中心均在北西向异常区域与北东向异常区域叠加处,说明两组构造交汇处为成矿提供了最为有利的条件。
The Duobaoshan porphyry Cu(Mo) deposit, located in the eastern part ofXingmeng orogenic belt, is the largest porphyry deposit in theDuobaoshan-Aershan Metallogenic belt on the central and northern Daxinganling.Based on the fine ananlysis of the Duobaoshan porphyry Cu(Mo) deposit andcomparative studies on the typical deposits, this thesis clarified the relationshipbetween alteration and mineralization; clearly put forward thealteration-mineralization stage; explained the reasons for lack of high salinityinclusions within the early stage; constrained fluid properties andphysical-chemical conditions; gave out a new model of fluid evolution; discussedthe ore-forming material source; set up a new metallogenic model after analysedmultistage mineralization; summarized the ore prospecting model; launched theregional prospecting evaluation.
     Four ore-forming stages are recognized at Duobaoshan deposit:(I) Potassicand silicic stage;(II) Silicification-molybdenum mineralizing stage;(III)Phyllic-copper mineralizing stage; and (IV) carbonate-quartz stage. Fluidinclusions in quartz can be identified as aqueous water, CO2-rich, daughtermineral-bearing and pure CO2.Fluid inclusions of stage (I) are characterized byaqueous, CO2-H2O and pure CO2, with homogenization temperatures of245-400℃, salinities of6-10wt%NaCl eqv., and those of stage II is dominated byaqueous, CO2-H2O, daughter mineral-bearing inclusions, with peakhomogenization temperatures of260-300℃and salinities of1.7~39wt%NaCl eqv.Stage III is also characterized by aqueous and CO2-H2O inclusions, with peakhomogenization temperatures of200-280℃, salinities of0.1-24.8%wt%NaCleqv., whereas stage IV is simply aqueous, with homogenization temperatures of125-170℃, salinities of0.5-12.8wt%NaCl eqv.. Respective trapping pressures forstage I, II, III are110-160MPa,58-80MPa,8-17MPa. The ore-forming fluidgenerally belong to H2O-CO2-NaCl fluid system in the early stage and graduallybecome H2O-NaCl fluid system in the late stage. Mo mineralization is mainlyrelated with CO2-H2O immiscibility, and Cu mineralization is yielded by boilingaction. Compared with typical porphyry deposits, the number of halitecrystal-bearing inclusions are smaller in the Duobaoshan porphyry copper deposit,which is mainly related to the transformation and destruction at Yanshanian. Moreover, the phenomenon that most of the halite crystal-bearing inclusionsappear within stage II instead of stage I suggests possible presence of CO2-H2Oimmiscibility.
     The34S values of pyrite and chalcopyrite mainly range from-1.6to-4.6permil, suggesting predominantly source of deep magma chamber with lesseramounts of Duobaoshan formation. Hydrogen(D) and oxygen(18O) isotopiccompositions for stage I fluid at the Duobaoshan deposit range from-87.2to-95.5per mil and7.2to8.1per mil, respectively, which are constrained by magmaticfluid. Those for stage III shift evidently toward meteoric water, with the D valuesof-82.2to-104.2per mil and18O values of2.0to3.4per mil, which indicates aevolution process from magmatic hydrothermal fluid to a mixing magmatic andmeteoric fluid. The characteristics of rare earth elements show that Duobaoshangranodiorite and granodiorite porphyry pluton are probably related to the thesubduction and partial melting of ocean crust. Cluster analysis and Factor analysisof trace elements suggest:(1) Mo, Bi, Cu, W have a close correlation, which canbe the indicator elements for mineralization;(2) as the mineralizing center ofporphyry pluton, NW trending schistosity zone where banding phyllic alterationoccur may be influenced by Yanshanian schistosity structure. Geochronologicaldata show that Duobaoshan area are influenced respectively by paleo-asianoceanic subduction at (280Ma±) and by Paleo-Pacific Ocean during the Jurassicperiod (200Ma-160Ma), which lead to at least two mineralizing periods.
     Druing the work of resource comprehensive evaluation throughout theDuobaoshan area, this thesis applies the improved geological statistics method ofgeological variables to optimize four favorable Cu、Mo mineralizing anomalyareas which occur along NE trending and correspond to regional structures. It isconcluded that NE trending regional structures are the most importantore-controlling Factors. While, NW trending structures also control the location ofthe mineralization. It is thereore the intersection of the two groups of structuresthat are most favorable Cu、Mo mineralizing anomaly areas.
引文
[1]王金亮,李俊平,李永峰,郑洪涛.危机矿山深部找矿研究现状与建议[J].矿产保护与利用,2010,(2):46~49.
    [2]岩英.斑岩铜矿[J].地质地球化学,1978,(8):37.
    [3]芮宗瑶,张洪涛,陈仁义等.斑岩铜矿研究中若干问题探讨[J].矿床地质,2006,25(4):491~500.
    [4]王海平,张宗贵.多宝山矿田的地面波谱研究及其在铜矿预测中的应用[J].矿床地质,1997,16(3):213~224.
    [5]陈润琨.多宝山矿山斑岩铜矿床的磁场特征[J].黑龙江地质.1994,5(3):65~72.
    [6]杨继权,孔含泉,胡建文.黑龙江省多宝山~宽河成矿带Cu、Au成矿规律与成矿预测[J].地质与资源,2005,14(3):192~196.
    [7]李克生.多宝山斑岩铜钼矿床气液包裹体研究[J].地质与勘探,1979,(3):22~23.
    [8]杜琦.多宝山斑岩铜矿床蚀变与矿化特征[J].地质学报,1980,4:310~323.
    [9]马德有.多宝山铜矿同位素地质特征[J].矿床地质,1984,3(1):47~57.
    [10]赵元艺,马志红,仲崇学.多宝山铜矿床成矿作用地球化学研究[J].西安地质学院学报,1997,19(1):28~35.
    [11]刘驰,穆治国,刘如曦,黄宝玲.多宝山斑岩铜矿区水热蚀变矿物的激光显微探针40Ar/39Ar定年[J].地质科学,1995,30(4):330~337.
    [12]赵一鸣,张德全.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价
    [M].北京:地震出版社,1997,40~80.
    [13]崔根,王金益,张景仙,崔革.黑龙江多宝山花岗闪长岩的锆石SHRIMPU~Pb年龄及其地质意义[J].世界地质,2008,127(14):387~394.
    [14]王喜臣,王训练,王琳.黑龙江多宝山超大型斑岩铜矿的成矿作用和后期改造[J].地质科学,2007,42(1):124~133.
    [15]冯建行.多宝山铜矿硫同位素空间分布特征[J].地质与勘探,2008,44(1):46~49.
    [16]刘扬,程学展,王喜臣,刘金英,王琳,王训练.黑龙江多宝山斑岩铜矿的铜金属来源与富集规律[J].地质科学,2008,43(4):671~684.
    [17]刘军,武广,钟伟,朱明田.黑龙江省多宝山斑岩型铜(钼)矿床成矿流体特征及演化[J].岩石学报,2010,26(5):1450~1464.
    [18] Lowell J D and Guilbert J M. Lateral and vertical alteration-mineralizationzoning in porphyry ore deposits[J]. Economic Geology,1970,65:373~408.
    [19] Sillitoe R H. Geology of the Los Pelambres porphyry copper deposit,Chile[J]. Econ. Geol.,1973,681~10.
    [20] Hollister V F, Potter R R and Barker A L. Porphyrytype deposits of theAppalachianorogen[J]. Econ. Geol.,1974.69:618~630.
    [21] Gustafson L B and Hunt J P. The porphyry copper deposit at El Salvador,Chile [J]. Econ Geol,1975,70:857~912.
    [22] Burnham C W. Magmas and hydrothermal fluids. In Barnes H L (ed.)Geochemistry of Hydrothermal Ore Deposits [M].2nd ed. Wiley, NewYork,1979,71~136.
    [23] Sillitoe R H. A plate tectonic model for the origin of porphyry copperdeposits[J]. Econ. Geol.1972,67:184~197.
    [24] Titley S R and Beane R E. Porphyry copper deposit: Part I. Geologicsettings, petrology, and tectnogenesis[J]. Economic Geology75thAnniversary Volume,1981,214~234.
    [25] Yogodzinski, G.M., Lees, J.M., Churikova, T.G., Dorendorf, F., Woeerner, Gand Volynets,O.N. Geochemical evidence for the melting of subductingoceanic lithosphere at plateedges[J]. Nature,2001,409:500~504.
    [26]侯增谦,孟祥金,曲晓明,高永丰.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J].矿床地质,2005,24:108~121.
    [27] Harris A C, Kamenetsky V S, White N C and Steele D A. Volatile phaseseparation in silicic magmas at Bajo de la Alumbrera porphyry Cu~Audeposit, NW Argentina[J]. Resource Geology,2004,54:341~356.
    [28]谢玉玲,李应羽,David Cooke,白劲松,刘云飞,李光明,张丽.西藏恰功铁矿岩浆演化序列及斑岩出溶流体特征[J].地质学报,2009,83(12):1869~1886.
    [29] Heinrich C A. The physical and chemical evolution of low salinitymagmatic fluids at theporphyry to epithermal transition: a thermodynamicstudy[J]. Mineralium Deposita,2005,39:864~889.
    [30] Rusk B G, Reed M H, Dilles J H, Klemm L M and Heinrich C A.Compositions of magmatic hydrothermal fluids determined by LA-ICP-MSof fluid inclusion from the porphyry copper-molybdenum deposit at Butte,MT[J]. Chemical Geology,2004,210:173~199.
    [31] Harris A C, Golding S D and White N C. Bajo de la Alumbrera copper-golddeposit: Stableisotope evidence for a porphyry related hydrothermal systemdominated by magmatica queous fluids[J]. Econ. Geol.,2005,100:863~886.
    [32]郝太平.固体矿产探采选概论[M].北京:中国大地出版社,2008,97~98
    [33]侯增谦.斑岩Cu-Mo-Au矿床:新认识与新进展[J].地学前缘,2004,11(1):131~144.
    [34] Singer D A, Berger V I, Menzie W D and Berger B R. Porphyry copperdeposit density[J]. Econ. Geol.,2005,100:491~514.
    [35]芮宗瑶,张立生,陈振宇,王龙生,刘玉琳,王义天.斑岩铜矿的源岩或源区探讨[J].岩石学报,,2004,20(2):229~238.
    [36]张洪涛,陈仁义,韩芳林.重新认识中国斑岩铜矿的成矿地质条件[J].矿床地质,2004,23(2):151~163.
    [37]黄汲清.试论地槽褶皱带的多旋回发展[J].中国科学,1979(4):384~397.
    [38] Guilbert J M. Geology, alteration, mineralization, and genesis of the Bajo dela Alumbrera porphyry copper-gold deposit,Catamarca Province,Argentina[J]. Arizona Geological Society Digest,1995,20:646~656.
    [39] Camus F, Silltioe R H and Petersen R. Andean copper deposits: newdiscoveries, mineralization style and metallogeny[M]. Society of EconomicGeologists Special Publication.1996,5,1~198.
    [40] Ulrich T and Heinrich C A.2001. Geology and alteration geochemistr of theporphyry Cu-Au deposit at Bajo de la Alumbrera,Argentina. Econ. Geol.,96:1719~1742.
    [41]侯增谦,潘小菲,杨志明,曲晓明.初论大陆环境斑岩铜矿[J].现代地质,2007.21:332~351.
    [42] Kerrich R., Goldfarb R and Groves D. The geodynamics of worldclass golddeposits: Characteristics, space~time distributions, and origins[J]. Reviewsin Economic Geology,2000,(13):501~551.
    [43] Mitchell A H G. Metallogenic belts and angle of dip of Benioff zones[J].Nature,1973,245:49~52.
    [44] Kerrich R, Goldfab R, Grov Es D. The characteristics, origins andgeodynamic settings of supergiant gold metallogenic provinces[J]. Sicencein China,2000,(43):1~68.
    [45] Sawkins F J. Sulfide ore deposits in relation to plate tectonics [J]. Jour. Geol,1972,80(4):377~397.
    [46] Hedenquist J W, Arriba A J, Reynolds T J. Evolution of an intrusioncentered hydrothermal system: Far Southeast Lepanto porphtyry andepithermal Cu-Au deposits, Philippines[J].Economic Geology,1998,93:373~404.
    [47] Seedorff E, Dilles J H, Proffett J M, Einaudi M T, Zurcher LStavast W J A,Johnson D A and Barton M D. Porphyrdeposits: Characteristics and originof hypogene features[J]. Economic Geology100th Anniversary Volume,2005.29:251~298.
    [48]芮宗瑶,黄崇轲,齐国明.中国斑岩铜(钼)矿床[M],北京:地质出版社,1984a:1~350.
    [49] J. David Lowell. Regional characteristics of porphyry copper deposits of theSouthwest. Economic Geology,1974,69(5):601~617.
    [50] Hollister V F. Regional characteristics of porphyry copper deposits of theSouth America[J]. Soc Mining Engineers AIME Trans,1974,255:45~53.
    [51]侯增谦.斑岩Cu~Mo~Au矿床:新认识与新进展[J],2004,11(1):131~144.
    [52]杨志明,候增谦.初论碰撞造山环境斑岩铜矿成矿模型[J].矿床地质,2009,28(5):515~538.
    [53] Misra K C. Understanding mineral deposits[M]. Kluwer AcademicPublishers,2000:353~413.
    [54] David Cooke. Porphyry Deposits: Classification, Distribution, GeodynamicSettings and Intrusions [R].北京:中国地质大学(北京),矿床模型及床产勘察专题研讨会,2009年11月.
    [55]张玉泉,谢应雯,梁华英,等.藏东玉龙铜矿带含矿斑岩及成岩系列[J].地球化学,1998,27(3):236~243.
    [56]王强,赵振华,许继峰等.鄂东南铜山口、殷祖埃达克质(adakite)的侵入岩地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因[J].岩石学报,2004,20(2):351~360.
    [57]王强,赵振华,简平等.德兴花岗闪长斑岩SHR IMP锆石U~Pb年代学和Nd~Sr同位素地球化学[J].岩石学报,2004,20(2):315~324.
    [58] Defant M J and Drummond M S. Derivation of som e modern arc magmasby melting of young subducted lithosphere[J]. Nature,1990,34:662~665.
    [59] Sajona F G, Maury R C, Bellon H, Cotten J, Defant M J and Pubellier M.Init iation of subduction and the generation of slab melts in western andeastern Mindanao, Philippines[J]. Geology,1993,21:1007~1010.
    [60] Peacock S M, Rusher T and Thompson A B. Partial meltin g of subductingoceanic crust[J]. Earth Planet. Sci. Lett.,1994,121:224~227.
    [61] Mart in H. Adakitic magmas: Modern analogues of Archaean granit oids[J].Lith os,1999,46:411~429.
    [62] Yogodzinski G M, Lees J M, Churikova T G, Dorendorf F, Woeerner G andVolynets O N. Geochemical evidence for the melting of subducting oceaniclithosphere at plateedges [J]. Nature,2001,409:500~504.
    [63] Hildreth W and Moorbath S. Crustal contributions to arc magmatism in theAndes of central Chile[J]. Contributions to Mineralogy and Petrology,1988,98:455~489.
    [64]杨志明.西藏驱龙超大型斑岩铜矿床——岩浆作用及矿床成因[D].北京:中国地质科学院,2008,1~57.
    [65]侯增谦,莫宣学,高永丰,等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩—以西藏和智利斑岩铜矿为例[J].矿床地质,2003,22:1~12.
    [66] Qu X M, Hou Z Q and Khin Zaw. Characteristics and genesis of Gangdeseporphyry copper deposits in the southern Tibetan Plateau: Preliminarygeochemical and geochronological results[J]. Ore Geology Review,2007,31:205~223.
    [67] Gao Y F, Hou Z Q and Kamber B S. Adakite~like porphyries from thesouthern Tibetan continental collision zones: evidence for slab meltmetasomatism[J]. Contribution to Mineral Petrology,2007,153:105~120
    [68]杨志明,侯增谦,夏代祥,宋玉财,李政.2008,西藏驱龙铜矿西部斑岩与成矿关系的厘定:对矿床未来勘探方向的重要启示.矿床地质,27:28~36.
    [69] Hildreth W and Moorbath S. Crustal contributions to arc magmatism in theAndes ofcentral Chile[J]. Contributions to Mineralogy and Petrology,1988,98:455~489.
    [70] Sillitoe R H. Major regional factors favoring large size, high hypogenegrade, elevated gold content and supergene oxidation and enrichment ofporphyry copper deposits [G]//Porter T M, ed. Porphyry and hydrothermalcopper and gold deposits: A Global Perspective//Perth. ConferenceProceedings: Glenside, South Australia, Australian Mineral Foundation,1998,22~34.
    [71] Masterman G, Berry R, Cooke D R and Walshe J L. Fluidchemistry,structural setting and emplacement history of the Rosario Cu-Moporphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northernChile [J]. Economic Geology,2005,100:835~862.
    [72]杜琦,马晓阳,韩成满,李宗民,姜喜荣.斑岩铜矿成因探讨[M].北京:地质出版社,2008.9~75.
    [73]赵文津.大型斑岩铜矿成矿的深部构造岩浆活动背景[J].中国地质,2007.34(2):179~205.
    [74] Richards J P. Cumulative factors in the generation of giant calc-alkalineporphyry Cu deposits[A],//Porter T M, ed. Super~porphyry copper&golddeposits: A Global Perspective [C], PGC Publishng, Adelaide,2005,7~25.
    [75]杨志明,侯增谦,宋玉财等.西藏驱龙超大型斑岩铜矿床:地质、蚀变与矿化[J].矿床地质,2008,,27(3):279~318.
    [76] Sourirajan S and Kennedy G C. The system H2O-NaCl at elevatedtemperatures and pressures[J]. American Journal of Science,1962,260:115~141.
    [77] Pitzer K S and Pabalan R T. Thermodynamics of NaCl in steam[J].Geochimica et Cosmochimica Acta,1986,50:1445~1454.
    [78] Cline J S. Genesis of porphyry copper deposits: the behavior of water,chloride, and copper in crystallizing melts, in Pierce, F W and Bolm, J G,eds., Porphyry copper deposits of the American Cordillera[J]. ArizonaGeological Society Digest,1995,20:69~82.
    [79]杨志明,谢玉玲,李光明.西藏冈底斯斑岩铜矿带厅宫铜矿床流体包裹体研究[J].矿床地质,2005,24(6):584~594.
    [80]李荫清,芮宗瑶,程莱仙.玉龙斑岩铜(钼)矿床的流体包裹体及成矿作用研究[J].地质学报,1981,55(3):216~231.
    [81] Hedenquist J W and Lowenstern J B. The role of magmas in the formationof hydrothermal of deposits[J]. Nature,1994,370:519~527.
    [82] Cline J and Bodnar R J. Can economic porphyry copper mineralization begenerated by a typical calc-alkaline melt?[J]. Journal of GeophysicalResearch,1991,96:8113~8126.
    [83] Simon A C, Pettke T, Candela P A, Piccoli P M, H einrich C A. Magnetitesolubility and iron transport in magmatic hydrothermal environments[J].Geochimica et Cosmochimica Acta,2004,68(23):4905~4914.
    [84] Simon A C, Frank M R, Pettke T, Candela P A, Piccoli P M and Heinrich CA. Gold partitioning in melt vapor brin esystems[J]. Geochimica etCosmochimica Act a,2005,69(13):3321~3335.
    [85] Proffett J M. Geology of the Bajo de la Alumbrera porphyry copper-golddeposit, Argentina. Economic Geology[J],2003.98:1535~1574.
    [86] Seedorff E and Einudi M T. Henderson porphyry molybdenum system,Colorado: I. Sequence and abundance of hydrothermal mineral assemblages,flow paths of evolving fluids, and evolutionary style[J]. Econ. Geol.,2004,99:3~37.
    [87] Anthony C. Harris and Suzanne D. Golding. New evidence ofmagmatic-fluid–related phyllic alteration: Implications for the genesis ofporphyry Cu deposits[J]. Geology,2002,30(4):335~338.
    [88] Taylor H P. Oxygen and hydrogen isotope relationships in hydrothermalmineral deposits[A]//Barnes, H. L., ed. Geochemistry of hydrothermal oredeposits(third edition)[M]. New York, John Wiley,1997:229~302.
    [89] Sillitoe R H. Characteristics and controls of the largest porphyrycopper-gold and epithermal gold deposits in the circum-Pacific region[J].Australian Journal of Earth Sciences,1997,44:373~388.
    [90] Lowenstern J B, Mahood G A, Rivers M I and Sutton S R. Evidence forextreme partitioning of copper into a magmatic vapor phase[J]. Science,1991,252:1405~1409.
    [91] Candela P A and Holland H D. A mass transfer model for copper andmolybdenum in magmatic hydrothmal systems:The origin ofporphyry-type ore deposits[J]. Econ.Geol.,1986,81(1):1~19.
    [92] Campos E,Touret J L R, Nikogosian I and Delgado J. Overheated,Cu-bearing magmas in the Zaldivar porphyry-Cu deposit, Northern Chile:Geodynamic consequences[J]. Tectonophysics[J],2002,345(1~4):229~251.
    [93]陈文明.论斑岩铜矿的成因[J].现代地质,2002,16(1):1~8.
    [94] K. C. Misra. Understanding mineral deposit[M]. Kluwer AcademicPublishers:2000,397~418.
    [95] Nash J T. Fluid inclusion petrology data from porphyry copper depositsandapplication to exploration[J]. US Geol Survey Prof Paper907~D,1976,1~16.
    [96]芮宗瑶,李荫清,王龙生.从流体包裹体研究探讨金属矿床成矿条件[J].矿床地质,2003,22(1):13~23.
    [97]芮宗瑶,黄崇轲,齐国明.中国斑岩铜(钼)矿床[M].北京:地质出版社,1984b,340.
    [98] Titley S R and Beane R E.Porphyry copper deposits[J].Eeon Geol75thAnnu,1981,799~815.
    [99] Tirley S R. Advances in geology of the porphyry copper deposits ofsouthwestern,North Ameriea[M].Tueson:Univ Arizona Press,1982.
    [100]金章东.斑岩型铜矿床成矿过程中铜的迁移与沉淀机制研究新进展[J].矿产与地质,1998,12(2):72~78.
    [101]李福春,刘源,金章东,耿建华.流体在金属成矿过程中的作用[J].矿产与地质,1999,13(3):129~134.
    [102]林景仟,李桂林.多宝山斑岩铜矿床围岩蚀变机制[J].吉林大学学报(地球科学版),1981,(2):35~41.
    [103]张兴洲,中国兴蒙-吉黑地区岩石圈结构基本特征[J].中国地质.2006,33(4):816-824.
    [104]李旭平,焦丽香,郑庆道等.黑龙江桦南地区黑龙江杂岩锆石U-Pb定年[J].岩石学报,2009,025(08):1909-1916.
    [105]葛文春,吴福元,周长勇,Rahman AA.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,2005,(12):1239~1247.
    [106]武广,孙丰月,赵财胜,李之彤,赵爱琳,庞庆帮,李广远.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其意义[J].科学通报,2005,50(20):2278~2286.
    [107]葛文春,吴福元,周长勇,张吉衡.2007.兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[J].科学通报,52(20):2407~2417.
    [108]王成文,张松梅.哲斯腕足动物群[M].北京:地质出版社,2003.
    [109]拼贴板块构造及驱动机理:中国东北及邻区大地构造演化[M].北京:科学出版社,2000:6-10.
    [110]刘建峰.小兴安岭东部早古生代花岗岩地球化学特征及构造意义
    [D].吉林大学硕士论文,2006,26-27.
    [111]颉颃强,张福勤,苗来成等.东北牡丹江地区“黑龙江群”斜长花岗岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义[J].岩石学报,2008,24(6):1237-1250.
    [112]刘建峰,迟效国,张兴洲等.内蒙古西乌旗南部石炭纪石英闪长岩特征及其构造意义[J].地质学报,2009,83(3):365-376.
    [113]黄映聪.佳木斯地块古生代变质作用与构造演化[D].吉林大学博士论文,2009.
    [114]刘永江等.东北地区晚古生代区域构造演化[J].中国地质,2010,37(4):943-951.
    [115] Zonenshain L.P, Kuzmin M I and Natapov L M. Geology of the USSR: aplate-tectonic synthesis. in: Page R M. ed. AGU Geodynamics, Series,1990,21:242~244.
    [116]吴根耀.白垩纪:中国及邻区板块构造演化的一个重要变换期[J].中国地质,2006,33(1):64~77.
    [117]唐克东,王莹,何国琦,邵济安.中国东北及邻区大陆边缘构造[J].地
    [118] Badarch, G., Cunningham, D., Windley, B.F.. A new terrane subdivision forMongolia: implications for the Phanerozoic crustal growth of CentralAsia[J]. Journal of Asian Earth Sciences2002,21,87–110.
    [119]吴根耀.燕山运动和中国大陆晚中生代的活化[J].地质科学,2002,37(4):453~461.
    [120]吴根耀,冯志强,杨建国,汪在君,张立国,郭庆霞.中国东北漠河盆地的构造背景和地质演化[J].石油与天然气地质,2006,27(4):528~535.
    [121]刘震,赵阳,杜金虎,肖伟,金博,许晓明,梁全胜,郝琦.陆相断陷盆地岩性油气藏形成与分布的“多元控油“主元成藏”特征[J].地质科学,2006,41(4):612~635.
    [122]王喜臣,刘金英.二十一站铜金控矿因素及找矿方向[J].黑龙江地质,1999,10(2):34~37.
    [123]韩成满,王长水.多宝山铜矿资源潜力[M].北京:地质出版社,2007,6-68.
    [124]杜琦,赵玉明.多宝山斑岩铜矿[M].北京:地质出版社,1988:12~242
    [125]韩振新,徐衍强,郑庆道等.黑龙江省重要金属和非金属矿产的成矿系列及其演化[M].哈尔滨:黑龙江人民出版社,2004,61~95.
    [126]赵元艺.黑龙江多宝山铜矿田稀土元素地球化学特征及多宝山铜矿床成因模式[J].吉林地质,1995,14(2):71~78.
    [127]范正国,赵玉刚,卢建忠.航空物探综合站测量在多宝山斑岩铜矿上的应用效果[J].地质与勘探,2004,40(4):60~63.
    [128]黑龙江省地质局.黑龙江省区域地质志[M].北京:地质出版社:1993:56~418.
    [129]赵元艺,赵广江.黑龙江省多宝山及邻区构造格局与演化[J].黑龙江地质,1994,5(4):13~20.
    [130]谭成印,王根厚,李永胜.黑龙江多宝山成矿区找矿新进展及其地质意义[J].地质通报,2010,29(2~3):437~445.
    [131]王世称,陈永良,夏立显.综合信息矿产预测理论与方法[M].北京:科学出版社,2002:343.
    [132]武汉地质学院勘探教研室数学地质组.矿床统计预测简介②地质变量的选择、取值和变换[J].地质与勘探,1980(02):30-35.
    [133]宋暖和,潘志刚,毛先成.地质变量的多级分解及其应用[J].地质与勘探.2005(5):71-74.
    [134]许小平.铝土矿潜力评价工作中预测地质变量的选取[J].技术应用.2010(3):47-48.
    [135]金友渔.定性地质变量分维数估计与显微地质异常.中国地质大学学报(地球科学版).1998,(3):153-157.
    [136]姚晓峦,顾雪祥,李关清等.藏南扎西康地区综合信息成矿预测[J].矿物学报,2011,s1:903-904.
    [137]陈永良,伍伟,刘大有,等.基于MapInfo的地质变量自动化选择与赋值[J].长春科技大学学报,2000(03):289-292.
    [138]黑龙江省地质局.黑龙江省区域地质志[M].北京:地质出版社,1993
    [139]王喜臣.博士后研究工作报告:黑龙江铜山斑岩铜矿成矿条件与资源潜力-超大型斑岩铜矿床的证据,2006,1-142.
    [140]褚少雄,刘建明,徐九华,魏浩,柴辉,佟匡胤.黑龙江三矿沟铁铜矿床花岗闪长岩锆石U-Pb定年、岩石成因及构造意义[J].岩石学报,2012,28(2):433-450.
    [141]李德荣,朱朝利,吕军,崔根.黑龙江三矿沟-多宝山成矿带构造-岩浆成矿作用[J]中国矿业.2010,19(增刊):142-146.
    [142] Shepherd T J, Rankin A H and Alderton D H M. A Practical Guide to FluidInclusion Studies[J]. Blackie: Chapman and Hall.1985,1~239.
    [143] Hall D L, Sterner S M and Bodnar R J. Freezing point depression ofNaCl-KCl-H2O solutions[J]. Econ Geol,1988,83:197~202.
    [144] Bodnar R J. A method of calculating fluid inclusion volumes based onvapor bubble diameters and PVTX properties of inclusion fluids[J]. EconGeol,1983,78:535~542.
    [145] Roedder E. Fluid inclusions. Reviews in mineralogy[J]. Mineral Soc Amer,1984,12:1~644.
    [146] Roedder E. In Physics and Chemistry of the Earth (Vol.13-14). Oxford:Pergamas Press,9~35.
    [147]王丽娟,彭志刚,祝新友,王玉往,朱和平.青海省锡铁山Sedex型铅锌矿床成矿流体来源及演化:流体包裹体及同位素地球化学证据.岩石学报,2009,25(11):3007~3015.
    [148]张德会.矿物包裹体液相成分特征及其矿床成因意义.地球科学,1992,17(6):677-688.
    [149] Roedder E and Bodnar R J. Geologic pressure determinations from fluidinclusion studies. Ann Rev Earth Plannet Sci,1980,8:263-301.
    [150]何知礼.包裹体矿物学[M].北京:地质出版社,1982,86~92.
    [151] Hass J L. Physical properties of the coexisting phases and thermochemicalproperties of the H2O component in boiling NaCl solutions[J]. U S GeolSurv Bull,1976,1421A:1~73.
    [152] Zhang Y G and Frantz J D. Determination of the homogenizationtemperatures and densities of supercritical fluid s in the systemNaCl-KCl-CaCl2-H2O using synthetic fluid inclusions[J]. Chem Geol,1987,64:335~351.
    [153] Bodnar R J and Vityk M O. Interpretation of microthermometic data forH2O-NaCl fluid inclusions. In: de Vivo B, Frezzotti M L. Fluid Inclusionsin Minerals: Methods and Applications[J]. Blackberg: Verginia Tech.1994,117~130.
    [154]季克俭,吴学汉,张国柄.热液矿床的矿源水源和热源及矿床分布规律[M].北京:科学技术出版社,1989,3~22.
    [155] Potter II RW. Pressure corrections for fluid-inclusion homogenizationtemperatures based on the volumetric properties of the system NaCl-H2O.U. S. Geol. Survey J. Res.,1977,5:603-607.
    [156]刘斌.简单体系水溶液包裹体pH和Eh的计算[J].岩石学报,2011,27(5):1533~1542.
    [157] Ryzhenko BN and Bryzgalin OV. Reference neutrality points for the redocand acid-base properties of aqueous solutions at the parameters forhydrothermal ore formation[J]. Geokhimiya,1984,(7):1056~1060.
    [158]武子玉,孙有才,王保全.黑龙江争光金矿地质地球化学研究[J].地质与勘探,2006,42(1):38-42.
    [159]赵广江,候玉树,程富强.黑龙江黑河市争光岩金矿床地质特征及成因浅析[J].有色金属.2007,59(3):91-94.
    [160]张莹芬,李国栋,颜秉超,王建民.黑龙江省争光岩金矿床地质特征及成因探讨[J].吉林地质.2011,30(1):41-43.
    [161] Lowenstern BJ. Carbon dioxide in magmas and implications forhydrothermal systems. Mineralium Deposita,2001,36:490-502.
    [162] Halter EW and Webster DJ. The magmatic to hydrothermal transition andits bearing on ore-forming systems. Chemical Geology,2004,210:126.
    [163]卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体.北京:科学出版社,168-169.
    [164]刘斌,沈昆.1999.流体包裹体热力学基础.北京:地质出版社,70-118.
    [165] Dixon G and Davids on G J. Stable isotope evidence for thermochemicalsulfate reduction in the Dugald River(Australia) strata~boundshale-hosted zinc-lead deposit[J]. Chem. Geol.,1996,129:227~246.
    [166] Seal Robert R. Sulfur isotope geochemistry of sulfide minerals[J]. Mineral&Geochem.,2006,61,633~677.
    [167] Basu ki N I, Taylor B E and Spooner E T C. Sulfur isotope evidence fortherm ochemical reduction of dissolved sulfate in Mississippi valley typezinc-lead mineralization, Bon gara area,northern Peru[J]. Econ. Geol.,2008,103,183~799.
    [168]黄智龙,陈进,韩润生,李文博,刘丛强,张振亮,马德云,高德荣,杨海林.云南会泽超大型铅锌矿床地球化学及成因~兼论峨眉山玄武岩与铅锌成矿的关系[M].北京:地质出版社.,2004.
    [169] Chaussidon M and Lorand J P. Sulphur isotope composition of orogenicspinel lherzolite massifs from Ariege (North-eastern Pyrenees, France):Anion microprobe study[J]. Geochimica et Cosmochimica Acta,1990,54:2835~2846.
    [170]陈骏,王鹤年.地球化学[M].北京:科学出版社,2004.
    [171]张理刚.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社,1985.
    [172]亨德森.稀土元素地球化学[M].北京:地质出版社,1989.
    [173]刘军,武广,钟伟,朱明田.黑龙江省三矿沟夕卡岩型铁铜矿床流体包裹体研究[J].岩石学报,2009,25(10):2631~2641.
    [174]李德荣.黑龙江三矿沟铜多金属矿床成矿规律及找矿方向[D].中国地质大学博士论文,2011.
    [175] Jun Liu, Guang Wu, Yuan Li, Mingtian Zhu, Wei Zhong. Re–Os sulfde(chalcopyrite, pyrite and molybdenite) systematics and fuid inclusionstudy of the Duobaoshan porphyry Cu (Mo) deposit, HeilongjiangProvince, China[J]. Journal of Asian Earth Sciences,2012,49:300-312.
    [176]刘建明,张锐,张庆洲.大兴安岭地区的区域成矿特征[J].地学前缘,2004,11(1):269-277.
    [177] Badarch, G., Cunningham, D., Windley, B.F.. A new terrane subdivision forMongolia: implications for the Phanerozoic crustal growth of CentralAsia[J]. Journal of Asian Earth Sciences,2002,21,87–110.
    [178]李志安,闰义.中国东北造山带-盆地系统动力学研究[J].大地构造与成矿学,2000,24(1):31-37.
    [179]武广.大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用[D]v吉林大学博士论文,2005.
    [180]崔革.小兴安岭西北部奥陶纪大陆边缘火山弧的确定及其演化[C].中国北方板块构造论文集,北京:地质出版社,1983:293-515.
    [181]唐克东、苏养正、王莹.乌拉尔-蒙古褶皱区东部地质发展的某些特点[J].沈阳地质矿产研究所所刊,1982,(3):1-14.
    [182] Coleman R G. Continental growth of Nortlwest China[J]. Tectonics,1989,8:621-635.
    [183] Sengr A M C, Natalin B A and Burtnan V S. Evolution of the Altaidtectonic collage and Paleozoic crustal growth in Eurasia Nature,1993,364:299-307.
    [184]葛文春,吴福元,周长勇,Rahman AA.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,2005,(12):1239~1247.
    [185]武广,孙丰月,赵财胜,李之彤,赵爱琳,庞庆帮,李广远.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其意义[J].科学通报,2005,50(20):2278~2286.
    [186]葛文春,吴福元,周长勇,张吉衡.2007.兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[J].科学通报,52(20):2407~2417.
    [187]陈润琨.黑龙江省煤炭资源远景调查物探工作报告.1988
    [188]张恩光.黑龙江省百万分之一区域重力调查成果报告.1985
    [189]陈润琨.多宝山铜矿田的地球物理-地球化学找矿模式[J].黑龙江地质,1991,2(4):68-73.
    [190]赵鹏大,胡旺亮,李紫金.矿床统计预测[M].北京:地质出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700