软土地区基坑对下卧隧道变形的影响与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在城市复杂敏感施工环境条件下,邻近隧道基坑发展趋势是越来越深、大、近、复杂,基坑设计、施工不当所引起的后果非常严重。如何控制基坑施工引起的周围地层移动、保证隧道运行正常和安全已经引起人们越来越多的重视。引起隧道隆起变形的基坑开挖施工过程非常复杂,基坑结构布置情况、基坑加固、基坑开挖施工过程等对隧道隆起变形都有着重要影响,但目前对于此类研究还不是很成熟。本文采用了理论方法、现场试验和三维数值模拟分析相结合的方法,对基坑开挖引起的隧道隆起问题进行了系统研究,主要内容包括:
     1、针对基坑开挖卸载引起的下卧隧道隆起变形,提出了可考虑软土流变特性和隧道刚度影响的解析分析方法。应用Boussinesq解求解基坑开挖卸载应力,采用Mindlin解求解隧道结构抗力引起的土体变形,结合隧道反力引起的隧道自身变形,进行隧道与土体之间作用力和变形的耦合分析,该分析方法可很方便地分析基坑开挖引起的隧道隆起变形的时间效应。在此基础上基于CAD平台编制了一套相应分析程序,应用该程序进行了参数分析,研究了隧道刚度、基坑深度、基坑开挖面积、分块开挖、基坑与隧道相对距离对下卧隧道隆起的影响规律。文献案例的分析结果表明,本方法计算所得的隧道隆起量与实测值比较吻合,反映了下卧隧道在基坑开挖卸载下的位移特性,可应用于类似工程分析。
     2、在解析理论分析的基础上,采用三维数值分析方法,进一步研究了地基加固、基坑围护结构措施等对控制隧道隆起变形的作用规律。建立了66个考虑土体、基坑支护体系和隧道结构模型共同作用的三维有限元模型,土体采用修正剑桥模型,分别研究了基坑坑底浅部土体加固、隧道两侧土体加固、基坑外围周边土体加固、基坑分隔墙、隧道隔离墙对减小隧道隆起变形作用的机理。结果表明,地基加固、分隔墙、隔离墙对隧道变形有显著影响,参数分析结果给出了控制隧道隆起变形的优化建议,为实际工程提供了理论依据和指导。
     3、针对地基加固和分隔墙、隔离墙施工引起的隧道变形,通过现场足尺试验研究了三轴搅拌桩施工的环境影响机理和控制方法。在基坑现场进行的三轴深层搅拌桩试验中对搅拌桩单桩、群桩连续施工引起的超孔隙水压力扩散和分布规律进行了研究;建立了超孔隙水压力增长预测模型。对搅拌桩单桩、群桩施工引起的周边土体水平位移、深层土体位移影响规律进行了研究,在由远及近的搅拌桩群桩施工过程中研究发现了土体位移的波动效应。根据搅拌桩施工对周边环境影响的机理,提出了控制搅拌桩引起的隧道变形的优化施工工艺,现场完成的工程应用验证了优化施工工艺的有效性。
     4、依托上海东西通道陆家嘴段穿越地铁二号线的基坑施工方案,应用理论分析方法和三维数值分析方法,分析了基坑开挖引起的下卧隧道隆起量与控制效果,并开展了现场测试与验证。采用解析理论方法分析的隧道最大隆起量与实测结果比较接近。采用位移反分析的方法,编制了反分析计算程序,对数值分析参数进行了反分析。通过引入权函数,在参数反分析时同时考虑了基坑开挖引起的隧道与围护墙的变形。分析了基坑围护结构的侧向变形规律和隧道隆起规律,有限元分析结果和监测数据体现了基坑开挖过程对隧道隆起的显著影响和叠加效应。
Under the complicated and sensitive construction environment in urban places, the excavations adjacent to tunnels become deeper, larger and even closer to tunnels. Any improper excavation construction plan will lead to serious consequence. People have to pay more and more attention to control soil movement by excavation and make efforts to assure tunnel's safety. But the analysis of tunnel displacement induced by adjacent excavation is very complicated, which has to take excavation structures plan, soil reinforcement and construction technologies into accounts. And the relevant research is of insufficient. In order to solve these problems, Methods of theoretical derivation, in situ tests and3-D numerical analysis are employed in this paper. The main contributions of this thesis are described as followed:
     In order to predict tunnel displacement induced by soil unloading of above excavation, a semi-analytical method was proposed by this paper, which could take the rheological soil and tunnel stiffness into account. By application of Boussinesq's solution and Mindlin's solution, soil displacement was derived from soil unloading and tunnel forces. The soil-tunnel interaction was analyzed by the coupling conditions on displacement and forces between soil and tunnel. Visco-elastic model was employed to simulate the rheologic deformation of soils, by which the time effect of soil displacement could be taken in account. series of computer software were programmed based on this method. By applying the software, the tunnel stiffness, the excavation depth, the excavation area and the relative distance to tunnel were discussed in details. The effect of segmentation and layered excavation method were also investigated. Results of two case studies had showed a good agreement between the predicted tunnel displacement and measurements, which guaranteed the effectiveness of the analysis for future similar cases.
     At the same time, in order to study the effect of decreasing tunnel displacement by soil improvement and additional excavation structures,663-D fem models were set up for analysis, which could consider the interactions between the soil, excavation structures and tunnel. The Modified Cambridge Model was employed for soil constitutive. The tunnel displacement was investigated when soil reinforcement was applied at different places and with different bulk. The effect of decreasing tunnel displacement by dividing wall and cutting off wall was also studied. The tunnel displacements caused by three series of excavation technologies were compared to show the rationality of proposed construction method.
     Further more, full scale field tests were conducted to investigate the impact of deep soil mixing (DSM) columns installation and its controlments, since DSM columns installation of soil improvement will bring extra harmful tunnel displacement. In the tests, soil horizontal displacement, deep soil vertical displacement and excess pore water pressure by single and large number of DSM columns installation were studied thoroughly. The accumulation and dissipation of excess pore water pressure were analyzed and a prediction model was also set up based on the research. The soil horizontal displacement and different depth of soil vertical displacement induced by DSM columns installation were studied and soil horizontal displacement fluctuation effect was also found. The optimal DSM column installation technologies to control tunnel displacement were also provided based on the tests and relevant research, investigations of case applications guaranteed the effectiveness of the installation technologies.
     For case studies, the semi-analytical method,3D FEM method and in situ measurements were employed, which deal with tunnel and retaining wall displacements induced by actual construction technologies. The predicted tunnel displacements by the analytical method were close to measurements. And the program of displacement back analysis was set up to study the critical parameters of FEM models. By employing the factors of weighing function, displacement of tunnels and retaining walls could be taken into accounts at the same time for back analysis. The horizontal displacement development of retaining wall during soil removing and after the structure construction completion were also investigated. The numerical analysis and monitoring data showed that pit excavation had great impact on the tunnel displacement and the impact was superimposition effect.
引文
[1]Finno R.J., Voss F.T., Rossow E., et al. Evaluating damage potential in buildings affected by excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(10):1199-1210.
    [2]Chang C.T., Sun C.W., Duann S.W., et al. Response of a Taipei Rapid Transit System (TRTS) tunnel to adjacent excavation[J]. Tunnelling and Underground Space Technology,2001,16(3):151-158.
    [3]Boone S.J. Ground-movement-related building damage [J]. Journal of Geotechnical Engineering,1996,122(11):886-896.
    [4]Boscardin M.D., Cording E.J. Building response to excavation-induced settlement [J]. Journal of Geotechnical Engineering,1989,115(1):1-21.
    [5]Voss F. Evaluating damage potential in buildings affected by excavations[D]. MS thesis, Northwestern University, Evanston,2003.
    [6]Kung G.T.C., Hsiao E.C.L., Schuster M., et al. A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays[J]. Computers and Geotechnics,2007,34(5):385-396.
    [7]侯学渊,廖少明,汤永净.地下工程及深基坑[C]//中国土木工程学会第九届土力学及岩土工程学术会议论文集(上册).北京:清华大学出版社,2003:26-36.
    [8]龚晓南.关于基坑工程的几点思考[J].土木工程学报,2005,38(9):99-102.
    [9]郑刚,焦莹,李竹.软土地区深基坑工程存在的变形与稳定问题及其控制—基坑变形的控制指标及控制值的若干问题[J].施工技术,2011,40(8):8-14.
    [10]李平,杨挺,王义等.基坑工程隆起变形研究综述[J].河海大学学报:自然科学版,2010,38(2):196-201.
    [11]Leung E.H.Y., Ng C.W.W. Wall and ground movements associated with deep excavations supported by case in situ wall in mixed ground conditions [J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(2):129-143.
    [12]Wright P. Assessment of London underground tube tunnels-investigation, monitoring and analysis [J]. Smart Structures and Systems,2010,6(3):239-262.
    [13]王卫东,王建华.软土地区深基坑工程实践中若干技术问题的分析与探讨[C]//中国土木工程学会第十届土力学及岩土工程学术会议论文集.重庆:重庆大学出版,2007:158-171.
    [14]上海市地铁沿线建筑施工保护地铁技术管理暂行规定[EB],沪市政法(94)第854号,1994年11月8日.
    [15]Long M. A case history of a deep basement in London Clay[J]. Computers and Geotechnics,2001,28(6):397-423.
    [16]Sharma J.S., Hefny A.M., Zhao J., et al. Effect of large excavation on deformation of adjacent MRT tunnels[J]. Tunnelling and Underground Space Technology,2001,16:93-98.
    [17]王美华,徐伟.多条地铁包围下的超深基坑施工技术[J].建筑技术,2010,41(2):121-124.
    [18]Hu Z.F, Yue Z.Q., Zhou J., et al. Design and construction of a deep excavation in soft soils adjacent to the Shanghai Metro tunnels[J]. Canadian Geotechnical Journal,2003,40(5)933-948.
    [19]戴斌,王卫东,王建华.紧邻地铁隧道超深基坑工程的设计分析与实践[C]//中国土木工程学会第十届土力学及岩土工程学术会议论文集.重庆:重庆大学出版,2007:790-800.
    [20]刘庭金.基坑施工对盾构隧道变形影响的实测研究[J].岩石力学与工程学报,2008,27(S2):3393-3400.
    [21]赵刚.大型基坑开挖对相邻轨道交通车站和线路影响的监护研究[J].建筑施工,2007,29(8):577-583.
    [22]Lo K. Y., Ramsay J. A. The effect of construction on existing subway tunnels-a case study from Toronto[J]. Tunnelling and Underground Space Technology,1991,6(3):287-297.
    [23]李平,杨挺,刘汉龙等.基坑开挖中既有下穿地铁隧道隆起变形分析[J].解放军理工大学学报:自然科学版,2011,12(5):480-485.
    [24]杨挺,王心联,许琼鹤等.箱形隧道基坑下已建地铁盾构隧道隆起位移的控制分析与设计[J].岩土力学,2005,26(S1):187-192.
    [25]侯学渊,刘国彬,黄院雄.城市基坑工程发展的几点看法[J].施工技术,2000,29(1):5-7.
    [26]郑刚,焦莹.深基坑工程设计理论及工程应用[M].北京:中国建筑工业出版社,2010.
    [27]张治国,黄茂松,王卫东.邻近开挖对既有软土隧道的影响[J].岩土力学,2009,30(5):1373-1380.
    [28]Li Y.P., Wang Z.Y. Study of influence of subway station excavation on existing metro displacement[C]//Critical issues in transportation systems planning, development, and management.2009, ASCE:3345-3339.
    [29]刘建航,刘国彬,范益群.软土基坑工程中的时空效应理论与实践[J].地下工程与隧道,1999,3:7-12.
    [30]Alireza A., Very a N. Design of Jet grout plugs for base stability and groundwater control [C]//Proceedings of GeoTrans2004.Geotechnical Engineering for Transportation Projects. ASCE, GSP NO.126:1905-1914.
    [31]刘国彬,黄院雄,侯学渊.基坑工程下已运行地铁区间隧道上抬变形的控制研究与实践[J].岩石力学与工程学报,2001,20(2):202-207.
    [32]朱正锋,陶学梅,谢弘帅.基坑施工对运营地铁隧道变形影响及控制研究[J].地下空间与工程学报,2006,2(1):128-131.
    [33]毛朝辉,刘国彬.基坑开挖对下方近距离隧道的保护[J].浙江工业大学学报,2005,33(5):534-537.
    [34]王卫东,沈健,翁其平等.基坑工程对邻近地铁隧道影响的分析与对策[J].岩土工程学报,2006,28(S):1340-1345.
    [35]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997.
    [36]龚晓南.地基处理手册(第三版)[M].北京:中国建筑工业出版社,2008.
    [37]Jia J. Study of controlling measures on the deflection of metro tunnels due to Overlying Excavation [C]//Proceedings of Sessions of GeoShanghai2006:Underground Construction and Ground Movement. ASCE, GSP No.155:158-163.
    [38]Dolezalova M. Tunnel complex unloaded by a deep excavation[J]. Computers and Geotechnics,2001,28(6):469-493.
    [39]蒋洪胜,侯学渊.基坑开挖对临近软土地铁隧道的影响[J].工业建筑,2002,32(5):53-56.
    [40]Charles W.W. Observed performance of multipropped excavation in stiff clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(9):889-905.
    [41]Lings M., Nash D., Hsiung B. Performance of diaphragm wall constructed using top-down method[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(12):1100-1101.
    [42]Tomio T., Satoshi E., Hitosi M., et al. Mechanical behavior of ground bottom heave due to excavation[C]//Proceedings of the Japan Society of Civil Engineers. ASCE, GSP No.418:221-230.
    [43]Bjerrum L., Eide O. Stability of strutted excavation in clay[J]. Geotechnique,1956,6(1):32-47.
    [44]Goh, A. Estimating Basal-Heave Stability for Braced Excavations in Soft Clay[J]. Journal of Geotechnical Engineering,1994,120(8):1430-1436.
    [45]Youssef M. A. H., Andrew J. W. Ground movement prediction for deep excavations in soft clay[J]. Journal of Geotechnical Engineering,1996,122(6),474-486.
    [46]Tsui Y., Cheng Y. M. Fundamental study of braced excavation construction[J]. Computers and Geotechnics,1989,8(1):39-64.
    [47]夏明耀.多支撑地下连续墙入土深度的模拟试验研究[J].大坝观测与土工测试,1984,No.2:26-34.
    [48]丁勇春,戴斌,王建华等.某临近地铁隧道深基坑施工监测分析[J].北京工业大学学报,2008,34(5):492-497.
    [49]陈永福,曹名葆.深基坑开挖过程中的回弹计算探讨[J].岩土工程师,1993,5(1):19-25.
    [50]宰金珉.开挖回弹量预测的简化方法[J].南京建筑工程学院学报,1997,(2):23-27.
    [51]潘林有,胡中雄.深基坑卸荷回弹问题的研究[J].岩土工程学报,2002,24(1):101-104.
    [52]陆培毅,余建星,肖健.深基坑回弹的空间性状研究[J].天津大学学报,2006,39(3):301-305.
    [53]方焘,梁宁慧,耿大新.SMW工法围护软粘土深基坑开挖蠕变特性分析[J].地下空间与工程学报,2009,5(4):797-802.
    [54]中华人民共和国国际标准:建筑地基基础设计规范(GB50007-2002)[S].北京:中国建筑工业出版社出版,2002.
    [55]Kojima Y., Yashiro K. Deformation behavior of tunnel lining due to ground surface loading and unloading above the tunnel[J]. Quarterly Reports RTRI (Railway Technical Research Institute),2005,46(2):143-146.
    [56]Burford D. Heave of tunnels beneath the Shell Centre, London,1959-1986[J]. Geotechnique,1988,38(1):135-137
    [57]Ward W. H. Displacements and strains in tunnels beneath a large excavation in London[C]//Proceedings of5th Internatioanal Conference of Soil Mechanical Foundation Engineering,1961,2:749-753.
    [58]刘建航,候学渊.盾构法隧道[M].北京,中国铁道出版社,1991.
    [59]徐凌,黄宏伟,罗富荣.软土地层盾构隧道纵向沉降研究进展[J].城市轨道交通研究,2007,(6)53-56.
    [60]魏少伟.基坑开挖对坑底已建隧道影响的数值与离心试验研究[D].天津大学博士学位论文,2010年.
    [64]林永国,廖少明,刘国彬.地铁隧道纵向变形影响因素的探讨[J].地下空间,2000,20(4):264-267.
    [65]林永国.地铁隧道纵向变形结构性能研究[D].同济大学博士学位论文,2001年.
    [66]朱合华,杨林德,陈清军等.盾构隧道管片接头衬砌系统的两种受力设计模型[J].工程力学,1996,No.3:395-399.
    [67]Zhang Z.Q., He C., Zhu M. A study on longitudinal deformation characteristics of super long shield tunnel based on3D elastic foundation model[C]//Eighth International Conference of Chinese Logistics and Transportation Professionals,2008,3:2647-2655.
    [68]黄钟晖.盾构法隧道错缝拼装衬砌受力机理的研究[D].同济大学博士学位论文,2001年.
    [69]胡志平.盾构隧道管片衬砌结构计算模型及稳定性风险分析研究[D].同济大学博士学位论文,2004年
    [70]钟小春,王建,白天.盾构衬砌简化的壳—弹簧有限元模型及验证[C]//中国土木工程学会第十届土力学及岩土工程学术会议论文集.重庆:重庆大学出版社,2007:555-559.
    [71]孙钧.市区基坑开挖施工的环境土工问题[J].地下空间,1999,19(4):257-265.
    [72]王如路,刘海.地铁运营隧道上方深基坑开挖卸载施工的监控[J].地下工程与隧道,2005,No.1:22-26.
    [73]祝宜龙,白文波.上部基坑施工对软土地铁隧道变形监测与分析[J].上海地质,2007,No.4:10-13.
    [74]Liu H.L., Li P., LiuJ.Y. Numerical investigation of underlying tunnel heave during a new tunnel construction[J]. Tunnelling and Underground Space Technology,2011,26(2):276-283.
    [75]李志高,刘浩,刘国彬等.基坑开挖引起下卧隧道位移的实测分析[J].地下空间与工程学报,2005,No.4:619-623.
    [76]李东海,刘军,牛晓凯等.开挖卸荷对下卧初支隧道的纵向变形的影响研究[J].岩土力学,2009,30(2):563-566.
    [77]韦凯,宫全美,周顺华.隧道长期不均匀沉降预测的蚁群算法[J].同济大学学报,2009,37(8):993-998.
    [78]孔令荣,崔永高,隋海波.基坑开挖对邻近地铁变形的影响分析[J].工程勘察,2010,No.6:15-20.
    [79]肖同刚.基坑开挖施工监控对临近地铁隧道影响分析[J].地下空间与工程学报,2011,7(5):1013-1017.
    [80]刘国彬,侯学渊.软土基坑隆起变形的残余应力分析法[J].地下工程与隧道,1996,No.2:2-7.
    [81]刘国彬,侯学渊.软土的卸荷模量[J].岩土工程学报,1996,18(6):18-23.
    [82]吉茂杰,刘国彬.开挖卸荷引起地铁隧道位移预测方法[J].同济大学学报,2001,29(5):531-535.
    [83]陈郁,李永盛.基坑开挖卸荷引起下卧隧道隆起的计算方法[J].地下空间与工程学报,2005,1(1):91-94.
    [84]张治国,张孟喜,王卫东.基坑开挖对临近地铁隧道影响的两阶段分析方法[J].岩土力学,2011,32(7):2085-2092.
    [85]Redman P.G., Poulos H.G. Study of two field cases involving undrained creep[J]. Journal of Geotechnical and Geoenvironmental Engineering,1984,110(9):1307-1321.
    [86]Yin J.H., Graham J. Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays [J]. Canadian Geotechnical Journal,1989,26(2):199-209.
    [87]Fodil A., Aloulou W., Hicher P.Y. Viscoplastic behaviour of soft clay[J]. Geotechnique,1997,47(3):581-591.
    [88]Miao L., Zhang J., Wang F., et al. Time-dependent deformation behavior of Jiangsu marine clay, Marine Georesources and Geotechnology,2008,26(2):86-100.
    [89]Wu J., Shi X., Ye S., et al. Numerical simulation of viscoelastoplastic land subsidence due to groundwater overdrafting in Shanghai, China[J]. Journal of Hydrologic Engineering,2010,15(3):223-236.
    [90]Tang B., Lei J. Study on model of coupled behavior of consolidation and creep for soil[M]//Taylor&Francis Group. London:Geomechanics and Geotechnics,2011,265-272.
    [91]Luo Z.J., Zeng F. Finite element numerical simulation of land subsidence and groundwater exploitation based on visco-elasticplastic Biot's consolidation theory[J]. Journal of Hydrodynamics,2011,23(5):615-624.
    [92]Shi X.Q., Wu J.C., Xue Y.Q., et al. Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City, China[J]. Engineering Geology,2008,100(1-2):27-42.
    [93]陈宗基.固结及次时间效应的单向问题[J].土木工程学报,1958,5(1):1-10.
    [94]吴兴龙,朱碧堂.深基坑开挖坑周土体变形时空效应初探[J].土工基础,1999,13(3):5-8.
    [95]应宏伟,谢康和,潘秋元等.软粘士深基坑开挖时间效应的有限元分析[J].计算力学学报,2000,17(3):349-354.
    [96]覃海婴,杨晓贞.考虑卸载扰动与土流变特性的基坑性状的分析[J].福州大学学报:自然科学版,2001,29(1):78-82.
    [97]张伟,茜平一,陈晓平.流变理论在深基坑开挖中的应用探讨[J].武汉大学学报:工学版,2003,36(2):92-96.
    [98]张燕凯,棒国庆,赵抚民.深基坑工程中考虑开挖深度和时间效应的土压力计算公式的探讨[J].南昌大学学报:工科版,2002,24(1):85-89.
    [99]吴波,刘维宁,高波等.城市浅埋隧道施工性态的时空效应分析[J].岩土工程学报,2004,26(3):340-343.
    [100]陈洋.软粘土深基坑开挖的粘弹塑性流变分析[J].工业建筑,2000,30(9):42-45.
    [101]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [102]郑榕明,陆浩亮,孙钧.软土工程中的非线性流变分析[J].岩土工程学报,1996,18(5):1-13.
    [103]侯学渊,杨敏.软土地基变形控制设计理论和工程实践[M],上海:同济大学出版社,1997.
    [104]夏明耀,孙逸明,王大龄.饱和软土固结、蠕变、变形和应力松弛规律[J].同济大学学报:自然科学版,1989,No.3:36-44.
    [105]O'Rourke T.D. Ground movements caused by braced excavation[J]. Journal of the Geotechnical Engineering Division, ASCE,1981,107(9):1159-1178.
    [106]Huang A.J., Wang D.Y., Wang Z.X. Rebound effects of running tunnels underneath an excavation[J]. Tunnelling and Underground Space Technology,2006,21(3):1-6.
    [107]Zheng G., Wei S.W. Numerical analyses of influence of overlying pit excavation on existing tunnels[J]. Journal of Central South University of Technology,2008,15(2):69-75.
    [108]王卫东,吴江斌,翁其平.基坑开挖卸载对地铁区间隧道影响的数值模拟[J].岩土力学,2004,25(S):251-255.
    [109]毛朝辉,刘国彬.基坑开挖引起下方隧道变形的数值模拟[J].地下工程与隧道,2005,(4):24-27.
    [110]徐立明.近距离基坑开挖对下方既有隧道的影响研究[J].地下空间与工程学报,2009,5(S2):1603-1611.
    [111]钟铮,梅英宝.紧邻地铁的大型深基坑施工中的环境保护[J].建筑施工,2006,28(11):863-866.
    [112]李家平.基坑开挖卸载对下卧地铁隧道影响的数值分析[J].地下空间与工程学报,2009,5(S):1345-1348.
    [113]蔡建鹏,黄茂松,钱建固,徐中华.基坑开挖对邻近地下管线影响分析的DCFEM法[J].地下空间与工程学报,2010,6(1):120-124.
    [114]Dolezalova M. Tunnel complex unloaded by a deep excavation[J]. Computers and Geotechnics,2001,28(6):469-493.
    [115]戚科骏,王旭东,蒋刚等.临近地铁隧道的深基坑开挖分析[J].岩石力学与工程学报,2005,24(S2):5485-5489.
    [116]张治国,张谢东,王卫东.临近基坑施工对地铁隧道影响的数值模拟分析[J].武汉理工大学学报,2007,29(11):93-97.
    [117]刘小建,贾坚.地铁隧道上方基坑卸荷回弹及控制的试验和探讨[J].地下空间,2008,No.2:41-44.
    [118]周建昆,李志宏.紧邻隧道基坑工程对隧道变形影响的数值分析[J].地下空间与工程学报,2010,6(S1):1398-1403.
    [119]褚峰,李永盛,梁发云等.土体小应变条件下紧邻地铁枢纽的超深基坑变形特性数值分析[J].岩石力学与工程学报,2010,29(S1):3184-3191.
    [120]王浩然,徐中华.复杂环境条件下的基坑工程设计与实测分析[J].地下空间与工程学报,2011,(5):968-976.
    [121]赵志强,张冬梅.临近基坑开挖对地铁区间隧道影响评价[J].地下空间与工程学报,2011,7(5):1040-1046.
    [122]Ray B., Paul S.H., Jeffrey R.H., et al. Grouting and ground treatment:case studies in applications of grouting and deep mixing use of compaction grout columns to stabilize uncontrolled loose fill and to lift a settled tunnel:a significant case history[C]//Third International Conference on Grouting and Ground Treatment. ASCE, GSP No.120:1020-1031.
    [123]Dasenbrock D. Application of deep mixing method to a challenging bridge construction project: The glen road interchange [C]//Geo-Frontiers2005:Innovations in Grouting and Soil Improvement. ASCE, GSP No.136:1777-1786.
    [124]Wang, J.H., Xu, Z.H., Wang, W. D. Wall and ground movements due to deep excavations in Shanghai soft soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(7):985-994.
    [125]Hayashi H., Nishikawa J.I., Kanta Ohishi K., et al. Field observation of long-term strength of cement treated soil[C]//Third International Conference on Grouting and Ground Treatment. ASCE, GSP No.120:598-609.
    [126]Lee F., Lee Y., Chew S., et al. Strength and modulus of marine clay-cement mixes[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(2):178-186.
    [127]Ali M., Douglas W. S., Jafari F., et al. In-situ solidification of river sediments using cement deep soil mixing [C]//GeoCongress2006:Geotechnical Engineering in the Information Technology Age. Atlanta, Georgia, United States:ASCE:1-5.
    [128]Sariosseiria F., Muhunthan B. Effect of cement treatment on geotechnical properties of some Washington State soils[J]. Engineering Geology,2009,104(1-2):119-125.
    [129]O'Rourke T.D., McGinn A.J. Case history of deep mixing soil stabilization for Boston Central Artery [C]//Proceedings of GeoTrans2004:Geotechnical Engineering for Transportation Projects. ASCE, GSP No.126:77-136.
    [130]Ali M., Schaefer V., Yang D. In-situ deep soil mixing for solidification of soft estuarine sediments-shear strength [C]//GeoCongress2008:Geotechnics of Waste Management and Remediation. ASCE, GSP No.177:668-675.
    [131]Ou Ch.Y., Wu T.S., Sheng H.H. Analysis of deep excavation with column type of ground improvement in soft clay[J]. Journal of Geotechnical Engineering,1996,122(9):709-716.
    [132]Shen S.L., Han J., Du Y.J. Deep mixing induced property changes in surrounding sensitive marine clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(6):845-854.
    [133]Shen S.L., Huang X.C., Du S.J., et al. Laboratory studies on property changes in surrounding clays due to installation of deep mixing columns [J]. Marine Georesources and Geotechnology,2003,21(1):15-35.
    [134]Shen S.L., Miura, N., Han J., et al. Evaluation of property changes in surrounding clays due to installation of deep mixing columns [C]//Third International Conference on Grouting and Ground Treatment:Grouting and Ground Treatment. ASCE, GSP No.120:634-645.
    [135]贾坚.控制深基坑变形的坑内加固技术研究[J].岩土工程界,2004,No.21:140-143.
    [136]熊巨华,杨敏.建筑基坑被动区土体加固的分析[J]..地基处理,1999,10(1):22-27.
    [137]李大勇,龚晓南,张土乔.软土地基深基坑周围地下管线保护措施的数值模拟[J].岩土工程学报,2001,23(6):736-740.
    [138]Shen S.L., Miura N., Koga H. Interaction mechanism between deep mixing column and surrounding clay during installation [J]. Canadian Geotechnical Journal,2003,40(2):293-307.
    [139]Fang Z., Yin J.H. Responses of excess pore water pressure in soft marine clay around a soil-cement column[J]. International Journal of Geomechanics,2007,7(3):167-175.
    [140]Contini A., Cividini A., Gioda G. Numerical evaluation of the surface displacements due to soil grouting and to tunnel excavation [J]. Journal of Geomechanics,2007,7(3):217-225.
    [141]Massoudi N. Jet Grouting for support of excavations near historic structures [C]//GeoCongress2008:Geosustainability and Geohazard Mitigation. ASCE, GSP No.178:955-959.
    [142]潘行庄,潘建华,许伟成.深层搅拌桩施工对环境的影响[J].大坝观测与土工测试,2001,25(1):46-49.
    [143]罗哲,李发明.深层搅拌桩施工对周围环境影响分析[J].土工基础,1998,12(3):1-5.
    [144]付艳斌,朱晓娟,汪成兵.地铁区间运营隧道上方深层搅拌桩施工优化分析[J].现代隧道技术,2006,S:538-540.
    [145]Liao S.M., Shen M. L., Zhou L., et al.In-situ experimental study on SDC grouting in Shanghai saturated soft clay[C]//Geo-Frontiers2011:Advances in Geotechnical Engineering. ASCE, GSP No.211:2504-2513.
    [146]刘松玉,易耀林,朱志铎.双向搅拌桩加固高速公路软土地基现场对比试验研究[J].岩石力学与工程学报,2008,27(11):2272-2279.
    [147]沈水龙,庞晓明,蔡丰锡等.水泥土搅拌桩的桩径分析[J].防灾减灾工程学报,2005,25(3):235-238.
    [148]沈水龙,蔡丰锡,许烨霜等.深层搅拌桩施工引起的周围土体的孔隙水压力[C]//第八届全国地基处理学术讨论会论文集,2004,合肥:合肥工业大学出版社:26-30.
    [149]沈水龙,许烨霜,常礼安.深层搅拌桩周围土体劈裂的研究与分析[J].岩土力学,2006,27(3):378-382.
    [150]沈水龙,蔡丰锡,顾伟华.有明黏土中搅拌桩施工时的孔隙水压力[J].岩土力学,2006,27(4):648-652.
    [151]付艳斌,廖少明,朱合华.搅拌桩加固挤土效应及在地铁隧道保护中的应用[J].岩土力学,2009,30(7):2005-2010.
    [152]Chai J.C., Carter J.P., Miura N., et al. Improved prediction of lateral deformations due to installation of soil-cement columns [J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(12):1836-1845.
    [153]Chai J.C., Miura N., Koga H. Lateral displacement of ground caused by soil-cement column installation [J]. Journal of geotechnical and geoenvironmental engineering,2005,131(5):623-632.
    [154]Wisser C., Augarde C. E., Burd H. J. Numerical modelling of compensation grouting above shallow tunnels[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2005,29(5):443-471.
    [155]吉茂杰.搅拌桩加固施工对基坑位移影响分析[J].地下工程与隧道工程,2005,No.2:26-28.
    [156]张俊平,张耀,唐正国等.骑跨地铁隧道的建筑基坑下土体加固技术[J].建筑施工,2005,No.4:28-30.
    [157]朱蕾.SMW工法水泥土搅拌桩施工期间相邻隧道的变形监测[J].铁道建筑,2007,No.2:46-47.
    [158]普德荣,茅青东,林清泉.超深搅拌桩施工技术及应用[J].地下工程与隧道,2008,No.4:39-42.
    [159]Butler F.G. Heavily over consolidated clays[C]//Conference on settlement of structures, British Geotechnical Society, Cambridge, England,1974.
    [160]Davis E.H., Poulos H.G. The use of elastic theory for settlement prediction under three dimensional condition[J]. Geotechnique,1968,18(1):67-91.
    [161]Love A.E.H. A Treatise on the Mathematical Theory of Elasticity[C]//Cambridge University Press, Cambridge, UK,1927.
    [162]夏冰,夏明耀.上海地区饱和软土的流变特性研究及基坑工程的流变时效分析[J].地下工程与隧道,1997,No.3:11-18.
    [163]刘国彬,贾付波.基坑回弹时间效应的试验研究[J].岩石力学与工程学报,2007,26(S):3040-3044.
    [164]Xu H.F., Tan H.H. A polynomial regressive inverse method to determine rheological parameters of soft soil [C]//Proceedings of Sessions of GeoShanghai2006, Soil and Rock Behavior and Modeling (ASCE:GSP No.150):304-311.
    [165]付艳斌,朱合华,王铁行.基于超定线性方程组确定软土的流变模型方法[J].地下空间与工程学报,2007,3(3):439-443.
    [166]Thomas H.R., Bendani K. Primary/secondary compression solution algorithm[J]. Journal of Computing in Civil Engineering,1988,2(4):380-397.
    [167]徐中华.上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D].上海交通大学博士学位论文,2007年.
    [168]Jongpradist P., Youwai S., Jaturapitakkul C. Effective void ratio for assessing the mechanical properties of cement-clay admixtures at high water content[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(6):621-627.
    [169]Lorenzo G. A., Bergado D. T. Fundamental characteristics of cement-admixed clay in deep mixing[J]. Journal of Materials in Civil Engineering,2006,18(2):161-174.
    [170]Yin C.Y., Mahmud H.B., Shaaban M.G. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash[J]. Journal of hazardous materials,2006,137(3):1758-1764.
    [171]Finno R.J., Blackburn J.T., Roboski J.F. Three-Dimensional Effects for Supported Excavations in Clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(1):30-36.
    [172]Schafer R., Triantafyllidis Th. Modelling of earth and water pressure development during diaphragm wall construction in soft clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics.2004,28(13):1305-1326
    [173]Kung G.T.C. Comparison of excavation-inducedwalldeflection using top-down and bottom-up construction methods in Taipei silty clay[J].Computers and Geotechnics,2009,36(3):373-385.
    [174]Yoo C., Lee D. Deep excavation-induced groundsurface movement characteristics-A numerical investigation[J].Computers and Geotechnics,2008,35(2):231-252.
    [175]Schweiger H.F., Scharinger F., Luftenegger R.3D finite element analysis of a deep excavation and comparison with in situ measurements[G].Geotechnical Aspects of Underground Construction in Soft Ground,2008:193-199.
    [176]Araia, Kusakabeb O., Muratac O., et al. A numerical study on ground displacement and stress during and after the installation of deep circular diaphragm walls and soil excavation[J]. Computers and Geotechnics,2008,35(5):791-807.
    [177]Ou C.Y., Teng F.C., Wang I.W. Analysis and design of partial ground improvement in deep excavations[J]. Computers and Geotechnics,2008,35(4):576-584.
    [178]Ou C.Y., Chiou D.C., Wu T.S. Three-dimensional finite element analysis of deep excavation[J]. Journal of Geotechnical Engineering,1996,122(5):337-345.
    [179]Hashash Y.M.A.,Song H.,Osouli A. Three-dimensional inverse analyses of a deep excavation in Chicago clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2011,35(9):1059-1075.
    [180]Macari Y.S., Jose E. Information feedback analysis in deep excavations[J]. International Journal of Geomechanics,2008,5(1):91-103.
    [181]Hsiung B.C.B. A case study on the behaviour of a deep excavation in sand [J].Computers and Geotechnics,2009,36(4):665-675.
    [182]Chen J. J., Hou Y.Q., Zhu Y.F., Wen S.L., et al. Numerical analysis for the influence of a cut-and-cover tunnel on underlying metro tunnels [C]//Proceeding of The24th ICTPA Annual Conference&NACGEA International Symposium on Geo-Trans, Los Angeles, USA,2011, Paper No. S3-042
    [183]Ledesma A., Gens A., Alonso E.E. Estimation of parameters in geotechnical backanalysis-I. Maximum likelihood approach[J]. Computers and Geotechnics,1996,18(1):1-27.
    [184]Rechcaa C., Levasseurb S., Finnoc R. Inverse analysis techniques for parameter identification in simulation of excavation support systems[J]. Computers and Geotechnics,2008,35(3):331-345.
    [185]Hashash Y.M.C., Marulanda C, Ghaboussi J., et al. Novel Approach to Integration of Numerical Modeling and Field Observations for Deep Excavations [J]. J. Geotech. Geoenviron. Eng.,2006,132(8):1019-1031.
    [186]Hashasha Y. M.A., Levasseurb S., Osoulia A., et al. Comparison of two inverse analysis techniques for learning deep excavation response[J]. Computers and Geotechnics,2010,37(3):323-333.
    [187]冯紫良,杨林德,李成江.初始地应力的反推原理[J].同济大学学报,1983,No.3:18-25.
    [188]郑颖人,张德微,高效伟.弹塑性问题反演计算的边界元法[C]//中国土木学会第三届年会论文集.上海:同济大学出版社,1986:377-386.
    [189]杨敏,熊巨华,冯又全.基坑工程中的位移反分析技术与应用[J].工业建筑,1998,28(9):1-6.
    [190]王强,刘松玉,童立元等.多支撑地下连续墙动态开挖过程中m值反分析[J].东南大学学报,2011,41(2):352-358.
    [191]仇圣华,杨林德,王悦照等.地下厂房试验洞的粘弹性反分析[J].同济大学学报,2003,31(9):1024-1028.
    [192]朱合华,刘学增.基于遗传算法的混合优化反分析及比较研究[J].岩石力学与工程学报,2003,22(2)197-202.
    [193]徐士良.C常用算法程序集[M].北京:清华大学出版社.1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700