大断面超小横净距双线地铁隧道施工控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市的不断发展和扩大,城市地下空间被各种既有管线、构筑物(桥梁、建筑)基础、已有地铁等占用,新规划的地铁隧道经常出现两条(或多条)并行、净距小开挖断面又很大的情况。与此同时,施工范围内存在多条断层、地层条件差、地下水丰富复杂等多种不利因素,增加新建双线(多线)隧道施工难度。
     本文结合长沙地铁2号线的以上特点,参考国内外已有经验,通过数值模拟、现场监测、理论分析,对小净距、双线大断面并行隧道进行关键技术研究,提出了改进的双侧壁导坑施工法,对导坑内撑拆除和二衬时机进行了优化;对比分析了双线隧道大小断面开挖先后顺序、中岩墙加固与否、大断面不同开挖方法以及相邻隧道不同间距等条件下中岩墙稳定性;在围岩稳定与变形监测成果的基础上,对岩柱水平位移、钢拱架应变及内力回归分析,得到较为实用的预测公式。为城市轨道工程、山体隧道工程、地下硐室等掩埋结构物施工提供一定的理论基础和实践经验。
     本文具体工作和研究内容如下:
     1.小净距、大断面双线地铁隧道的关键技术问题研究
     (1)根据项目设计的实际情况,对施工风险进行了分析,并提出了控制措施。在总体施工方案确定的基础上,利用FLAC3D软件对大断面、小净距双线隧道暗挖施工数值模拟,分析了双侧壁导坑(九步、六步)、CRD法三种施工方法的力学行为,提出了六步双侧壁导坑施工方法,优化了施工方案。
     (2)在双侧壁六步导坑法大断面暗挖施工方案基础上,利用MIDAS软件对双侧壁导坑施工步序、内撑拆除和二衬时机优化方面进行了模拟分析。在步序优化方面,提出了改进的六步导坑法,与目前已有的施工方法相比,本施工方法因先把上部分全部开挖完后再开挖下部分,施工工作面增大,对施工工期的缩短和各施工工序及施工工种的协调施工均有很大优势。可为城市轨道工程、山体隧道工程、地下硐室等掩埋结构物施工提供参考。在拆除导坑内撑和二衬时机优化方面,通过对比拆除支撑前后维护结构的位移及内力对比分析,发现拆除临时支撑时,拱顶位移变化较大,初衬结构的弯矩变化较大,增加很快。当二衬施做完成后,支护结构内力变化幅度减小,结构基本趋于稳定。如果一次性拆除临时支撑且二衬不能及时施做,考虑到释放应力的时间效应,拱顶竖向位移将进一步增大。建议拆除临时支撑时,进行分块、分幅拆除,以减小拱顶沉降和释放应力时间效应带来的不安全因素。如果能保证二衬及时跟进,按照拆除临时支撑和二衬施做间距12m方案,可以满足施工安全要求。
     2.小净距、大断面双线隧道中岩墙稳定性分析(1)通过对多种工况的施工模拟分析,在开挖大小断面顺序方面,对超小净距双线隧道,应先开挖小断面隧道,后开挖大断面隧道,以减少先开挖大断面隧道影响围岩应力变化较大的区域,从而一定程度的影响了单线隧道开挖土体区域。并且开挖小断面隧道也可通过小洞径的开挖确定设计支护是否合理,地质勘查结果是否准确,为后续开挖大洞径隧道提供参考。
     (2)对是否进行中岩墙加固进行了模拟分析,对于岩墙,当两个洞室的净距很小,岩墙加固与否对其稳定性影响较大,一般采用的加固措施包括注浆加固和两侧采用对拉锚杆,其中通过大量的现场实例和数值计算分析可知,对拉锚杆对岩墙的稳定十分重要。
     (3)对双线隧道不同开挖方法进行了模拟分析,大断面按照双侧壁导坑施工方法对中岩墙稳定性优于CRD法,且可保证围岩的稳定性,引起中岩墙变形和塑性区也在规范允许范围内,能保证工程的安全施工。
     (4)对并行隧道不同的净距情况模拟分析,当净距小于1.0D时,岩墙的净距越小,并行隧道开挖所产生的土体位移、应力和塑性区越大,故对于超小净距隧道,对于岩墙采取注浆加固的措施,并施做对拉锚杆,建议隧道硐室采用多部开挖,边开挖边支护的措施,开挖一步支护一步,防止由于土体释放应力过大从而导致岩墙的失稳破坏。
     3.车站暗挖区间围岩稳定与变形监测及回归分析
     对车站暗挖区间进行了围岩稳定与变形监测,对监测成果进行了分析整理。通过对实测双线隧道开挖施工沉降、变形、应力监测结果的回归分析,得到了开挖引起中岩柱水平位移、钢拱架应变、内力的变化规律:
     (1)对于CRD工法,岩柱水平位移与时间呈多次抛物线变化,距离单洞洞口距离越近,抛物线次数越高,反之,距离单洞洞口距离越远,抛物线次数越低。
     (2)对于暗挖双侧壁六步导坑-B法施工,钢拱架拱顶、仰拱部位应变与时间符合4次抛物线变化规律。
     (3)钢拱架拱顶、仰拱部位弯矩与时间呈2次抛物线变化规律。
     (4)仰拱轴力与时间呈3次抛物线变化规律
     (5)拱顶轴力与时间呈直线变化
With the continuous development and expansion of city.The underground space of urban isoccupied by a variety of pipelines,structures (Bridges and buildings) foundation,subways and soon. The small spacing of two (or more)tunnels and large cross-section exist in the new planningtunnels, while, with multiple faults, poor stratigraphic conditions, abundant underground waterand other unfavorable factors exist in construction range,increased the difficult of new two lane(multi-line) tunnels construction.
     Based on the above characteristics of Changsha subway line2, Reference the experience ofdomestic and foreign, through numerical simulation analysis, field monitoring and theoretical, toresearch the key technology of parallel tunnel with small spacing and large cross-section, putforward the improved two side-surrounding pilot tunnel method, and optimized the opportunity ofdemolition of heading support inside and second liner timbering, comparative analysis of the rockpillar stability in two lane tunnel section excavation sequence, rock pillar reinforcement or not,the large cross-section of different excavation methods and the adjacent tunnel under theconditions of different spacing, based on the stability of surrounding rock and the deformationmonitoring results,do the regressing analysis for rock pillar horizontal displacement,strain andinternal force of steel arch,get the more useful forecasting formula. Provide a theoretical basis andpractical experience for construction of urban rail projects, mountain tunnel, undergroundchambers and other buried structures.
     In this paper, the concretework and research are as follows:
     1. Research the key technology of two-lane subway tunnel with small spacing and largecross-section
     (1) According to the actual situation of the project design, analyzed the construction risk andproposed control measures. Based on the determined general construction scheme, use theFLAC3D software do numerical simulation for two lane tunnel excavation construction withsmall spacing and large cross-section, analysis mechanical behavior of two side-surrounding pilottunnel method (nine, six-step), CRD construction methods, proposed six-step twoside-surrounding pilot tunnel method to optimize the construction program.
     (2) Based on large cross-section excavation construction program In the six-step twoside-surrounding pilot tunnel method, use MIDAS software do simulation analysis for sequenceof two side-surrounding pilot tunnel construction and optimize the opportunity of demolition ofheading support inside and second liner timbering. In the sequence optimization, is proposed an improved six-step method to the pit, compare with the current existing construction methods, thismethod of construction first excavate all the upper section then excavate under section which canincrease the face, there are great advantages in shortening the construction schedule andcoordinating construction process. Provide reference for construction of urban rail projects,mountain tunnel, underground chambers and other buried structures. Within optimized theopportunity of demolition of heading support inside and second liner timbering, by comparingand analysising displacements and internal forces before and after removal of the supportstructure found that when removal of temporary support, the displacements of vault changedgreatly, the moment of initial lining structure changed greatly, increased rapidly. When the secondliner is complete, the internal force rangeability of supporting structure decreases, the basicstructure stabilized. If the removal of temporary supports and second liner can not be applied todo, considering the time effect of releasing the stress, the displacements of vault will increasefurther. When removal of temporary support we can divided into blocks,framing to removed, toreduce the insecurity caused by vault settlement and time effect of releasing the stress. If you canguarantee second liner construct timely, in accordance with the12m long between removal oftemporary support and second liner construction can meet construction safety requirements.
     2.Analysis the rock pillar stability of two-lane tunnel with small spacing and largecross-section.
     (1) Through the construction of a variety of conditions simulation analysis, the excavationsequence of the ultra small spacing in two-lane tunnel,is the small section tunnel is first, and lastis the large section tunnel,in order to reduce area of large cross-section tunnel surrounding rockstress changes greatly, thus to affected the single tunnel excavation soil zone. and a small sectiontunnel excavation through a small hole diameter can also be designed to support the excavation todetermine whether it is reasonable, geological survey results are accurate or not, can providereference for large diamete tunnel excavation.
     (2) On whether to proceed with the rock pillar reinforcement were simulated and analyzed,for rock pillar, when the clear distance of two cavern is small, the stability of rock pillarreinforcement can impact a lot, the general use of reinforcement measures including grouting andused cross anchor on both sides, and through a large number of field examples and numericalanalysis shows that cross anchor is very important for the rock pillar stability.
     (3) Different excavation methods for two-lane tunnel were simulated and analyzed,according to two side-surrounding pilot tunnel method construction method better than CRDmethod in rock pillar stability, and can guarantee the stability of surrounding rock, the rock pillardeformation and plastic District also within the allowable range of standardize,it can ensure the safety of construction.
     (4) Simulate and Analysis the different clear distance of parallel tunnel, when theclear distance is less than1.0D, the rock pillar clear distance is smaller, soil displacement, stressand plastic zone of parallel tunnel excavation is larger, so for ultra-small spacing tunnel takemeasures to grout for rock pillar and do cross anchor, the tunnel chamber should be do a numberof excavation, excavating and supporting should be carried out simultaneously, to prevent therelease of the soil stress too much causing rock pillar instability failure
     3.Rock stability,deformation monitoring and regression analysis in underground excavationof the station interval.
     Monitored rock stability and deformation in underground excavation of the station interval,analyzed monitoring results. Do regression analysis for monitoring results of settlement,deformation, stress in two-lane tunnel, to get the variation of the horizontal displacement, steelarch strain, internal forces caused by the excavation of rock pillar:
     (1)CRD construction method, Rock pillar horizontal displacement and time were repeatedlyparabola,the closer distance from single hole, the higher the number of parabola, conversely, thefarther the distance from single hole, the lower the number of parabola.
     (2) Six-step two side-surrounding pilot tunnel method-B, For underground construction, steelarch vault, the strain of parts of the inverted arch and time meet4times parabola change rule.
     (3) Steel arch vault, inverted arch moment and time meet2times parabola change rule.
     (4) Inverted arch Axial force and time meet3times parabola change rule.
     (5) Vault axial force and time change is linear.
引文
[1]徐恒国.大断面隧道浅埋暗挖法施工地层变形规律及过程控制技术[D].北京:北京交通大学,2008.
    [2]张建强.特大断面超浅埋立体换乘车站交叉段暗挖施工技术研究[D].北京:北京交通大学,2010.
    [3]高成雷.浅埋暗挖洞桩法应用理论研究[D].成都:西南交通大学,2000.
    [4]桂铬.浅埋软弱围岩小净距隧道施工技术与受力特征研究[D].长沙:中南大学,2008.
    [5]黄强.小净距公路隧道施工中围岩地应力分析研究[D].武汉:武汉理工大学,2009.
    [6]吴帅.水下小间距浅埋暗挖隧道相互影响研究[D].长沙:中南大学,2010.
    [7]杜菊红.小间距隧道动态施工力学研究[D].同济大学,2008.
    [8]仇文革.地下工程近接施工力学原理及对策研究[D].成都:西南交通大学,2003.
    [9]胥润东,徐林生.并行隧道围岩应力的线弹性分析[J].岩土工程技术,2005(3):24-27.
    [10]郭东杰,王立忠,陈云敏,吴世明.倾斜地表下深埋隧道受力弹性分析[D].地下空间与工程学报,1997(4):35-37
    [11]张雷,叶勇,陈时栩.格构梁预应力锚索加固岩堆体边坡数值模拟[J].工程勘察,2008(5)40-42
    [12]中交-公路勘察设计院有限公司.[GB]JTG C20-2011.公路工程地质勘察规范,2011,10-12.
    [13]郑陈旻.隧道塌方预警预测体系及治理措施研究[D].上海:同济大学,2008.
    [14]唐雨春,徐林生,金美海.小净距隧道建设的若干问题综述[J].隧道建设,2007,27(7):22-25.
    [15]施成华.隧道开挖及疏水引起的地表沉降及变形[J].中国公路学报,2007,20(1):91~95.
    [16]徐睿,屠世浩,郑西贵.浅析断层构造突水机理及防治措施[J].煤矿安全,2009(01):18-20.
    [17]荣永刚.浅埋暗挖隧道施工引起的地表沉降分析与对策[J].山西建筑,2007(01):20-23.
    [18]阳军生,刘宝琛.城市隧道施工引起的地表移动及变形[M].北京:中国铁道出版社.2002.
    [19]韩煊.隧道施工引起地层位移及建筑物变形预测实用方法研究[D].西安:西安理工大学,2006.
    [20]杨会军,王梦恕,浅埋暗挖大跨风道临时支撑拆除技术[J].隧道建设,2012(10):23-25.
    [21]刘明高.小净距隧道合理净距及其施工方法研究[D].北京:北京工业大学大学,2006.
    [22]秦峰,吴存兴.小净距隧道开挖方法浅论[J].现代隧道技术,2003,40(6):39-42.
    [23](英)古利耶梅提(Guglielmetti,V)等著.城市地区机械化隧道施工设计方法及施工控制;中铁西南科学研究院有限公司,中铁十二局集团有限公司译.北京:中国铁道出版社,2009.
    [24] Loganathan N., Poulos, H.G., Analytical prediction for tunneling-inducedground movements in clays. Journal of Geotechnical and GeoenvironmentalEngineering,1998[C],(9):846-856.
    [25]陈育民.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [26]孙书伟,林杭,任连伟. FLAC3D在岩土工程中的应用[M].北京:水利水电出版社,2011.
    [27]彭文斌.FLAC3D实用教程[M].北京:北京机械工业出版社2007.
    [28]李国隧道及地下工程FLAC解析方法[M].北京:北京中国水利水电出版社2009.
    [29] Liu Baochen, Yang Junsheng, Zhang Jiasheng, Ground movement anddeformation due to dewatering and open pit excavation, In Guo&Golosinskieds., Procedings of the96Int. Symposium on Mining Science and Technology,Rotterdam:A.A. Balkema.1996[C].(8):1080-1081.
    [30]蒋彪,肖岩,李凌宜,大跨度超小净距暗挖地铁隧道施工方法模拟优化分析[J].铁道科学与工程学报,2011(10)33-36.
    [31]久武胜保.软岩隧道的非线性弹塑性状态[J].隧道译从,1992(1):11~18.
    [32]李云鹏,王芝银等.不同围岩类别小间距隧道施工过程模拟研究[J].岩土力学,2006(27)(40-43).
    [33] Burland, J.B., Standing, J.R., Jardine, F.M., Projects and methods, Buildingresponse to tunnelling case studies from construction of the Jubilee LineExtension, In: London, vol.1. CIRIA,2001[C], ISBN:0727730177.
    [34]王新霞.双层隧道施工工法及设计方案的研究[D].北京:北京建筑工程学院,2012.
    [35]潘青云,张运良,安永林,桂铬.小净距隧道施工技术及地表沉降模拟与监测[J].采矿技术2010(3):15-18.
    [36] Verriijt A, Booker J R. Surface Settlement due to Deformation of A Tunnel inAn Elastic Half Plane. Geotechnique,1996,46(4):753~756.
    [37]刘波,叶圣国,陶龙光,唐孟雄.地铁盾构施工引起邻近基础沉降的FLAC元数值模拟[J].煤炭科学技术.2002(10):9-11.
    [38] Mroueh, H. and Shahrour, I. Three-dimensional finite element analysis of theinteraction between tunnelling and adjacent structures.Geotechnical aspects ofunderground construction in soft ground.3rd international symposium(IS-Toulouse France2002[C])6th session,131-136.
    [39]韩煊,李宁.隧道施工引起地层位移预测模型的对比分析.岩石力学与工程学报[J].2007,26(3):594-600.
    [40]李浩,王涛,徐日庆.隧道施工对框架结构及地表位移影响的数值分析[J].铁道工程学报.2008(9):58-61.
    [41] Yang Junsheng, Liu Baochen, The prediction of ground surface settlements dueto tunneling in urban areas, in PROGRESS IN SAFETY SCIENCE ANDTECHNOLOGY, Vol. II[M], Beijing: Chemical Industry Press,2000.354-361.
    [42] Miliziano, S., Soccodato, F.M.&Burghignoli, A. Evaluation of damage inmasonry buildings due to tunnelling in clayey soils.Geotechnical aspects ofunderground construction in soft ground.3rd international symposium(IS-Toulouse France2002[C])3rd session,49-54.
    [43]吴焕通.小间距地铁区间隧道施工工序模拟分析[J].现代隧道技术,2002(39):32-34.
    [44]朱敬民,王家远.地下岩石洞室弹塑性边界元分析[J].重庆建筑工程学报,1989(11)23-26.
    [45]李树鹏.小净距隧道的施工监控量测和围岩稳定性的数值模拟研究[D].武汉理工大学,2008.
    [46]靳晓光,刘伟,秦峰,王建华.高速公路小净距隧道施工方法探讨[J].铁道工程学报,2004(02)63-68
    [47]谢卓雄.小净距隧道近接施工围岩稳定性及结构力学行为特征研究[D].西南交通大学,2004.
    [48] Wei-LChou, Antonio Bobet.,Prediction of Ground Deformations in ShallowTunnels in Clay.Tunneling and Underground Space technology.2002(17),3-19.
    [49] Sagaseta C., Analysis of undrained soil deformation due to ground loss.Geotechnique[J],1987,37(3):301~320.
    [50]鲁彪.小净距隧道最小安全净距与连拱隧道中墙优化研究[D].长安大学,2004:1-2.
    [51]王景春,殷杰.相邻隧道中心矩的研究[J].石家庄铁道学院学报,1995,8(2):109-113.
    [52]唐仪兴,张玉军.近距离双隧道开挖与支护的稳定性有限元计算[J].岩土力学,1999,20(1):87~92.
    [53] H.J. Burd et a1, Modelling Tunnelling-Induced Settlement of Masonry buildings.Proc. Instn. Civ.Engrs Geotech. Engng[J],2000,143:17~29
    [54] G.Swobodu,Numerical modeling of tunnels,Numerical methods and constitutivemodeling in geomechanics[J],Vdine,Eds.C.S.Desai and G.Gioda SpringerVerlag,Wien:277-318.
    [55] Rankin, W.J. Ground movement resulting from urban tunneling; predictions andeffects. Engineering Geology of Underground Movement, Geological Society,Engineering Geology Special Publication[J], No5,1988:79-92.
    [56] K.H.Park., Elastic Solution for Tunneling-Induced Ground Movements in Clays.ASCE,2004[C].
    [57]何巍.小净距隧道围岩稳定性及中夹层力学行为研究.[D].武汉理工大学,2007.
    [58]地盘工学会.盾构法的调查·设计·施工(牛清山、陈凤英、徐华译)[M].北京:中国建筑工业出版社,2008.
    [59] Mair, R.J., Taylor, R.N.,2001[C]. Elizabeth House: settlement predictions,London. In: Burland, J.B., Standing, J.R., Jardine, F.M.(Eds.), Projects andmethods, vol.1. CIRIA SP200,195-215.
    [60]卿立春.隧道工程监控量测技术[J].科技风,2010(04):33-36.
    [61]孙峰梅.小净距公路隧道施工技术[J].国防交通工程与技术,2006(01):41-44.
    [62]余学鹏.地铁暗挖法施工数值模拟方法研究[D].北京:中国地质大学2009.
    [63] K.W.Lo,L.K.Chong,L.F.Leung.FieldInstumentation of a Multiple TunnelInteraction Problem[J].Tunnels and Tunnelling,1998(6):24-12.
    [64]刘明高,高文学,等.小净距隧道中夹岩加固技术研究[J].施工技术,2006,35(增刊):172~174.
    [65]秦卫,王飞.小净距隧道设计研究与应用[J].土工基础,2006,20(04):40-43.
    [66]中国交通建设股份有限公司.[GB]JTG C20-2009.公路隧道施工监测技术规范,2009,12-16.
    [67]北京市城市轨道交通建设管理有限公司. DB11490/2007,地铁工程监控量测技术规程,2007,20-25.
    [68]文东.浅谈监控量测在隧道施工中的作用[J].民营科技,2012(5):33-36.
    [69]刘洪震,赵运臣.广州地铁“越~三”区间盾构工程地表沉降原因分析[J].隧道建设,2002(3),22(1):20-23.
    [70] Lee,Hee-up.LEE.Damage Identification of a Tunnel liner Based on DeformationData[J].Tunnelling and Underground Space Technology.2005,(20):73-80.
    [71]孙训方,材料力学,[M]北京:高等教育出本社,2010.
    [72] S.C.Bandil,G.Vardkis.Instability and Stress Transformation AroundUnderground Excavation in Highly Stressed AnisotropicMedia[J].Balkema:Maury and Fourmaintraux.1989.
    [73] T.Kawamoto,Y.Ichikawa.Deformation and Fracturing Behavior of DiscontinousRock Mass and Damage Mechanics[J].Int.J.Num.Anally.geo,1998,12(4):321-327.
    [74] P.Kumar.Infinte Element for Numerical Analysis of UndergroundExcavations.Tunnelling and Underground Technology[J].2000,15(1):117-124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700