基于多模型决策融合的刀具磨损状态监测系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刀具状态监测技术是先进制造技术的重要组成部分,是在现代传感器技术、计算机技术、信号处理技术和人工智能技术基础上发展起来的新兴技术。迄今为止,多个国家的研究单位已对刀具状态监测技术开展了深入的研究并取得了大量的研究成果,但是仍然存在很多亟需解决的问题。本文针对这些问题进行了一系列研究。首先,本文针对刀具监测信号中的噪声污染问题,提出了基于单参数对数基小波包阈值滤波算法的信号降噪方法。其次,研究了刀具状态监测的特征提取与特征融合技术,并提出了基于分步主元量分析(PPCA)的特征融和方法。最后,针对刀具多磨损量识别问题,本文采用了支持向量机(SVM)和三级集成人工神经网络识别模型,并在此基础上采用改进型D-S证据论进行决策级融合,进一步提高了刀具状态监测系统的性能。主要研究内容摘要如下:
     (1)总结并研究了实际加工生产中常见的刀具磨损现象,在对比多种刀具磨损状态的监测方法之后,采用了通过监测刀具背刀面磨损量来衡量刀具磨损状态的监测方法。监测系统硬件平台搭建中传感器的选型,采用了三维力传感器和三维振动加速度传感器相结合的方案。实验结果表明这种多传感器数据级融合的监测方案提高刀具磨损状态识别系统的精确度。
     (2)在信号预处理过程中,进行了趋势项消除、零均值化与小波降噪处理。为了克服小波滤波算法中的经典阈值滤波算法所存在的缺点,增加阈值函数的非线性性,本文在构造阈值函数过程中引入非线性分量,提出基于单参数对数基小波包阈值滤波的滤波算法。通过仿真实验和刀具监测信号滤波实验都证明了改进的小波阈值滤波算法的有效性和可靠性。
     (3)在特征提取环节,本文采用了时域、频域、时频域、分形几何等多种方法进行信号特征提取。信号分形盒维数是建立在分形几何学上的算法,目前在刀具磨损状态监测技术中应用得较少,本文对该方法作了深入研究,得到刀具磨损信号的分形盒维数特征,并验证了其有效性。本文还对小波包分析方法在刀具磨损状态监测系统中的应用进行了深入研究,提出了基于统计学理论的小波子带能量特征,并通过实验证明了该类特征在刀具磨损状态监测中的有效性。最后提取的特征值有:绝对值总和、最大值、极值距离、标准差、绝对平均值、方差、平方根均值、峭度、歪度、自乘均值、频率幅值和、频率最大值、信号分形盒维数、小波子带能量、子带能量比、子带能量比率差。
     (4)针对刀具磨损状态特征空间高维数引起的计算开销过大的问题,本文对主元量分析(PCA)算法进行了改进,提出了分部主元量分析(PPCA)算法,成功地实现了特征优化。实验结果表明,分部主元量分析算法有效地避免目标模式识别特征之间的干扰,使得重构特征空间更有利于神经网络的快速收敛,提高了系统识别精度。
     (5)本文针对高维输入输出映射求解难的问题,提出了三级集成人工神经网络与支持向量机相融合的识别模型。由于传统神经网络在对大模式空间进行识别时网络训练无法正确收敛,本文提出了三级神经网络模型,并在刀具状态识别中成功应用。本文还建立了基于支持向量机的识别模型,并将这两类具有不同数学特性的智能监测模型进行决策融合,实现对刀具磨损状态的精确识别。本文第六章、第七章详细地讨论单模型识别的效果和综合两者之后的效果。
     在多模型决策级融合过程中,针对如何评判SVM的识别精度问题,通常的做法是将样本与目标空间循环划分,进行交叉检验(Cross Validation),但该方法对于本文所涉及的实验方案却不适用,这是因为交叉检验在多模式输出少样本数据的情况下意义不大,因此本文提出了计算预测分类与目标分类标签距离均值的方法,有效的解决了该问题。
     在决策级融合过程中采用改进的D-S证据论。以两种具有不同数学特性的智能识别模型ANN和SVM,分别对刀具磨损状态进行识别,并将识别结果进行融合得出最终决策。在融合过程中涉及到的如何获得模型的信度值这一关键问题,本文采用的方法是将智能识别模型对重复实验数据的输出误差均方值作为信度函数值。根据D-S证据理论对证据的要求,对ANN和SVM信度空间进行归一化处理。实验结果表明基于ANN和SVM的改进D-S证据论融合模型成功地解决了刀具全寿命周期内磨损状态的精确识别问题。
Tool condition monitoring is an important part of the advanced manufacturing technology. It is an emerging technology which has been developing with the modern sensor technology, computer technology, signal processing technology and artificial intelligence. In recent years, some research institutes have conducted thorough research on tool condition monitoring and have achieved many results. However, there are still a lot of problems needed to be solved. To solve the existing problems, a series of research works have been carried out. Firstly, this paper proposes an improved wavelet threshold noise canceling method to solve the question about the pollution of noises in tool monitoring data. Secondly, the feature extraction and optimization techniques of tool condition monitoring were investigated. The PPCA (Parts Principle Component Analysis) which is an improved PCA algorithm has been discussed. At last, to solve the big size tool wear state space recognition problem, the Support Vector Machine and3-level Integrated Neural Network were proposed. An improved D-S evidence theory method was used to fuse the results. These methods further improve the performance of the tool condition monitoring system. The primary contents of this paper are as follow.
     (1) Common tool wear phenomenons during manufacturing have been discussed. By comparing many monitoring methodes, the wear condition of back surface of cutters has been used to represent the tool wear state. The hardware platform of monitoring system is composed of three-dimensional dynamometer and three-dimensional accelerometer. This multi-sensor data fusion monitoring method has been proved to be effective by experimental study.
     (2) In the signal processing process, treatments of tendency elimination, zero-mean and wavelet denoising have been carried out. To overcome the shortcomings of classic threshold denoising algorithm, of wavelet filtering algorithms and to increase the nonlinearity of threshold function, an improved wavelet threshold noise reduction method called single parameter logarithm wavelet packet filtering algorithm has been proposed by introducing nonlinear component in the process of constructing the thresholding function. Experimental results have proven the reliability and effectiveness of the method.
     (3) Signal features are extracted form time domain, frequency domain and the time-frequency domain. The fractal geometry signal feature has been extracted too. It is not applied widely in tool condition monitoring processes right now. Further investigation on this technique has been made and the fractal box dimension feature of the signal is obtained and proved to be effective. Research work for applying the wavelet analysis methode in the tool monitoring process was also carried out. And wavelet sub-band power features based on statistical theory were proposed. All features extracted from the tool monitoring signal are as follow:Sum of absolute value, Maximum value, Distance between extremum, Standard deviation, Mean of absolute value, Variance, RMS, Kurtosis, Skewness, Sum of amplitude of frequency, Maximum frequency, Fractal box-dimension, Wavelet sub-band power, Sub-band power rate, Distance of sub-band power rate.
     (4) To avoid the curse of dimensionality and reduce the cost of computing which may be caused by the large feature space, the PPCA (Parts principle component analysis) methode is proposed by improving the PCA algorithm. Feature optimization was successfully achieved. Compared with the PCA, this method avoids the interference of features between different classes. The convergence speed is increased by using of PPCA approach and the precision of monitoring system was improved.
     (5) This paper proposes a fusion model of the Support Vector Machine and3-level Integrated Neural Network for tool condtion monitoring, for solving the problem of high dimensional input/output mapping. Traditional neural networks can't converge well when identifying large pattern spaces. So a3-level Integrated Neural Network was proposed and it was successfully applied in tool condition recogniztion. Support Vector Machine recognition model was also established. This paper proposes the fusion model of SVM and ANNs that have different mathematical characteristics. The results of each model and twin-model have been compared in chapter6and chapter7.
     In the process of decision fusion, the problem of geting the accuracy of SVM model must be solved. The commonly method is cross validation. But it is not applicable when treating the data in this programme, because the cross validation is nolonger meaningful for small size sample data with multi-patterns. A methode of calculating the mean distance between forecast classification and the target classification is proposed to solve the above problem.
     D-S evidence theory is applied in decision-making level. Two intelligent models with different mathematical characteristics (ANNs and SVM) are applied separately to recognize tool wear states and the results are fused to make the final decision. The problem of geting the confidence function value of D-S theory is a key point. The root mean value of the output error of the intelligent recognition model is used as the confidence function value. According to the requirements of D-S theory, the confidence function space of SVM and ANN is normalized. Experimental results showed that the improved D-S evidence theory fusion model for SVM and ANNs successfully solved the tool wear recognition problem in the full life span of the cutting tool.
引文
[1]报告在线,2005年通用机械制造业经济运行情况综述,2005
    [2]装备制造业究竟有多重要,《宁夏机械》,2009年第2期,pp.12-16,2009
    [3]刘晓谦,蒋锡藩,顾崇衔,卢秉恒,国内外刀具磨损破损自动监测方法的现状评述,机床,vol.5,pp5-8,1992.
    [4]张正刚,基于小波神经网络的故障诊断方法研究,大庆石油学院工学硕士学位论文,2005
    [5]Pan Fu, A. D. Hope, Hongli Gao, A neural-fuzzy pattern recongnition algorithm based cutting tool condition monitoring procedure, Third International Conference on Natural Computation(ICNC 2007),2007
    [6]Hongli Gao, Mingheng Xu, YanChen Su, Pan Fu and Qingjie Liu, experimental study of tool wear monitoring based on neural networks, proceeding of the 7th World Congress on Intelligent Control and Automation, pp.25-27,2008
    [7]FuPan, A. D. Hope, fuzzy neural hybrid system for cutting tool condition monitoring, Proceeding of the Fifth International Conference on Machine Learning and Cybernetics, pp.13-16,2006
    [8]雷继荣,刀具监控技术的现状与发展,组合机床与自动化加工技术(modular machine tool & automatic manufacturing technique)第5期,pp.32-37,1995
    [9]杨晓萍,解建宝,张靠社,水轮发电机组的事故停机分析与故障诊断专家系统的研究,西安理工大学学报,vol.14(2),pp.91~95,1998
    [10]梁霖,徐光华,基于自适应复平移Morlet小波的轴承包络解调分析方法,机械工程学报,2006年第10期,pp.155-159,2006
    [11]杨露,沈怀荣,希尔伯特-黄变换与小波变换在故障特征提取中的对比研究,兵工学报,2009年第5期,pp.118-122,2009
    [12]魏于凡,支持向量机在智能故障诊断中的应用研究,华北电力大学硕士学位论文,2007
    [13]张琼,王克明,杨玲,支持向量机在航空结构声激励应力分析中的应用,沈阳航空工业学院学报,vol.25,no.3,pp.18-23,2008
    [14]张茂雨,支持向量机方法在结构损伤识别中的应用,同济大学工学博士学位论文,2007
    [15]胡昌华,李国华,刘涛,周志杰,基于Matlab 6.x的系统分析与设计——小波分析,西安电子科技大学出版社,pp.5,2004
    [16]刘晓波,马善红,分形盒维数在裂纹转子故障诊断中的应用,机床与液压,第1期,pp.169-171,2009
    [17]任丽娟,姚竹亭,分形网格维数在齿轮故障诊断中的应用,机械工程与自动化,第6期,pp.60-62,2006
    [18]王忠民,王信义,陈爱弟,杨大勇,贾玉平,基于分形维数的刀具状态在线监测新方法,北京理工大学学报,第4期,pp.49-52,2000
    [19]林颖,刘亚俊,陈忠,基于分形理论和神经网络的刀具磨损监测,中国机械工程,第16期,pp.20-22,2004
    [20]朱丽琴,基于分形理论的刀具磨损状态识别研究,西南交通大学工学硕士学位论文,2008
    [21]谢明祥,决策级融合在离心式风机故障诊断中应用,南昌大学工学硕士学位论文,2007
    [22]田森源,MJP决策融合算法及其在结构损伤检测中的应用,浙江大学工学博士学位论文,2006
    [23]王志鹏,基于信息融合技术的故障诊断方法的研究及应用——暨“汽车变速箱性能检测系统”的研制,大连理工大学工学博士学位论文,2001
    [24]吴振峰,基于磨粒分析和信息融合的发动机磨损故障诊断技术研究,南京航空航天大学工学博士学位论文,2001
    [25]张燕平,汽轮机轴系振动故障诊断中的信息融合方法研究,浙江大学工学博士学位论文,2006
    [26]周志成,基于多源信息融合的模糊决策故障选线判据及装置研究,华中科技大学博士学位论文,2007
    [27]居琰,基于多层次信息融合的手写体汉字识别研究,重庆大学博士学位论文,2002
    [28]毛勇,基于支持向量机的特征选择方法的研究与应用,浙江大学工学博士学位论文,2006
    [29]张丽新,基于特征选择的集成学习研究,清华大学工学博士学位论文,2004
    [30]Sun Z.H.,Bebis Z.H.,Object detection using feature subset selection,Pattern recongnition, pp.2165-2176,2004
    [31]Jack L.B.& Nandi A.K.,Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms, Mechanical system and signal processing, pp.373-390,2002
    [32]Verikas A. and Bacauskiene M., Feature selection with neural networks, Pattern recognition letters, vol.23, pp.1323-1335,2002
    [33]Sang Wook Choi, Martin Elaine B, Morris A Julian, Lee, Fault detection based on a maximum-likelihood principal component analysis (PCA) mixture, Industrial and Engineering Chemistry Research, vol.44, n 7, pp.2316-2327, March 30,2005
    [34]Misra Manish, Yue H.Henry, Qin S.Joe, Ling Cheng, Multivariate process monitoring and fault diagnosis by multi-scale PCA, Computers and Chemical Engineering, vol. 26, n 9, pp.1281-1293, September 15,2002
    [35]Xie Lei, Kruger Uwe, Statistical processes monitoring based on improved ICA and SVDD, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.4113, pp.1247-1256, 2006
    [36]陆剑中,孙家宁,《金属切削原理与刀具》,机械工业出版社,pp.34-35,2007
    [37]David L. Donohoa, Nira Dynb, David Levinb and Thomas P. Y. Yuc, Applied and Computational Harmonic Analysis, Vol.9, Issue 2, pp.166-203, September,2000.
    [38]杨福生,《小波变换的工程分析与应用》,北京,科学出版社,2006.
    [39]M. Sage, D. Van De Ville, D. Biomed, Multiresolution Monogenic Signal Analysis Using the Riesz-Laplace Wavelet Transform, Image Processing, vol.18, pp.2402-2418,2009.
    [40]Gu Jie, Wavelet Threshold De-noising of Power Quality Signals, Natural Computation, 2009. ICNC'09. Fifth International Conference, Vol.6, pp.591-597,2009.
    [41]Carre, P. Fernandez-Maloigne, C. Undecimated wavelet shrinkage estimate of the 1D and 2D spectra, Acoustics, Speech, and Signal Processing,2000. ICASSP'00. Proceedings, Vol.6, pp.2310-2313, Jun,2000.
    [42]Goasguen, S. Tomeh, M.M. El-Ghazaly, S.M. A global modeling approach using interpolating wavelets, Microwave Symposium Digest,2001 IEEE MTT-S International, Microwave Symposium Digest,2001 IEEE MTT-S International, vol.2, pp.897-900, May,2001.
    [43]赵瑞珍,宋国乡,王红,小波系数阈值估计的改进模型,西北工业大学学报,pp.625-628,vo1.19,2001.
    [44]Silvia Bacchelli, Serena Papi, Filtered wavelet thresholding methods, Journal of Computational and Applied Mathematics, Vol.164-165, pp.39-52, March,2004.
    [45]盛昭瀚,赵林度,陈孝毅,刘世军,特征自动提取与全智能诊断方法的研究,应用力学学报,pp.49-53,1996.
    [46]Peng-Yang Li, Chong-Yang Hao, Shuang-Wu Zhu, Northwestern Polytech. Univ., Xi'an, "Machining Tools Wear Condition Detection Based on Wavelet Packet", vol. 3, pp.1559-1564, Aug,2007
    [47]A.K. Jain, R.P.W. Duin, and J. Mao. Statistical pattern recognition:A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22(1), pp.4-37, 2000.
    [48]Lewis P M, The characteristic selection problem in recognition system. IRE Transaction on Information Theory, vol.8, pp.17-171,1962,
    [49]Ueda N. Optimal Linear Combination of Neural Networks for Improving Classification Performance[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, vol.22(2), pp.207-215,2000
    [50]Nello Cristianini, John Shawe-Taylor. An introduction to support vector machines and other kernel-based methods[M]. Cambridge University Press,2000.
    [51]Koller D, Sahami M, Toward optimal feature selection[C]. Pro-ceedings of International Conference on Machine Learning, pp.162-187,1996
    [52]David W Aha. Input feature selection for classification problems [J].IEEE Transaction on Neural Network, vol.13, pp.143-157,2002
    [53]Ming Dong, Ravi Kothari. Feature subset selection using a new definition of classifiability [J]. Pattern Recognition Letters, vol.24, pp.1215-1225,2003
    [54]Guyon L, Elissee A. An introduction to variable and feature selection [J] Journal of machine learning research, vol.3, pp.1157-1182,2003
    [55]Bobrowski L, Feature Selection Based on Some Homogeneity Coefficient. In Proc of the Ninth International Conference on Pattern Recognition, pp.544-546,1988
    [56]Sugumaran, V., Ramachandran, K.I, Fault diagnosis of roller bearing using fuzzy classifier and histogram features with focus on automatic rule learning, Expert Systems with Applications, vol.38 (5), pp.4901-4907,2011
    [57]Tu, T.-M., Chen, C.-H., Wu, J.-L., Chang, C.-I, A fast two-stage classification method for high-dimensional remote sensing data, IEEE Transactions on Geoscience and Remote Sensing, vol.36 (1), pp.182-191,1998
    [58]Almuallim, H., Dietterich, T.G, Learning with many irrelevant features (1991), Proceedings AAAI, vol.91, pp.547-552,1991
    [59]Kohavi.R, John.GH, Wrappers for feature subset selection, Artificial Intelligence 97, vol. (1-2), pp.273-324,1997.
    [60]Kira, Kenji, Rendell, Larry A. Feature selection problem:traditional methods and a new algorithm, Proceedings Tenth National Conference on Artificial Intelligence, pp. 129-134.
    [61]Ethem Alpaydin, Introduction to Machine Learning[B], pp.68,2008.
    [62]Xiao Fu, Wang Sheng-wei, Xu xin-hua, GE Gao-ming, Automatic Commissioning of AHU sensors using principle component analysis, Building Science, vol-24. pp. 36-39, Jun.2008.
    [63]Huang ji, Wu yi-quan, "Slant Correction of Vehicle License Plate Based on Color Pair Principal Component Analysis", Journal of Image and Graphics, vol-13, pp.643-646, Apr.2008.
    [64]Xia Guo-en, Customer churn prediction on kernel principal component analysis feature abstraction, Computer Applications, vol-28, pp.149-151, Jan.2008.
    [65]Hu Yu, Applying Principle Component Analysis and K-Nearest Neighbor on Data Analysis of Gene Chip, Journal of BEIHUA University(Natural Science Edition), vol.9,pp.l2-15, Feb.2008.
    [66]Fan Jie, "The numerical algorithm of principal component analysis", Journal of Hebei university of Engineering, vol.24, pp.103-105, Dec.2007.
    [67]S.N.Huang Author,and K.K.Tan, Y.S.Wang, C.W.de Silva, H.L.Goh, W.W.Tan, "Tool wear detection and fault diagnosis based on cutting force monitoring", Machine Tools&Manufacture, pp.444-451, Aug.2006.
    [68]Hong-li Gao Author, "the investigation of intelligent tool wear monitoring techniques for metal cutting process", A dissertation for the degree of Doctor of mechanical manufacturing and automation of Southwest Jiao Tong university, pp.15-22, Sep.2005.
    [69]ChenKan, FuPan, The PPCA-a new method to select features in process of rolling bearing fault diagnosing, Mechatronics and Automation,2009. ICMA 2009, pp.4419-4423,2009
    [70]Anthony M, Bartlett PL, Neural network learing:Theoretical Foundations, Cambridge University Press,1999.
    [71]Javier Sanz, Ricardo Perera, Consuelo Huerta, Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms, Journal of Sound and Vibration, vol.302, pp.981-999,2007.
    [72]McCormick A C, Nandi A K, A comparison of artificial neural networks and other statistical methods for rotating machine condition classification. Modeling and Signal Processing for Fault Diagnosis, IEEE Colloquium on, vol.2, pp.1-6,1996.
    [73]Samman, Mahmod M, Interpretation of digital signals using hybrid neural networks and pattern recognition techniques, Manuals and Reports on Engineering Practice, American Society of Civil Engineers, pp.118-130,1998.
    [74]Taveniku, Mikael, Linde, Arne, Other neurocomputers, Doktorsavhandlingar vid Chalmers Tekniska Hogskola, vol.1336, pp.11-23,1997.
    [75]Peters Ⅲ, James F, Logical design of neural networks, Bulletin of Centre for Informatics, Waseda University 17, pp.13-18,1993.
    [76]Pant, Prahlad D, Zhou Xin, Arudi, Rajagopal S, Bodocsi, Andrew, Aktan, A.Emin, Neural-network-based procedure for condition assessment of utility cuts in flexible pavements, Transportation Research Record (1399), pp.8-13,1993.
    [77]Yamasaki, Junjiro, Lwamura, Tadaaki, Artificial intelligence applications at Kawasaki Steel, Kawasaki Steel Technical Report (26), pp.5-13,1992.
    [78]吴今培,智能故障诊断技术的发展和展望[J],振动测试与诊断,19(2),pp.79-86,1999.
    [79]Sato, Atsushi, Neural network models for incremental learning, NEC Research and Development 33 (1), pp.110-116,1992.
    [80]Pavale, P.S., Rao, D.H., Naidu, K.R, Real time recognition and monitoring automation of multiple sensitive parameters for multi processes through a single neural system using TDM in dynamic environment with very high precision,010 IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2010, art. no.5705814, pp.457-460,2010.
    [81]Bruner, J.S. Neural mechanisms in perception, Psychological Review 64 (6 PART 1), pp.340-358,1957.
    [82]Greene, P.H. On looking for neural networks and "cell assemblies" that underlie behavior:I. A mathematical model, The bulletin of mathematical biophysics 24 (3), pp.247-275,1962.
    [83]Richards, W. The neuron vs the ensemble:An analysis in depth, Neurosciences Research Program Bulletin 15 (3), pp.439-449,1977.
    [84]Wittie, L.D. Large network models using the brain organization simulation system (BOSS), Simulation 31 (4), pp.117-122,1978.
    [85]田森源,MJP决策融合算法及其在结构损伤检测中的应用,浙江大学工学博士学位论文,2006
    [86]张燕平,汽轮机轴系振动故障诊断中的信息融合方法研究,浙江大学工学博士学位论文,2006
    [87]Hardman, W. Hess, A. Sheaffer, J. A helicopter powertrain diagnostics and prognostics demonstration, Aerospace Conference Proceedings,2000 IEEE, vol.6, pp.355-365.
    [88]杨培根,美国的影像融合技术,高技术通讯,1994,vo1.6,pp.42-44,1996.
    [89]Cuthoertson G M, Seedhouse A. The evolution of a digital dual waveband FLIR, SPIE, vol.2269, pp.665-667,1994.
    [90]李洪志等,数据融合技术,高技术通讯,vo1.6,pp.42-44,1994.
    [91]张池平,多传感器信息融合方法及其在空间目标识别中的应用,哈尔滨工业大学博士学位论文,2006.
    [92]王志鹏,基于信息融合技术的故障诊断方法的研究及应用,大连理工大学博士学位论文,2001.
    [93]居琰,基于多层次信息融合的手写体汉字识别研究,重庆大学博士学位论文,2002
    [94]D.L.Hall, J.Ljnas. An Introduction to Multisensor Data Fusion. Proceedings of the IEEE.1997, vol.85(1), pp.6-23,1997.
    [95]陈侃,傅攀,谢辉,倒频谱分析在滚动轴承故障监测中的运用,四川兵工学报,2008年01期,pp.96-99,2008
    [96]陈侃,傅攀,PPCA在滚动轴承故障振动信号特征筛选中的应用,机械电子与自动化,2009,ICMA2009, pp.4419-4423,2009.
    [97]陈侃,傅攀,基于分部PCA主元量分析法在滚动轴承故障特征筛选中的应用,人工智能与计算,2009,ICNC'09, Vol.2, pp.613-616,2009.
    [98]陈侃,傅攀,李威霖,曹伟清,基于可调节权的多模型决策融合在刀具磨损状态监测中的应用,先进机械加与工人工智能IWACI2010, pp.454-458,2010.
    [99]陈侃,傅攀,李威霖,曹伟清,单参数对数基小波阈值滤波在刀具磨损状态监测振动信号中的应用,组合机床与制造技术,2010.
    [100]Shivakumar a, P. Srinivasa Pai b, B.R. Shrinivasa Rao b, Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings, Applied Energy 88 (2011) 2344-2354,2011.
    [101]Rupert C.J. Minnett a, Andrew T. Smithb, William C. Lennon Jr. a, Robert Hecht-Nielsen a, Neural network tomography:Network replication from output surface geometry, Neural Networks, vol.24, pp.484-492,2011.
    [102]Vladimir Tomenko, Online dimensionality reduction using competitive learning and Radial Basis Function network, Neural Networks, vol.24, pp.501-511,2011.
    [103]Abbas Rohani a, Mohammad Hossein Abbaspour-Fard b, Shamsolla Abdolahpour, Prediction of tractor repair and maintenance costs using Artificial Neural Network, Expert Systems with Applications, vol.38, pp.8999-9007,2011.
    [104]朱大奇,人工神经网络研究现状及其展望,江南大学学报(自然科学版),Vo1.3,No.1,pp.1671-7147,Feb,2004.
    [105]Chu-Hsing Lin,Jung-Chun Liu,Chia-Han Ho, Anomaly Detection Using LibSVM Training Tools, International Conference on Information Security and Assurance, pp. 166-171,2008.
    [106]Vladimir N. Vapnik, An Overview of Statistical Learning Theory, ieee transactions on neural networks, vol.10, no.5, pp.988-999, september 1999.
    [107]Nello Cristianini, John Shawe-Taylor, An Inroduction to Support Vector Machines and Other Kernel-based Learning Methods,2004.
    [108]Kunpeng Zhu, Yoke San Wong, Geok Soon Hong, Multi-category micro-milling tool wear monitoring with continuous hidden Markov models, Mechanical Systems and Signal Processing, pp.233-247, April.2008.
    [109]Wang Shijie, An Iris Recongnition System Based on Fractal Analysis Using Entropy-Box-Counting Method, degree of National Chung Hsing University,2008.
    [110]杨露菁,郝威,李启元,基于FMM神经网络与D-S证据论的多传感器目标识别方法,中国控制与决策学术年会论文集,PP.1367,2005.
    [111]张池平,多传感器信息融合方法及其在空间目标识别中的应用,哈尔滨工业大学工学博士学位论文,2006.
    [112]王志鹏,基于信息融合技术的故障诊断方法的研究及应用——暨“汽车变速箱性能检测系统”的研制,大连理工大学工学博士学位论文,2001.
    [113]朱林,信息融合系统工程设计准则的研究,哈尔滨工程大学工学博士学位论文,2005.
    [114]李玉榕,信息融合与智能处理的研究,浙江大学工学博士学位论文,2001.
    [115]郑力,罗振壁,张伯鹏,一个应用于自动化加工系统的综合刀具监测系统,机械工程学报,1991年第5期,1991.
    [116]徐建荣,张轲,崔西宁,声发射刀具失效监控系统研究,航空学报,1993年08期,pp.38-42,1993.
    [117]章建,王珉,张幼桢,铣削过程多参数监测策略研究,航空学报,1993年08期,pp.97-100,1993.
    [118]杨青,袁哲俊,王志勇,姚英学,铣刀破损的声发射检测技术,博士学位论文, 中国科学院上海冶金研究所,2000.
    [119]孙刚,韦彦成,应用“力信号时间序列分析”在线监测铣削过程中刀具破损,机械工程学报1993年29卷1期,1993.
    [120]Zach, Richard, Hilbert's Program, the Stanford Encyclopedia of Philosophy, spring 2009 Edition,2009.
    [121]Rosana Esteller, Javier Echauz, Maryann D'Alessandro, Greg Worrell, Steve Cranstoun, George Vachtsevanos, Brian Litt, Continuous energy variation during the seizure cycle:towards an on-line accumulated energy, clinical neurophysiology, Vol. 116, March 2005, PP.517-526,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700