车用纤维环向缠绕复合材料气瓶碰撞试验损伤容限研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维缠绕复合材料CNG气瓶在使用中会因碰撞造成表面损伤,如果损伤程度超过临界值,则将危及气瓶的使用安全。建立含冲击损伤的复合材料CNG气瓶的工程化评估分析方法,对安全使用复合材料CNG气瓶具有重要意义。
     本文主要目的是,建立汽车用纤维环向缠绕复合材料CNG气瓶冲击损伤分析方法,为制定《压缩天然气汽车燃料系统碰撞安全要求》中有关CNG气瓶碰撞试验方法提供参考。
     本文通过台车碰撞试验,研究建立一套兼顾汽车碰撞安全要求和压力容器安全性的“行李试验样块对气瓶抗冲击完整性考核”的试验方法,以及试验评价指标。
     本文对玻纤单向板和纤维缠绕复合材料CNG气瓶的冲击能量和损伤程度之间的关系开展研究,经落球试验表明,分层面积可作为纤维缠绕复合材料CNG气瓶的冲击损伤表征参数,两区域分层扩展阻力交叉点为分层损伤临界值,既复合材料CNG气瓶抵抗冲击的最大能力。
     考虑复合材料非线性因素对疲劳累积损伤的影响,采用能描述复合材料非线性的材料弱化系数,建立适用于非线性复合材料板的疲劳累积损伤函数,并根据疲劳累积损伤可叠加的原理,建立用图解法预测多阶段加载的疲劳寿命的分析方法。
     针对表征冲击损伤参量所对应的剩余强度和安全寿命问题,结合开孔等效估算方法,建立适用于疲劳循环下的含圆孔复合材料板的疲劳寿命工程估算方法,并应用于车载纤维环向缠绕复合材料CNG气瓶冲击损伤容限的分析。
Fiber reinforced composite gas cylinders can cause surface damage from collisions during use. The safety of gas cylinders could be endangered if the extent of the damage exceeds a critical value. It is of vital significance for the safe use of CNG gas cylinders made of composite materials to establish a simplified method of evaluating impact damage on fiber reinforced composite gas cylinders.
     This article proposes to establish for automotive vehicles a crash damage analytic evaluation for hoop wrapped fiber reinforced composite gas cylinders with metal liners of compressed natural gas, supporting existing regulatory languages about CNG gas cylinder crash tests in the Safety Requirement of Fuel System for Compressed Natural Gas Vehicle in Collision.
     Through utilization of the impact sled test method and incorporation of criteria concerning CNG composite gas cylinders, giving consideration to the coherence between the index of passive safety and pressure vessel, this article proposes a method for testing collisions of luggage test modules and composite gas cylinders. In addition it suggests adding language to safety requirements concerning an integrated double test conducted on gas cylinder fixtures and an experiment that estimates the extent of impact damage on gas cylinders caused by luggage test modules.
     This article details research on the relationship between glass/epoxy laminates and both the impact energy and the extent of damage incurred by fiber reinforced composite gas cylinders. The falling ball test indicates that the delaminated area caused by impact damage can be regarded as the Characterization Parameter for impact damage to fiber reinforced composite gas cylinders. Furthermore, the thesis purports that the cross point of the delaminated extension resistance, divided into two segments, is the delaminated damage threshold, namely the maximum capability of composite materials to resist impact.
     The dissertation considers the factors influencing composite material nonlinearity on cumulative fatigue damage and suggests a weakening material factor which can describe the nonlinearity of composite material. Moreover, it establishes cumulative fatigue equations that can be applied to nonlinear materials. Furthermore, the thesis builds an analytical method for assessing fatigue life through a graphic method of multi-stage loading based on the principle of cumulative fatigue aggregation.
     The thesis establishes a computational method of laminate with a circular hole under fatigue loading by means of applying hole contained equivalent method and the relationship between function of fatigue damage cumulation and residual strength equations of laminate with circle hole.
引文
[1]李晓辉.车用全复合材料CNG气瓶的安全可靠性分析[D].[硕士学位论文],北京:首都经济贸易大学,2010.3.
    [2]张晓兵,魏喜龙等.复合材料压力容器基体开裂损伤的研究[J].纤维复合材料,2008,25(1):7-10.
    [3]Seung Jo Kim, Nam Seo Goo, Tae Won Kim. The effect of curvature on the dynamic response and impact-induced damage in composite laminates [J]. Composites Science and Technology.1997,57 (7):763-774.
    [4]孙振东,张振鼎等.压缩天然气汽车碰撞试验及安全评价[J].汽车安全与节能学报,2010,1(1):53-58.
    [5]徐延海,李永生,黄海波.表面损伤对全复合材料车用天然气气瓶强度的影响[J].天然气工业,2008,(1):132-133.
    [6]任明法,陈浩然等.低速冲击下含金属内衬的纤维缠绕容器损伤特征[J].玻璃钢/复合材料,2006,(1):3-6.
    [7]吕琴.压缩天然气用复合材料气瓶材料性能的试验研究[J].玻璃钢学会第十四届全国玻璃钢/复合材料学术年会议文集[C].大连:中国玻璃钢学会,2001.
    [8]Ramkumar R.L., Thakar Y.R.. Dynamic response of curved laminated plates subjected to low velocity impact[J]. Transactions of the ASME. Journal of Engineering Materials and Technology.1987,109 (1):67-71.
    [9]Bachrach W.E., Hansen R.S.. Mixed finite-element method for composite cylinder subjected to impact[J]. AIAA Journal.1989,27(5):632-638.
    [10]高卫民,朱大勇,王宏雁.CNG双燃料轿车追尾碰撞计算机模拟[J].北京汽车,2001,(3):3-6.
    [11]章斯亮,朱平,冯奇等.氢能汽车氢瓶框架的耐撞性设计[J].汽车安全与节能学报,2010,1(3):205-209.
    [12]余卓平,张觉慧.燃料电池轿车碰撞安全性的仿真与试验[J].汽车安全与节能学报,2010,1(2):118-119.
    [13]池秀芬,刘志栋,王小永等.复合材料缠绕压力容器的失效风险分析[J].真空与低温,2006,12(4):226-230.
    [14]沈真、陈普会等.含缺陷复合材料层压板的压缩破坏机理[J],航空学报,1991,12(3):106-110.
    [15]沈真、杨胜春等.评定复合材料抗冲击和损伤性能的研究[J],结构强度研究,2003,(2):7-14.
    [16]Jackson W.C., Poe C.C. Jr.. The use of impact force as a scale parameter for the impact response of composite laminates [J]. Journal of Composites Technology and Research.1993, 15 (4):282-289.
    [17]沈真,杨胜春,陈普会等.复合材料层压板抗冲击行为及表征方法的实验研究[J],复合材料学报,2008,25(5):125-132.
    [18]崔海坡,温卫东等.复合材料层合板冲击损伤及剩余强度分析方法[J],固体力学学报,2006,(12):238-241.
    [19]Husman G.E., Whitney J.M., HALPIN J.C.. Residual strength characterization of laminated composites subjected to impact loading[J]. Foreign object impact damage to composites, ASTM STP 568, American Society for Testing and Materials.1975:92-113.
    [20]El-Zein M S, Reifsnider K L. On the prediction of tensile strength after impact of composite laminates[J]. Journal of Composites Technology and Research,1990,12 (3):147-154
    [21]童谷生,孙良新等.复合材料层压板低能量冲击后剩余抗压强度的工程估算[J],机械工程材料,2004,28(3):19-21
    [22]Heslehurst R B,Repair of delamination damage a simplified approach[R], Anaheim California,41st International SAMPE Symposium.1996:915-924.
    [23]陈普会.复合材料层压板及加筋板的损伤容限分析[D],[博士学位论文],南京:南京航空航天大学,1999.
    [24]Soutis C, Curtis P T. Prediction of the post-Impact compressive strength of CFRP laminated composites[J], Composites Science and Technology.1996,56 (6):677-684.
    [25]C. Soutis, N.A. Fleck, P.A. Smith. Failure Prediction Technique for Compression Loaded Carbon Fibre-Epoxy Laminate with Open Holes [J]. Journal of Composite Materials.1991,25 (11):1476-1498.
    [26]Avva V.S., Padmanabha H.L.. Compressive residual strength prediction in fiber-reinforced laminated composites subjected to impact loads[J]. Advances in Fracture Research (Fracture 84). Proceedings of the 6th International Conference on Fracture (ICF6).1984,4:2897-2907.
    [27]R.J. Nuismer, J.M.Whitney,. Uniaxial Failure of Composite Laminates Containing Stress Concentrations [J]. Fracture mechanics of composites, ASTM STP 593, American Society for Testing and Materials.1975:117-142.
    [28]R.F. Karlak, Proceedings of the Fourth Joint ASM-Metallurgical Society of AIME Symposium on Failure Modes in Composites[R],1977:105-117
    [29]R.B. Pipes, R.C.Wetherhold, J.W. Gillespie Jr., Journal of Composite Materials..1979 (13):148-160.
    [30]M.E. Waddoups, J.R. Eisenmann and B.E. Kaminski. Macroscopic fracture mechanics of advanced composite materials[J]. Journal of Composite Materials.1971,5:446-454.
    [31]Mar J. W., Lin K. Y.. Characterization of splitting process in graphite/epoxy composites[J]. Journal of Composite Materials.1979,13:278-287.
    [32]Eriksson Ⅰ., Aronsson C.-G. Strength of tensile loaded graphite/epoxy laminates containing cracks, open and filled holes [J]. Journal of Composite Materials.1990,24(5): 456-482.
    [33]Fu Kuo Chang, Kuo Yen Chang. A Progressive Damage Model for Laminated Composites Containing Stress Concentrations[J]. Journal of Composite Materials.1987,21 (9):834-855.
    [34]吴克安,关明星等.SMC-R50短纤维复合材料冲击后疲劳损伤探索[J].东北林业大学学报,1994,22(6):51-54
    [35]Wang S.S., Chim E.S.-M.. Fatigue damage and degradation in random short-fibre SMC composite[J]. Journal of Composite Materials.1983,17 (2):114-134.
    [36]Angster S., Gowda S., Jayaram S.. Feasibility Study on Virtual Reality for Ergonomic Design[C]. IFIP 5.0 Workshop on Virtual Prototyping. September 1994.
    [37]Angster S., Gowda S., Jayaram S.. Using VR for Design and Manufacturing Applications-A Feasibility Study [C]. In Proceedings of 1996 ASME design engineering technical conference and computers in engineering, DETC/CIE-1347, Irvine, California. August 1996.
    [38]徐颖,温卫东,崔海涛.复合材料层合板疲劳逐渐累积损伤寿命预测方法[J],航空动力学报,2007,22(4):602-607.
    [39]王丹勇.层合板接头损伤失效与疲劳寿命研究[D],[博士学位论文],南京:南京航空航天大学,2006.
    [40]李顺林,熊中侃.含孔层合板考虑边界效应的拉伸强度分析[J],航空学报,1991,12(12):623-627.
    [41]R.F. Karlak, Hole Effect in a Related Series of Symmctical Laminates Proceedings of Failure[C]. Modes in Composites, American Society of Metals,Chicage,1977
    [42]崔海坡,温卫东,崔海涛.复合材料层合板冲击损伤及剩余强度研究进展[J],材料科学与工程学报,2005,23(3):466-472.
    [43]J.M.Whitney, R.J.Nuismer. Journal of Composite Materials.1974,8:253-265.
    [44]Hawyes V. J., Curtis P.T., Soutis C.. Effect of impact damage on the compressive response of composite laminates[J]. Composites part A-Applied Science and Manufacturing.2001,32 (9):1263-1270.
    [45]Soutis C, Fleck N A, Smith P A. Failure prediction technique for compression loaded carbon fibre-epoxy laminate with open holes [J]. Journal of Composite Materials, 1991,25(11):1476-1498.
    [46]Palazotto A., Perry R., Sandhu R.. Impact response of graphite/epoxy cylindrical panels[J]. AIAA journal.1992,30 (7):1827-1832.
    [47]Tan T.M., Sun C.T.. Use of statical indentation laws in the impact analysis of laminated composite plates[J]. Transactions of the ASME. Journal of Applied Mechanics.1985,52 (1): 6-12.
    [48]张振,高建岭,肖峰.复合材料气瓶下落分析研究[C],北京:北京力学学会第12届学术年会论文摘要集,2006.
    [49]童明波,陈普会.低能量冲击损伤复合材料飞机结构的强度性能研究[J],航空学报,1998,(2):232-235.
    [50]沈真,张子龙,王进等.复合材料损伤阻抗和损伤容限的性能表征[J],复合材料学报,2004,(5):140-145.
    [51]罗靓,沈真等.炭纤维增强树脂基复合材料层合板低速冲击性能实验研究[J],复合材料学报,2008,(6):20-24.
    [52]Kuo-Yen Chang, Sheng Liu, Fu-Kuo Chang. Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Tensile Loading[J]. Journal of Composite Materials,1991,25 (8):274-301
    [53]W.J. Cantwell, J.Morton. The impact resistance of composite materials-a review[J]. Composites.1991,22 (5):347-362.
    [54]Hong S., Liu D.. On the relationship between impact energy and delamination area[J]. Experimental Mechanics.1989,29 (2):115-120.
    [55]Sun C.T., Chattopadhyay S.. Dynamic response of anisotropic laminated plates under initial stress to impact of a mass[J]. Transactions of the ASME. Series E, Journal of Applied Mechanics.1975,42 (3):693-698.
    [56]孙曼灵.环氧材料的断裂与增韧,中国环饭树脂应用技术学会“第十三次全国环氧树脂应用技术学术交流会”论文集279-285
    [57]A. S. D. Wang, M. Barsoum and X. G. Huang,"Matrix Cracking initiation in Brittle Matrix Composites- Experiment and Predictions," Proc. Symposium on High Temperature Composites, American Society for Composites, Technomic Publishing Co. June, 1989:166-175.
    [58]蔡欣,章林.纤维增强复合材料层合板分层破坏的研究[J],复合材料学报,1991,(1):63-71.
    [59]赵秀峰.复合材料加筋板冲击损伤及损伤容限研究[D].[硕士论文],西北工业大学,2007.
    [60]Hwang W., Han K.S.. Cumulative damage models and multi-stress fatigue life prediction[J]. Journal of Composite Materials.1986,20 (2):125-153.
    [61]J.N. Yang, L.J. Lee, D.Y. Sheu. Modulus reduction and fatigue damage of matrix dominated composite laminates[J].Composite Structures.1992,21 (2):91-100.
    [62]L.J. Lee, J.N.Yang, D.Y. Sheu. Prediction of fatigue life for matrix-dominated composite laminates[J]. Composites Science and Technology.1993,46 (1):21-28.
    [63]S. S. Abramchuk, I. P. Dimitrienko, A. F. Ermolenko, V. N. Kiselev,and V. D. Protasov, Determination of the modulus of elasticity of fibrils made of polymeric fibers[J].Mechanics of Compos. Mater.1984.4(20):579-583.
    [64]Lee C.S., Hwang W.. Fatigue life prediction of matrix dominated polymer composite materials[J]. POLYMER COMPOSITES.2000,21 (5):798-805.
    [65]李亚智,张开达,张博平.一种FRP累积损伤模型及其在结构疲劳寿命估算中应用[J].应用力学学报,2003,20(1):54-58.
    [66]莫淑华 李海涛.缺口复合材料层合板疲劳性能的试验研究[J],应用力学学报,2000,17(2):75-80.
    [67]柴亚南,沈真,李顺和.复合材料层压板疲劳特性的试验研究[J],航空学报,1991,12(12):B643-646
    [68]Yang J.N., Yang S.H., Jones D.L.. A stiffness based statistical model for predicting the fatigue life of graphite/epoxy laminates[J]. Journal of Composites Technology and Research.1989,11:129-134.
    [69]李荣,邱洪兴,淳庆.疲劳累积损伤规律研究综述[J].金陵科技学院学报,2005,21(3):17-21.
    [70]林嘉昱.复合材料疲劳寿命分布与拉伸强度关系[D].[硕士论文],台湾大学机械工程研究所,1997.
    [71]Hahan H.T., Kim R.Y. Proof testing of composite materials[J]. Journal of Composite Materials.1975,9 (3):297-311.
    [72]Pei Chi Chou, Croman R.. Residual strength in fatigue based on the strength-life equal rank assumption[J]. Journal of Composite Materials.1978,12:177-194.
    [73]郑合志. 拟均向性Gr/PEEK复材积层板在变动负荷下的疲劳可靠度研究[D].[博士学位论文],台湾大学机械工程研究所,2000.
    [74]P.M.Barnard, R.J.Butler, P.T. Curtis. The Strength-Life Equal Rank Assumption and its application to the fatigue life prediction of composite materials[J]. International Journal of Fatigue.1988,10 (3):171-177.
    [75]Kapur K.C., Lamberson L.R.. Reliability in Engineering Design [M]. John Wiley & Sons, New York.1977.
    [76]程小全.复合材料层合板与蜂窝夹芯板低速冲击后压缩性能研究[D],北京航空航天大学,1998.
    [77]Soutis C., Curtis P.T.. Prediction of the post-impact compressive strength of CFRP laminated composites[J]. Composites Science and Technology.1996,56 (6):677-684.
    [78]Gottesman T., Girshovich S., Drukker E., Sela N., Loy J.. Residual strength of impacted composites:analysis and tests[J]. Journal of Composites Technology and Research.1994, 16 (3):244-255.
    [79]Dost E F,Ilcewicz L B, Gosse J H. Sublaminate Stability Based Modeling of Impact-Damaged Composite Laminates [C].Proceedings of the American Society for Composites, the 3rd Technical Conference of American Society for Composites,Washington,Seattle,1988:354-363.
    [80]Ilcewicz, L B, Dost E F, Cogges hall R L. A Model for Compression after Impact Strength Evaluation[C], International SAMPE Technical Conference,2lst, Atlantic City, NJ; UNITED STATES.1989:130-140.
    [81]Soutis C., Curtis P.T.. Prediction of the post-impact compressive strength of CFRP laminated composites [J]. Composites Science and Technology.1996,56 (6):677-684.
    [82]C. Soutis, N.A. Fleck, P.A. Smith. Failure Prediction Technique for Compression Loaded Carbon Fibre-Epoxy Laminate with Open Holes [J]. Journal of Composite Materials.1991,25 (11):1476-1498.
    [83]Qi B., Herszberg I.. An engineering approach for predicting residual strength of carbon/epoxy laminates after impact and hygrothermal cycling[J]. Composite Structures.1999,47:483-490.
    [84]El-Zein M.S., Reifsnider K.L.. On the prediction of tensile strength after impact of composite laminates[J]. Journal of Composites Technology and Research.1990,12 (3): 147-154.
    [85]Avva V.S., Padmanabha H.L.. Compressive residual strength prediction in fiber-reinforced laminated composites subjected to impact loads[J]. Advances in Fracture Research (Fracture 84). Proceedings of the 6th International Conference on Fracture (ICF6).1984,4:2897-2907.
    [86]Yip Ming-Chuen, Perng Tzay-Biau. The influence of hole size in static strength and fatigue for CFRP composite materials[C]. Advanced composites '93; Proceedings of the International Conference on Advanced Composite Materials (ICACM), Univ. of Wollongong, Australia; UNITED STATES.1993:651-657.
    [87]Konish H.J., Whitney J.M.. Approximate stresses in an orthotropic plate containing a circular hole[J]. Journal of Composite Materials.1975,6(2):157-166.
    [88]K.S.Han and W.Hwang, faligua Life Prediction on Composite Materiais[C], ISCMS Beijing 1986
    [89]王佩洵.边缘含半圆孔的编织复合材料平板的破坏准则[D].[硕士论文],逢甲大学,2009.
    [90]张树,李来顺.关于全复合材料天然气瓶定期检测工作的探讨[J],城市公共交通,2005,(4):35-37.
    [91]秋长望.汽车用压缩天然气(CNG)气瓶安全技术基本要求[J],中国特种设备安全,2005,22(3):31-33.
    [92]邢志敏,高建岭等,复合材料CNG气瓶的力学性能研究[C],第十三届全国结构工程学术会议2004:412-416
    [93]许瑞杰,韩海照加气站用储气钢瓶的有限元分析[J].化工机械,2007,34(1):22-24.
    [94]徐延海,李永生,黄海波.全复合材料车用天然气气瓶使用寿命的计算与分析[J],玻璃钢/复合材料,2010,(3):52-55.
    [95]岳中第,马宁,刘彬.基于IS011439标准及ANSYS平台的CNG气瓶有限元应力分析[J],航空制造技术,2002年专刊.
    [96]池秀芬,刘志栋,王小永.复合材料缠绕压力容器的失效风险分析[J]真空与低温,2006,12(2):226-230.
    [97]孟燕华,段燕宜.气瓶水压试验合格标准实验研究[J],中国安全科学学报,1999,9(3):49-53.
    [98]黎玉萍,孟永彪等.应变法在CNG气瓶检测中的应用研究[J],当代化工,2010,39(4):383-388.
    [99]黄晓蔚.任意铺设纤维增强型复合材料层合板具有高阶剪切时的非线性弯曲[J].大连铁道学院学报,1992,(4):12-18.
    [100]黄虎忠,吕秋娟,李学东.特种钢质无缝气瓶水压试验评定指标探讨[J].压力容器,21(3):20-23.
    [101]Alain Charewicz, Isaac M. Danie. Damage mechanisms and accumulation in graphite/epoxy laminates[J]. Composite materials:Fatigue and Fracture, ASTM STP 907, American Society for Testing and Materials.1986:274-297.
    [102]顾怡,姚卫星.疲劳加载下纤维复合材料的剩余强度[J],复合材料学报,1999,16(3):98-102
    [103]Yao W X,N Himmel. A new cumulative fatigue damage model for fiber-reinforced plastics[J]. Composites Science and Technology,2000,60(1):59-64.
    [104]杨忠清.玻璃纤维增强树脂基复合材料疲劳行为研究[D].[博士学位论文],南京:南京航空航天大学,2008.
    [105]梅端.玻璃纤维增强树脂基复合材料力学疲劳性能研究[D],[硕士学位论文].武汉:武汉理工大学,2010.
    [106]姚磊江,孙秦,童小燕.复合材料单向板面内拉-拉疲劳时效准则[J].西北工业大学学报,1998,16(1):114-118.
    [107]冯培锋,杜善义.层板复合材料的疲劳剩余刚度衰退模型[J].固体力学学报,2003,24(1):46-51.
    [108]冯培锋,赵承杰,李海涛.层板复合材料疲劳性能的实验研究[J].材料科学与工程,2001,19(4):52-55.
    [109]邹利.国外天然气汽车发展状况[J].汽车研究与开发,1999,(4):8-11.
    [110]郭宗华,周俭明,吴祚平.压缩天然气汽车的特点[J].煤气与热力,2004,(2):108-110.
    [111]朱会田.压缩天然气(CNG)汽车储气罐的安全性设计[J].湖北汽车,2000,(4):29-30.
    [112]夏立荣.应重视车用CNG气瓶的危险性[J].劳动保护,2008,(4):94-95.
    [113]张应镇.天然气汽车安全性分析[J].陕西汽车,1999,(1):10-12.
    [114]钟建东,王志.CNG钢瓶爆炸事故分析和预防措施[J].锅炉压力容器安全技术,2003,(1):29-32
    [115]郭赞超.试论天然气用作汽车燃油的安全性[J].小型内燃机与摩托车,2004,(1):41-42.
    [116]P.Michael Miller, et al. A 100G Frontal Crash Sled Test System[C]. SAE 2004 World Congress & Exhibition Technical Papers. Detroit, MI, USA 2004-01-0473
    [117]Young-Ho, Byung-Wan Lee. A Device and Test Methodology for Side Impact Crash Simulation Using A Frontal Crash Simulator and Two Hydraulic Brake Systems[C]. SAE 2000 World Congress Technical Papers, Detroit, MI, USA 2000-01-0047
    [118]Ian V. Lau, John P. Capp, et al. A Comparison of Frontal and Side Impact: Crash Dynamics, Counter-measures and Subsystem Tests[C]. Stapp Car Crash Conference, November 1991, San Diego, USA, SAE912896
    [119]James W. Saunders Ⅲ, Shashi Kuppa. NHTSA's Frontal Offset Research Program[C]. 2004 World Congress & Exhibition Technical Papers. Detroit, USA SAE2004-01-1169
    [120]Adrian K. Lund, Joseph M. Nolan. Changes in Vehicles Designs from Frontal Offset and Side Impact Crash Testing[C].2004 World Congress & Exhibition Technical Papers. Detroit, MI, USA 2003-01-0902
    [121]K. Digges, A. Eigen, et al. Stiffness and Geometric Compatibility in Frontal-to-Side Crashes[C].2004 World Congress & Exhibition Technical Papers. Detroit, USA 2002-01-1020
    [122]H,Steffan, B.C. Geigl, et al. HyperG-a New Hydro Pneumatic Catapult Type Sled[C]. 2003 World Congress & Exhibition Technical Papers. Detroit, USA 2003-01-0496
    [123]Rodney W. Rudd, Jeff R. Crandall, et al. Response of the Thor-Lx and Hybrid III Lower Extremities in Frontal Sled Tests[C]. SAE2003-01-0161
    [124]Richard Kent, Greg Shaw, et al. Comparison of Belted Hybrid III, THOR, and Cadaver Thoracic Responses in Oblique Frontal and Full Frontal Sled Tests[C]. SAE2003-01-0160
    [125]J.M.Whitney, R.J. Nuismer. Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations [J]. Journal of Composite Materials.1974,8(3):253-265.
    [126]R.J. Nuismer, J.M.Whitney,. Uniaxial Failure of Composite Laminates Containing Stress Concentrations [J]. Fracture mechanics of composites, ASTM STP 593, American Society for Testing and Materials.1975:117-142.
    [127]李顺林,熊中侃.含孔层合板考虑边界效应的拉伸强度分析[J],航空学报,1991,12(12):B623-627.
    [128]TEAP and MBTOC (Technology and Economic Assessment Panel and Methy 1 Bromide Technical Options Committee). Handbook on Critical Use Nomnations for Methy 1 Bromide [K]. Nairobi Kenya: United Nations Environment Programme, May 2002.
    [129]Abramchuk S.S., Dimitrienko I.P., Ermolenko A.F., Kiselev V.N., Protasov V.D.. Determination of the modulus of elasticity of fibrils made of polymeric fibers[J]. Mechanics of Composite Materials.1984,20 (4):395-398.
    [130]K.L.Reifsnirer,E. G. Henneke and W. W. Stinchcomb, ASTM, STP 617,1977:93
    [131]Crossman F.W and Wang,A.S D. The Dependence of Transverse Graking and Delamination on Ply Thickness in Graphite/Epoxy Laminates Damage in Composite Materials,ASTM,STP 775,1982:118-139
    [132]蔡欣,章林.纤维增强复合材层合板分层破坏的研究[J].复合材料学报,1991,8(1):60-68.
    [133]童小燕,万小朋.复合材料的疲劳寿命预测[J].机械强度,1995,17(3):94-100.
    [134]轩福贞等.两级载荷下复合材料层板疲劳与寿命预测[J].应用力学学报,1998,15(1):90-94.
    [135]Tan S C. Finite-width correction factors for anisotropic plate containing a central opening[J]. Journal of Composite Materials,1988,(22):1080-1097.
    [136]黎玉萍,孟永彪等,应变法在CNG气瓶检测中的应用研究[J],当代化工,2010,39(4):383-385
    [137]王瑄,李宏光等.现代汽车安全[M].北京:人民交通出版社,2001.
    [138]喻健良.化工设备机械基础课程设计[M].大连:大连理工大学出版社 2009.07.
    [139]上海玻璃钢结构研究所,玻璃钢结构设计[M].北京:中国建筑工业出版社,1980.02.
    [140]刘德安.玻璃钢实用技术[M].北京:中国建筑工业出版社,1990.03.
    [141]李亚智.飞机结构疲劳和断裂分析中若干问题的研究[D],[博士学位论文],西北工业大学,2001.
    [142]李顺林.复合材料工作手册[M].北京:北京航空工业出版社,1988.06.
    [143]王震鸣,杜善义,张恒等.复合材料及其结构的力学、设计、应用和评价[M].哈尔滨:哈尔滨工业大学出版社,1998.11.
    [144]张双寅,刘济庆,于晓霞等.复合材料结构的力学性能[M].北京:北京理工大学出版社,1992.12.
    [145]何水清.结构可靠性分析与设计[M].北京:国防工业出版社,1998.03.
    [146]B.C.霍金斯,A.A.贝克.复合材料原理及其应用[M].北京:科学出版社,1992:175-189.
    [147]李培宁编.疲劳分析及其在压力容器中的应用[M].中国化工学会教育工作委员会.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700