小麦看家基因鉴定和水培体系磷胁迫响应基因筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在建立小麦水培体系的基础上,对小麦磷胁迫生理反应特征进行了系统检测,并对此体系下的小麦磷胁迫响应基因进行了初步筛选。研究还对基于mRNA检测的小麦看家基因的转录水平进行了鉴定分析。本研究为在营养严格可控的条件下,研究小麦磷胁迫反应建立了实验基础,筛选出的看家基因和磷响应基因具有进一步利用和发掘价值;研究体系和结果对发掘磷高效利用小麦基因和进行小麦种质资源的筛选都具有重要意义。研究主要结果如下:
     1、采用改进的Hoagland培养基,建立并优化了小麦温室水培体系,对不同基因型小麦在水培条件下对磷饥饿胁迫的生理反应进行了研究。
     (1)在建立的水培体系中,小麦植株生长正常并对磷饥饿胁迫条件做出形态建成水平的反应;半定量RT-PCR分析显示在此体系中小麦磷响应基因在转录水平上差异显著。
     (2)在水培条件下,不同基因型小麦对磷饥饿胁迫的反应总体上表现在根系长度和根冠比所提高,但不同基因型小麦的反应特点有差异即在供试品种中,中国春和周麦18对磷饥饿做出的反应较为迟缓,而太空6号、豫农202和偃展4110则在较早时间对磷饥饿做出发育水平反应,随后呈现平台趋势;值得注意的是郑麦9023在对磷饥饿较早做出形态适应反应后出现明显恢复,暗示其可能存在某种显著的补偿机制。对这些反应特征的分子机理的深入分析,可为深入解析小麦代谢调控的基因网络和有效筛选磷高效小麦基因资源提供线索。
     2、参考已经发表的部分拟南芥看家基因,在NCBI数据库中搜索得到10个小麦同源性较高的ESTs,通过半定量RT-PCR方法,分析了各候选基因在不同基因型小麦(偃展4110、郑麦9023)中的时空表达情况。结果表明:小麦泛肽结合酶基因(AY736121)、翻译延伸因子I-α亚基基因(M90077)和δ-液泡膜内蛋白基因(U86763)在偃展4110和郑麦9023小麦各个时期不同组织中均稳定表达,具有作为看家基因的应用潜力。
     3、利用比较基因组学方法,参考已发表的拟南芥和水稻的磷响应基因,在NCBI数据库中搜索,筛选得到10个与已知磷响应基因同源性较高的小麦ESTs,利用半定量RT-PCR对各候选基因的表达情况进行了分析。结果表明:在候选基因中有4个基因显示出磷胁迫下转录增强,显示其可能在磷调控基因网络中发挥重要作用;其中,CJ916459和CJ895163基因的转录水平在小麦根系中显著高于地上部,而DQ512334和BE418377基因则相反,但BE418377基因表达量均相对较弱。研究结果可为进一步分析磷代谢相关基因表达网络和克隆磷高效关键基因提供参考。
A wheat hydroponic culture system was established for detecting the wheat phosphate stress and screening for the response genes of wheat phosphate stress. The candidate house-keeping genes of wheat were identified by measuring the mRNA transcription. The technical system established here would allow the researches of wheat phosphate stress at the nutrition strictly controlling condition. The reached results would profit the discovery of house-keeping genes and phosphate stress response genes of wheat. The technical system and results are important for us to find phosphate high-efficient utilizing genes and screen germplasm resource of wheat. The main results as follows:
     1、Modified Hoagland medium was employed to establish the wheat hydroponic culture system under green house condition. Phosphate stress responses of different genotype wheat were measured by using this system.
     (1)Under the hydroponic culture established in this research, the experimental wheat plants grew well and performed the typical architecture responses when exposed in Pi deprivation. Hemi-quantitative RT-PCR revealed that the transcriptional level of known Pi response gene differed dramatically.
     (2)In general the root length of wheat and root/shoot ratio(R/S) arose when the Pi supply was deprived, however, the change models differed among different wheat genotypes: In tested varieties, Chinese spring and Zhou-mai 18 respond to phosphate stress more slowly, Tai-kong 6hao、Yu-nong 202、Yan-zhan 4110 made early response of phosphate stress, following to display trend of platform; A valuable point is that Zheng-mai 9023 showed a manifestly recovery after a morphological response to the Pi deficiency, it might indicate that there existed possible mechanism to reimburse the lasting Pi starvation. The investigation on their molecular basis would offer the useful clue for screening phosphate high-efficient gene resources of wheat and analyzing gene net controlling metabolism of wheat.
     2、According to the published house-keeping genes of Arabidopsis, ten genes of wheat with high sequence similarity to published genes were obtained by searching in NCBI database. We analyzed expression of candidate genes in space time of different genotypes wheat by Hemi-quantitative RT-PCR. The results showed that ubiquitin-conjugating enzyme(AY736121)、translation elongation factor 1 alpha-subunit(M90077)、delta-type tonoplast intrinsic protein (U86763) expressed steadily in different organs of Yanzhan 4110 and Zhengmai 9023 in different periods. Three genes have the potential applicability.
     3、Using comparative genomics method, according to the published phosphate response genes of Arabidopsis and Rice, ten genes of wheat with high sequence similarity to published genes were obtained by searching in NCBI database. We analyzed expression of candidate genes by Hemi-quantitative RT-PCR. The results showed that the four genes of candidate had increased transcription in response to phosphate stress, they were suggested to be important to gene net regulated by phosphate. Further more, transcription of CJ916459 and CJ895163 increased more in root than in shoot,while DQ512334 and BE418377 were opposite, and BE418377 had a low transcription generally. The results gave us references to farther analyze gene expressing net controlling metabolism of phosphate and clone phosphate high-efficient utilizing genes.
引文
[1]陆景陵.植物营养学(上册)[M].北京农业大学出版社, 1994, 26-35; 171-174.
    [2]于福同.水稻缺磷胁迫应答基因的研究[D].中国农业大学博士学位论文, 2000, 3-10.
    [3] Richardson AE. Soil microorganisms and phosphorus availability[J]. Soil Biology and Biochemistry, 1994, 50-62.
    [4]刘建中,李振声,李继云.利用植物自身潜力提高土壤中磷的生物有效性[J].生态农业研究, 1994, 2 (1): 16-22.
    [5] Barber SA, Walker JM, Vasev EH. Mechanisms for the movement of plant nutrients from the soil and fertiliser to the plant root[J]. Agric Food Chem, 1963, 11: 204-207.
    [6] Von UexkuEll HR, Mutert E. Global extent development and economic impact of acid soils[J]. Plant and Soil, 1995, 171:1-15.
    [7] Schachtman DP, Reid RJ, Ayling SL. Phosphorus uptake by plants: from soil to cells[J]. Plant Physiology, 1998, 116:447-453.
    [8]史瑞和,等.植物营养原理[M].江苏科学出版社, 1989.
    [9]吴平,印莉萍,张立平,等.植物营养分子生理学[M].北京科学出版社, 2001.
    [10]张福锁,林翠兰,曹一平.植物磷营养的基因型差异的机理[M].土壤与植物营养研究新动态(第一卷),北京农业大学出版社, 1992, 23-30; 94-101.
    [11] C1ark RB, Brown JC. Corn lives different in mineral efficiency. Ohio Rep, 1975, 60: 83-86.
    [12] Fox RH. Selection for phosphorus efficiency in corn[J]. Commun.Soil Sci. Plant Anal, 1978, 9: 13-37.
    [13] Duncan RR, et al. Crops as Enhancers of Nutrient Use. 1990, 3-20.
    [14] Sattlmacher B, Horst WJ, Becker HC. Factors that contribute to genetic variation for nutrient efficiency of crop plants[J]. Z. Pflanzenernahr. Bodenkd, 1994, 157: 215-224.
    [15] Fohse D, Classen N, Jungk A. Phosphorus efficiency of plants: I. External and internal requirement and P uptake efficiency of different plant species[J]. Plant and Soil, 1988, 110: 101-109.
    [16] B1air GJ, Cordero S. The phosphorus efficiency of three annual legumes[J]. Plant and Soil, 1978, 50: 2; 387-398.
    [17] Furlani AMC, et al. Sorghum genotype differences in phosphorus uptake rate and distribution in plan parts[J]. Plant Nutr: 1984, 7(7): 1113-1126.
    [18] Barber SA, John Wiley and sons. Soil nutrient bio-availability. A mechanistic approach, 1984.
    [19] Graham RD. Adv Plant Nutr, 1984, 57-102.
    [20] Mouea WM. Phosphorus efficiency of sweet pepper lines[J]. Horticultura Brasileira, 2001, 19: 306-312.
    [21] Raghothama KG. Phosphorus acquisition[J]. Annu. Rew. Plant Physiol. Plant Mol. Biol, 1999, 50: 665-693.
    [22] Fohse D, Claassen N, Jungk A. Phosphorus efficiency of plants. II. Significance of root radius, root hairs and cation-antion balance for phosphorus influx in seven plant species[J]. Plant and Soil, 1991, 132(2): 261-272.
    [23]严小龙,张福锁.植物营养遗传学[M].中国农业出版社, 1997, 40-42.
    [24] Anghinoni I, Barber SA. Phosphorus influx and growth characterristics of corn roots as influenced by phosphorus supply[J]. Agron J. 1980, 72: 685-688.
    [25] Gahoonia TS, Care D, Nielsen NE. Root hairs and phosphorus acquisition of wheat and barley cultivars[J]. Plant and Soil, 1997, 196: 181-187.
    [26] Itoh S, Barber SA. Phosphorus uptake by six plant species as related to root hairs[J]. Agron J. 1983, 75: 47-54.
    [27] Fitter AH. Characteristics and function of root systems, in Plant roots: The Hidden Half(Y Waisel, Eshel A, Kafkcafi U, eds.). 1991, 3-25.
    [28]孙海国.不同基因型小麦适应低磷胁迫的根系形态及生理特性研究[D].中国农业大学博士学位论文, 1999.
    [29] Lamont B. Mechanisms for enhancing nutrient uptake in plant, with particular reference to Mediterranean South Africa and Western Australia. Bot. Rev. 1982, 48: 597-589.
    [30] Smith SE, Read DJ. Mycorrhizal Symbiosis. Academic Press. San Diego, CA, 1997.
    [31]张福锁,曹一平.根际动态过程与植物营养[J].土壤学报, 1992, 29: 239-250.
    [32]王庆仁,李继云,李振声.磷高效基因型小麦对缺磷胁迫的根际适应性反应[J].西北植物学报, 2000, 20(1): 1-7.
    [33]李继云,刘秀娣,李振声.有效利用土壤营养元素的作物育种新技术研究[M].中国科学(B辑), 1995, 25(1): 41-48.
    [34]张福锁,陈清,曹一平.根分泌物及其对根及微生物系统中养分有效性的直接影响[J].土壤与植物营养研究新动态, 1992, 1: 64-72.
    [35] Marschner H. Mineral nutrition of higher plants. Second Edition Academic Press, 1995.
    [36] Neumann G, Romheld. Root excretion of carboxylic acid and protons in phosphorus-deficient plant[J]. Plant and Soil, 1999, 221: 121-130.
    [37] Dinkelaker B, Hengeler C, Marschner H. Distribution and function of proteoid roots and other root clusters. Bot. Acta, 1995, 108: 183-200.
    [38]林翠兰,曹一平,张福锁.缺磷对不同基因型玉米根系形态及吸收生理特性的影响[M].土壤与植物营养研究新动态(第一卷),北京农业大学出版社, 1992, 120-124.
    [39]刘国栋,李继云,李振声.低磷胁迫下小麦根系反应的基因型差异[J].植物营养与肥料学报, 1996, 2 (3): 212-218.
    [40] Anderson G. Assessing organic phosphorus in soils. In: The role of phosphorus in agriculture. Khasawneh FE, Sample EC, Kamprath EJ. American Society of Agronomy, Madison, 411, 1980.
    [41] Tarafdar JC, Claasen N. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphorus produced by plant roots and microorganisms[J]. Riol. Fertil. Soils, 1988, 5: 308-312.
    [42] Lefebrue DD, Duff SMG, Fife C, et al. Responses to phosphate deprivation in Brassica rigra suspension cells. Enhancement of intracellular, cell surface and secreted phosphatase activity compared to increase in Pi-absorption rate[J]. Plant Physiol, 1990, 93: 504-511.
    [43] Mclachlan KD, Marco DGD. Acid phosphorus activity of intact roots and phosohorus nutrition in plants. III. Its relation to phosphorus garnering by wheat and a comparison with leaf activity as a measure of phosphorus status[J]. Aust. J. Agric. Res, 1982, 33: 1-11.
    [44]张恩和.供磷水平对间套作物根系酸性磷酸酶活性的影响[J].西北植物学报, 2001, 21(1): 53-58.
    [45] Tadano T, Sakai H. Secretion of acid phosphatase by the root of several crop species under phosphorus deficient conditions[J]. Soil Sci. Plant Nutr, 1991, 37: 129-140.
    [46] Tarafdar JC, Jungle A. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus[J]. Biol fertil Soil, 1987, 3: 399-204.
    [47] Clarkson DT. Factors affecting mineral nutrient acquisition by plants[J]. Plant Physiol, 1995, 36: 77-115.
    [48] Wasaki J, Omura M, Ando M, et al. Molecular cloning and root specific expression of secretory acid phosphatase from phosphate deficient lupin(Lupinus albus L.)[J]. Soil Sci Plant Nutr, 2000, 46: 427-437.
    [49] Jun Wa Saki, Takuya Yamamura, Takuro Shinano , Mitsuru Osaki. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency[J]. Plant and Soil, 2003, 248: 129-136.
    [50] James CB, Athikkattuvalasu SK, Kashchandra GR. LEPS2, a Phosphorus Starvation-Induced Novel Acid Phosphatase from Tomato[J]. Plant Physiology, 2001, 125: 728-737.
    [51] Juan Carlos del Pozo, Isabel Allona, Vicente Rubio, Antonio Leyva, et al. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions[J]. The Plant Journal, 1999, 19(5): 579-589.
    [52] Barber SA, John Wiley and sons. Soil nutrient bio-availability. A mechanistic approach. 1984.
    [53] Horst W J, M Abdou, F Wiesler. Genotypic difference in phosphorus efficiency in wheat[J].Plant Soi, 1993, 155/156: 293-296.
    [54] Davalos A. Selecion for efficiency in phosphorus utilization in rice (Oryza sativa L.)[J]. Munoz, Nueva Ecija (CAB Abstract), 1985.
    [55]刘国栋,李继云,李振声.低磷胁迫下小麦地上部某些性状的基因型差异[J].土壤学报, 1998, 35(2): 235-241.
    [56]王庆仁,李继云,李振声.不同基因型小麦磷素营养阂值的研究[J].西北植物学报, 1999, 19 (3 ): 363-370.
    [57] Jones GPD, RS Jessop, GJ Blair. Alternative methods for the selection of phosphorus efficiency in wheat[J]. Field Crop Res, 1992, 30: 29-40.
    [58]曹卫东.小麦(Triticum aestivum L.)苗期氮、磷、钾吸收和利用的数量性状位点研究[D].中国农科院研究生院博士论文, 2000.
    [59]曹卫东,贾继增,金继运.小麦磷素利用效率的基因位点及其交互作用[J].植物营养与肥料学报, 2001, 7(3): 285-292.
    [60] Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants[J]. Planta, 2002, 216: 23-37.
    [61] PHD SchuEnmann, AE Richardson, FW Smith, E Delhaize. Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.)[J]. Journal of Experimental Botany, 2004, 55(398): 855-865.
    [62] Umesh SM, Jose MP, KG Raghothama. Phosphate transporters from the higher plant.Arabidopsis thaliana[J]. Proc Natl Acad Sci, 1996, 93: 10519-10523.
    [63] Uthappa TM, Chunming Liu, Deepa KV, Kashchandra GR. Negative regulation of phosphate starvation-induced genes[J]. Plant Physiology, 2001, 127(4): 1854-1862.
    [64] Karthikeyan AS, Varadarajan DK, Mukatira UT, et al. Regulated expression of Arabidopsis phosphate transporters[J]. Plant physiology, 2002, 130: 221-233.
    [65] Mitsukawa N, Okumura S, Shirano Y, et al. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions[J]. Proc Natl Acad Sci USA, 1997, 94(13): 7098-7102.
    [66] Daram P, Brunner S, Ransch C, et al. Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis[J]. Plant Cell, 1999, 11(11): 2153-2166.
    [67] TGE Davies, J Ying, Q Xu, ZS Li, J Li and R Gordon-Weeks. Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats[J]. Plant Cell and Environment. 2002, 25, 1325-1339.
    [68]常胜合,舒海燕,李振声.两个小麦磷转运蛋白基因的分离、功能鉴定和表达研究[J].西北植物学报, 2004, 24 (10): 1779- 1785.
    [69] Shimizu T, Inoue T, Shiraishi H. A seneacence-agsociated S-like RNage in the multicellular green alga Volvox carteri[J]. Gene, 2001, 274: 227-235.
    [70] Chang Sheng-He, Shu Hai-Yan, Tong Yi-Ping, et al. Expressions of three wheat S-like RNase genes were diferentially regulated by phosphate starvation[J]. Acta Agronomica Sinica, 2005, 31(9): 1115-1119.
    [71] Liu C, Biddinger E, Raghothama KG. Phosphate starvation and gene expression in roots of tomato[J]. Proc of the 5th International Sym on Genetics and Mol. Riol of Plant Nutrition, 1994, 85.
    [72] Stephen HB, Maria JH. A novel gene whose expression in medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition[J]. Plant Molecular Biology, 1997,34: 199-208.
    [73] Martin AC, del Pozo JC, Iglesias J, et al. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis[J]. The Plant Journal, 2000, 24(5): 559-567.
    [74] Shinagawa H, Makino K, Amemura M. Structure and function of the regulatory genes for the phosphate regulon in Escherichia coli[J]. Mol. Biol, 1995, 168: 477-488.
    [75] Jones G P D.小麦的磷效应—一个有用的选择指标[J]. Field Crop Research, 1989, 21(3-4): 257-264.
    [76]吕滨泽.植物矿质营养遗传特性研究进展[J].国外农学一土壤肥料, 1987, 3: 3-6.
    [77]苏俊英.普通小麦中控制磷效率相关性状的QTL定位[D].中科院遗传与发育所博士学位论文, 2005.
    [78]李志刚,谢甫绨,宋书宏,等.作物不同基因型的磷素营养研究进展[J].内蒙古民族大学学报, 2002, 17(4): 307-312.
    [79]常胜合,舒海燕,秦广雍,等.植物对磷饥饿的反应研究进展[J].中国农学通报, 2005, 21(7): 199-203.
    [80] Rosa Morcuende, Ragendra, Yves Gibon, Wenming Zheng. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus[J]. Plant, Cell and Environment, 2007, 30: 85-112.
    [81] Julie Misson, Kashchandra GR, Ajay Jain. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation[J]. PNAS, 2005, 102: 11934-11939.
    [82] Hou XL, Wu P, Jiao FC, et al. Regulation of the expression of OsIPS1and OsIPS2 in rice Via systemic and local Pi signaling and hormones[J]. Plant Cell and Environment, 2005, 28:353-364.
    [83]陈声奇,陈爱珠,周畅.植物忍耐低磷胁迫机理的研究进展[J].湖南农业科学, 2007, (2): 43-46.
    [84]王庆仁,李继云,李振声.植物高效利用土壤难溶态磷研究动态及展望[J].植物营养与肥料学报, 1998, 4(2): 107-1l6.
    [85] Foshe D, Classen N, Jungk A. Phosphorus efficiency of plants.Ⅰ. External and internal P equirement and P uptake efficiency of different plant species[J]. Plant and Soil, 1988, 110: 101-109.
    [86]李浩,张平平,查向东,等.高质量的小麦种子总RNA的快速提取方法[J].分子植物种, 2006, 4(6): 877-881.
    [87] J Sam Brucker, DW Russell.分子克隆指南[M].科学出版社, 2002.
    [88]杨岐生.分子生物学[M].浙江大学出版社, 2003.
    [89]南海波.小麦总RNA的提取[J].渤海大学学报, 2006, 27(1): 18-20.
    [90] MS. Clark.植物分子生物学实验手册[M].高等教育出版社, 1998.
    [91] BR Glick, JE Thompson.植物分子生物学及生物技术的实用方法[M].重庆出版社, 1999.
    [92] Aiming Wang, Qun Xia, Gopalan Selvaraj. The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development[J]. PNAS, 2003, 24: 14487–14492.
    [93] Prof KG Raghothama. WRKY75 Transcription Factor is a Modulator of Phosphate Acquisition and Root Development in Arabidopsis[J]. Plant Physiology, 2007.
    [94] John PH, Malcolm JB, Philip J. White Changes in Gene Expression in Arabidopsis Shoots during Phosphate Starvation and the Potential for Developing Smart Plants[J]. Plant Physiology, 2003, 132: 578–596.
    [95] Takahashi A, Takeda K, Ohnishi T. light-induced anthocyanins reduces the extent of damage to DNA in UV-irradiated Centaura cyanus cells in culture[J]. Plant and Cell Physiology, 1991, 32: 541-547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700