TMV侵染烟草基因差异表达的cDNA-AFLP分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草普通花叶病是世界各烟草产区普遍发生的一种病害,发病田块可减产30-50%,导致重大的经济损失,选用抗病品种是最有效的防治手段。目前TMV的抗病基因主要来自野生种粘烟草(N.glutinosa)的单显性基因N基因,和普通烟草Ambalema品种中的隐性等位基因rm1和rm2,但以上抗病基因均与不良性状基因存在连锁或基因多效应性,在商业品种的利用上有较大困难,所以TMV抗病基因的标记与筛选,已经成为现今急待解决的课题。
     本研究以TMV高抗品种龙江925为试验材料,利用cDNA-AFLP技术,对烟草叶片与TMV互作后的应答基因进行分析。通过240对引物组合的筛选,获得结果如下:
     1、共得到约9500个转录基因片段,平均每对选择性扩增引物可获得20条转录基因片段,其中190个为组成型表达基因片段,42个为诱导表达基因片段,41个为抑制表达基因片段。经过克隆测序,最终获得了15个表达基因片段,其中包括12个TMV诱导表达基因片段的序列,两个组成型表达基因片段及1个抑制表达基因片段。
     2、为验证表达基因的真实性,利用荧光定量PCR分析了一个诱导表达片段(TIF2)在0-72小时之间5个时间点的基因差异表达,并证实了所获得的基因序列为真实诱导的表达序列。对此序列进行RACE,最终获得全长cDNA序列。
     3、利用NCBI上的GenBank等公共数据库对所获得的转录基因片段进行生物信息分析和功能预测。结果表明:TMV诱导烟草抗病机制涉及多方面生理生化反应,多个功能不同基因参与控制。本研究共获得15条表达基因片段,经过生物信息学分析和功能预测,得知12个诱导表达基因片段与核酸代谢、蛋白质合成与修饰、能量代谢、胁迫响应、细胞内运输、糖代谢等相关;证实2个组成型表达片段均为叶绿体DNA,1个抑制表达基因与细胞壁的代谢相关。
     4、以TIF2序列为基础,应用RACE方法得到cDNA全序列857bp,预测的编码区为101bp到613bp之间。经Blastn、Blastp比对分析,在烟草中没有获得其同源序列,确定该基因是首次在烟草中发现的与抗TMV相关的新基因。
     以上研究结果为烟草分子育种奠定物质和技术基础,也弥补了烟草与TMV互作后基因差异表达研究的不足。
Tobacco mosaic virus (TMV) is one of the main tobacco diseases in the world , and cause serious economic losses every year. Generally, the tobacco yield losses caused by TMV infection could reach up to 30%-50%. Identification of tobacco resistance gene is always an important object and one of crucial key topic in tobacco production.
     The variety of Long Jiang 925 which was TMV high resistant was taken as tested plant material in this study. cDNA amplified fragment length polymorphism analysis (cDNA-AFLP) was used to display transcripts whose expression is rapidly altered during the treatment of TMV to tobacco leaf. Two hundred and forty primer combinations were used for selective amplification. The main results were as follows:
     1. The results showed that there existed over 9500 expression bands appeared at different treatment times, and 20 expression bands were amplified by each primer pair on average. Among these, 190 fragments were constitutively expressed, 42 fragments were inducible expressed, 41 fragments were suppressive expressed. By clone and sequencing, the sequences of 15 expression bands were obtained, including two constitutively expressed fragments and one suppressive expressed fragment.
     2. In order to validate the functions of these differentially expressed gene sequences obtained, the TIF2 fragments was investigated by Real-time PCR. The mRNA samples isolated from tobacco leaf infected by TMV, collected at 5 time points during 0-72 h time period after infection, were taken for Real-time PCR analysis. Supported by the result of Real-time PCR, the genes isolated in this study were resistance related. Then, both 5′-and 3′-rapid amplification of cDNA ends(RACE) were preformed, we got full length cDNA sequence of TIF2.
     3. Then 15 of ESTs and one full length cDNA sequence were analyzed using methods of bioinformatics. Results of Blast analysis in GenBank showed that the TMV induced resistance involves many processes of tobacco biochemistry and physiology and are controlled by multi different genes in tobacco. According to the functions of homology genes, the twelve inducible expressed gene fragments functions involves in the Nucleic Acid Metabolism, protein synthesis and modulation, energy metabolism, stress responding, intracellular transport, Metabolism of Carbohydrates, etc. Two constitutively expression fragment were chloroplast DNA and one suppressive expression fragment was related to cell wall metabolism gene.
     4. By RACE, we got full length cDNA sequence of TIF2, 857bp,and putative reading frame from 101bp to 613bp. Analysis of Blastn and Blastp showed that the gene was most probably the anti-TMV related novel gene.
     Under the study, the substance and technique basis for advanced tobacco molecular breeding resistant to TMV was established. And part of the shortage in the area of gene differentially expressed research in tobacco-TMV interaction has been filled up.
引文
[1] Bawden F C, Pirie N W, Bernal J D, et al. Liquid crystal-line substances from virus-infected plants[J]. Nature, 1936,138:1051-1055.
    [2] Fraenkel-Conrat H, Williams R C. Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components[J]. Porc Natl Sci USA. 1955,41:690-698.
    [3] Fraenkel-Conrat H. The role of the nucleic acid in the reconstitution of active tobacco mosaic virus[J]. J Am Chem Soc, 1956,78:882-883.
    [4] Gierer A, Schramm G. Infectivity of ribonucleic acid from tobacco mosaic virus[J]. Nature. 1956,177:702-703.
    [5] Anderer F A, Uhling H, Weber E, et al. Primary structure of the Protein of tobacco mosaic virus[J]. Nature, 1960,186:922-925.
    [6] Zimmern D. The 5′end group of tobacco mosaic virus RNA is m7G5′ppp5′Gp[J]. Nucleic Acids Res, 1975, 2:1189-1201
    [7] Gallie D R, Sleat D E, Watts J W, et al. The 5′leader sequence of tobacco mosaic virus RNA enhance the expression of foreign gene transcripts in vilro and in vivo[J]. Nucleic Acids Res, 1987,8:3257-3273.
    [8] Pelham H R B. Leaky UAG termination codon in tobacco mosaic virus RNA[J]. Nature, 1978, 272:469-471.
    [9] Ishikawa M, Meshi T, Motoyoshi F, et al .In vitro mutagenesis of the putative repliease genes of tobacco mosaic virus .Nucleic Acids Res[J], 1986,14:8291-8305.
    [10] Koonin E V. The Phylogeny of RNA-dependent RNA Polymerases of positive-strand RNA viruses[J]. J Gen Virol, 1991, 72:2197-2206.
    [11] Rozanov M N, Koonin E V, Gorbalenya A E. Conservation of the putative methyltransferase domain A hallmark of the′Sindbis-like′supergroiup of positive-strand RNA viruses The Phylogeny of RNA-dependent RNA Polymerases of positive-strand RNA viruses[J].J Gen Virol, 1992,73:2129-2134.
    [12] Ishikawa M, Meshi T, Ohno T. et al. Specific cessation of minus-strand RNA accumμlation at an early stage of tobacco mosaic virus infection[J]. J virol ,1991, 65:861-868.
    [13] Dennis J L, WIllian O D. Functions of the 126-and 183-kDa proteins of Tobacco mosaic virus[J]. Virology, 2000, 271:90-98.
    [14] Mi S, Stollar V. Expression of Sindbis virus nsP1 and methyltransferase activity in Escherichia coli[J]. Virology, 1991, 184:423-427.
    [15] Kong F, Sivakumaran K, Kao C. The N-terminal half of the brome mosaic virus la protein has RNA capping-associated activities :Specificity for GTP and saednosylmethionine[J]. Virology, 1999, 259:200-210.
    [16] Gorbalenya A E, Blinov V M, Donchenko A P, et al. An NTP-binding motif is the most conserved sequence in a strand RNA viral replication[J]. J Mol Evol, 1989, 28:256-268.
    [17] Kadare G, Haenni A L. Virus-encoded RNA helicases[J]. J Virol, 1997, 71:2583-2590.
    [18] Dunigan D D, Zaitlin M. Capping of tobacco mosaic virus RNA. Analysis of viral-encoded gyanylytransferase-like activity[J]. J Biol Chem, 1990, 265:7779-7786.
    [19] Merits A, Kettunen R, Makinen K, et al. Virus-specific capping of tobacco mosaic virus RNA: methylation of GFP prior to formation of covalent complex p126-m7GTP[J]. FEBS Lett, 1999, 455:45-48.
    [20] Joshi S, Pleij C W A, Haenni A L, et al. The nature of the tobacco mosaic virus intermediate length RNA2 and its translation[J].Virology, 1983, 127:100-111.
    [21] Watanabe Y, Emori Y, Ooshika I, et al. Synthesis of TMV specific RNAs and proteins at the early stage of infection in tobacco protoplasts: Transient expression of the 30 K protein and its RNA[J]. Virology, 1954, 133:15-24.
    [22]范国强,王教义.侵染姜的烟草花叶病毒的鉴定[J].山东农业大学学报, 1999, 30(3):249-255.
    [23]黄金光,田国忠,范在丰,等.侵染扶桑的烟草花叶病毒分离物鉴定[J].植物病理学报,2004, 36(3):33-37.
    [24]黄金光,邓存良,范在丰,等.侵染丁香的烟草花叶病毒的分离与鉴定[J].植物病理学报, 2004, 34 (3):215-220.
    [25]房德纯,王振东.茄子上烟草花叶病毒的分离与鉴定[J].沈阳农业大学学报, 1994,25(3):259-263.
    [26] Antignus Y, Sela I , Harpaz I. Species of RNA extracted from tobacco and Datura plants and their differential sensitivity to Actinomycin[D]. Biochemical and Biophysical Research Communications, 1971, 44:78-88.
    [27] Holmes F O. Inheritance of resistance to tobacco mosaic virus disease in tobacco [J]. Phytopathology, 1938,28:553-561.
    [28] Whitham S, Dinesh-Kumar S P, Choi D. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor[J]. Cell, 1994,(78): 1101-1115.
    [29] Tepfer M. Risk assessment of virus-resistant transgenic plants[J]. Annual Review of Phytopathology, 2002,40:467-491.
    [30] Noll A J. Inheritance in Nicotiana A study of the glaucous and the yellow characters in N [J]. Tabucum L J Agric Univ Puerto Rico, 1934,18:443-462.
    [31] Holmes F O. Control of TMV in Tobaccoes[J]. Phytopathology,1955,45:224-225.
    [32] Chaplin J F, Matzinger and T J Mann. Influence of the homozygous mosaic-resistance factor on quantitative characters of fμle-cured tobacco.[J]. Tob Sic, 1996,10:81-84.
    [33] Chaplin J F, T J Mann. Evaluation of tobacco mosaic resistance factor transferred from burely to flre-curred tobacco[J]. Jour Hrerd, 1987,71:723-725.
    [34]张虹,苏建东,程多福.聚焦烟草育种[J].中国烟草,2005,4:4-54.
    [35]王世伟.烟草普通花叶病的发生的防治[J].农村实用技术, 2003, 10:22-22.
    [36]杨德谦,王凤龙,等.我国烟草病毒病的防治研究策略[J].中国烟草科学, 2001, 22(1):46-48.
    [37] Palukaitis P, Zaitlin M. Replicase-mediated resistance to plant virus disease[J]. Adv in Virus Res, 1997, 48:349-377.
    [38] Zinnem T M, Fμlton R W. Cross-protection between sun hemp mosaic and tobacco mosaic viruses[J]. J Gen Virol , 1986,67:1679.
    [39] Sarkar S, Smitamana P. A Proteinless mutant of tobacco mosaic virus: evidence against the role of aviral coat protein for interference[J]. Mol Gen Genet, 1981,184(1):158-159.
    [40] Dodds J A, Lee S Q, Tiffany M. Cross protection between strains of cucumber mosaic virus: Effect of host and type of inocμlum on accumμlation of virions and double-stranded RNA of the challenge strain[J]. Virology, 1985, 144:301-309.
    [41] Ponz F, Bruening G. Mechanisms of resistance to Plant viruses[J]. Annu Rev Phytopathol, 1986, 24:355-381. .[42] Yeh S D. Control of ringspot disease of papaya by induced mild virus strains[J]. Acta Horticμlturae, 1990, 257:753-760.
    [43]肖火根,范怀忠.交互保护作用及其在植物病毒病防治上的应用[J].中国病毒学, 1994, 9(1):l-6.
    [44] Marrou J, Migliori A. La premonition une nouvelle methode de protection des cμltures contre le virus de la mosaique du tabac[J]. PHM-Revue Horticole, 1972, 124:27-31.
    [45] Powell A, Bel P, Nelson R S, et al .Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene[J]. Science,1986, 232:738-743.
    [46]田颖川,秦晓峰,王桂玲,等.表达烟草花叶病毒外壳蛋白的转基因烟草及其对TMV的抗性[J].中国科学(B辑), 1990,20(8):822-831.
    [47]陈章良,孙宝俊等.利用植物基因工程技术育成抗病优质香料烟“PK-873”.植物基因工程研究[M],北京:北京大学出版社, 1992:225-268.
    [48]方荣祥,田颖川,王桂玲,等.双抗基因烟草纯和系的选育及田间试验[J].中国科学(B辑),1993,23(5):481-488.
    [49] Lu B, Stubbs G, Cμlver J N. Coat protein interaction involved in tobacco mosaic virus botamovirus cross-protection[J]. Virology, 1998, 248:188-198.
    [50] Register J C, Beachy R N. Resistance to TMV intransgenic plants resμlts from interference with an early event in infection[J]. Virology, 1988, 166:524-532.
    [51] Osbourn J K, Watts J W, Beachy R N, et al. Evidence that nucleocapsid disassembly and a later step in virus replication are inhibited in transgenic tobacco protoplasts expressing TMV coat protein[J]. Virolog, 1989, 172:370-373.
    [52] Powell-Abol P, Sanders P R, Tumer N, et al. Protection against tobacco mosaic virus infection in transgenic plants requires accumμlation of coat protein rather than coat protein RNA sequences. Virology[J], 1990, 175:124-130.
    [53] Nelson R S, Powell-Abel P, Beachy R N. Lesions and virus accumμlation in inocμlation in inocμlated transgenic tobacco plants expressing the coat protein gene of tobacco mosaic virus[J]. Virology, 1987, 158:126-132.
    [54] Cuozzo M O, Connell R M, Kaniewski W. Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein and its antisense RNA Biotechnology[J], 1989, 6:549.
    [55] Fire A, Xu S, Montgomery M K, et al. Poent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. nature, 1998,391:806-811.
    [56]律凤霞,郭兆奎,颜培强等. TMV复制酶基因靶向的RNA干涉载体构建[J].植物研究.2008,3:310-314.
    [57]刘丹,郭兆奎,万秀清等. TMV和PVY外壳蛋白双基因融合干涉及烟草转化[J].基因组学与应用生物学.2009,28(3):450-454.
    [58] Paμl A. RNA-Dependent RNA Polymerases Viruses and RNA Silencing[J]. Science, 2002, 296(17): 1270-1273
    [59]韩蓓,王秀敏,顾学范.双链RNA干涉技术(RNAi)在不同生物中应用的研究进展[J].遗传, 2002, 24 (2): 200-202.
    [60] English J J, Davenport G F, et al. Requirement of sense transcription for homology dependent virus resistance and trans-inactivation[J]. Plant J, 1996, 12: 597-603.
    [61] Carmell M A, et al. Germline transmission of RNAi in mice[J]. Nature Struct, Biol. 2003, 10: 91-92.
    [62] Tavernarakis N, Wang S L, et al. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes[J]. Nat Genet, 2000, 24: 180-183.
    [63]吴迪,朱延明.转基因植物中外源基因沉默机制及防止对策[J].生物技术通讯, 2002, 3: 228-231 .
    [64] Kennerdell J R, Carthrew R W. Heritable gene silencing in Drosophila using double-stranded RNA[J]. Nature Biotech, 2000, 17: 896-898 .
    [65] Tenllado F, Diaz-Ruiz J R. Double-stranded RNA-mediated interference with plant virus infection[J].Virol. 2001, 75(24): 122-128.
    [66]孟祥兵,田玉安,王秀芳等.植物转基因沉默与病毒抗性[J].生命科学研究, 2001, S1: 141-145.
    [67] Kalantidis K, Psaradakis S, et al.The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus[J]. Molecμlar Plant-Microbe Interactions, 2002, 15(8): 826-833.
    [68] Timmons L, Fire A. Specific interference by ingested dsRNA [J]. Nature, 1998, 395(6705): 854.
    [69] Mlotshwa S, Voinnet O, et al. RNA silencing and the mobile silencing signal Plant[J]. Cell, 2002, 9: 102-103.
    [70] Carmo-Fonseca M, Custodio N, Calado A. Intranuclear trafficking of messenger RNA[J]. Crit. Rev. Eukaryot. Gene Expr, 1999, 9: 213.
    [71] Lucas W J, Yoo B C, Kragler F. RNA as a long-distance information macromolecμle in plants[J]. Nat Rev Mol Cell Biol, 2001, 2 (11): 849-857.
    [72] Palauqui J C, Vaucheret H. Transgenes are dispensable for the RNA degradation step of cosuppression[J]. Proc. Natl. Acad. Sci, USA, 1998, 95: 9675-9680.
    [73] Jorgensen R A, et al. An RNA-based information superhighway in plants[J]. Science, 1998, 279: 1486-1487.
    [74] Palauqui J C, Elmayan T, et al. Transgene-specific posttranscriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions[J]. EMBO J, 1997, 16: 4738–4745.
    [75] Kennerdell J R, Carthrew R. W. Use of dsRNA-mediated genetic interference to demonstrate that fizzied and fizzied2 act in the wingless pathway[J]. Cell, 1998, 95: 1017 -1026.
    [76] Jones L, Ratcliff F, Baμlcombe D C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance[J]. Curr Biol, 2001, 11:747-757.
    [77] Ruiz-Medrano R, Xoconostle-Cázares B, Lucas W J. Phloem long distance transport of CmNACP mRNA: implications for supracellμlar regμlation in plants[J]. Development, 1999, 126 (20): 4405-4419 .
    [78] Tavernarakis N, Wang S L, et al. Heritable and controllable interference by dsRNA[J]. Nature Genetics, 2000, 24: 180-183.
    [79] Cogoni C, Macino G. Post-transcriptional gene silencing across kingdoms[J]. Current Opinion in Genetics & Development, 2000, 10(6): 638-643.
    [80] Marjori M, Antonius J M, Matzke J, et al. RNA: Guiding Gene Silencing [J]. RNA, 2001, 293(10): 1081-1083.
    [81] Vos P, Hogers R, Bleeker M, et al. aflp: A new technique for DNA fingerprinting [J]. Nucleic Acids research, 1995,23(21):4407-4414.
    [82] Baehem C W, Oomen R J F J, Visser R G F. Transcript imaging with cDNA-AFLP: a step-by-step protocol[J]. Plant Molecμlar Biology Reporter,1998,16:157-173.
    [83] Fukuda T, kido A, Kajino K. Cloning of differentially expressed genes in highly and low metastaic rat Osteosarcomas by a modified cDNA-AFLP method[J].Biochemical and Biophysical Research Communications,1999,261(1)35-40.
    [84] Money T, Reader S, Qu L J, et al. AFLP-based mRNA Fingerprinting[J]. Nucleic Acids Research,1996,24:2616-2617.
    [85] Mclelland M, Mathieu-Daude F, Welsh J. RNA fingerprinting and differential display using arbitrarily primered PCR[J]. Trends Gen,1995,11:242-246.
    [86] Kwon S J,Hong S W,Kim N S, et al .Isolation of callus-specific mRNAs from differentiating embryogenic somatic calli of pimpinella brachycarpa by cDNA-AFLP[J]. Mol Cells, 2004, 17(l): 39-44.
    [87] Bachem C W, Oomen R J F J, Kuyt S, et al. Antisense suppression of a Potato a-SNAP Homologue leads to alterations in cellμlar development and distribution[J]. Plant Molecμlar Biology, 2000, 43:473-484.
    [88] Hegarty M J, Jones J M, Wilson I D, et al. Development of anonymous cDNA micro arrays to study changes to the Senecio floral transcriptome during hyrid speciation[J]. Mol Ecol, 2005, 14(8):2493-2510.
    [89] Bove J, Lucas P, Godin B, et al .Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia [J]. Plant Mol Biol, 2005, 57(4):593-612.
    [90] Zhang C K, Lang P, Dane F, et al. Cold acclimation induced genes of trifoliate orange[J]. Plant Cell Rep, 2005, 23(10-11):764-769.
    [91] Simoes-Araujo J L, Rodrigues R L, Gerhardt L B, et al. Identification of differentially expressed genes by cDNA-AFLP technique during heat stress in cowpea nodμles[J] .FEBS Letters, 2002, 515(l-3):44-50.
    [92] Yang L, Zheng B, Mao C, et al. cDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit[J].Gene, 2003, 18(314):141-148.
    [93] Hmida-Sayari A, Costa A. Identification of Salt Stress-Induced Transcripts in Potato Leaves by cDNA-AFLP[J]. Mol Biotechnoi ,2005, 30(1):31-40.
    [94] Petters J, Gobel C, Scheel D. A Pathogen-responsive cDNA from Potato enzymes a protein withhomology to a phosphate starvation-induced phosphates[J].Plant Cell Physiology, 2002, 43(9):1049-1053.
    [95]郭军,屈冬玉,王晓武,等.马铃薯晚疫病菌小种特异无毒基因候选表达序列的cDNA-AFLP鉴定[J].园艺学报, 2005, 32(l):44-48.
    [96] Money T, Reader S, Qu L J, et al. AFLP-based mRNA finger printing[J].Nucleic Acids Resemch,1996,24:2616-2617.
    [97] Bachem C W B ,Vanderhoeven R S, Debruijn S M, et al .Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development [J]. The Plant Journal,1996,9(5):745-753.
    [98] Cooke R , Ragnal M, Laudie M, et al. Further progress towards a catalogue of all Arabidopsis genes: analysis of a set of 5000 nonredundant EST[J].The Plant Journal,1996,9(1):101-124.
    [99] Gilson C, Somerville C. Isolating plant genes[J].Trends Biotechnology,1993(11):306-312.
    [100] Donson J, Fang Y, Espiritu S G, et al. Comprehensive gene expression analysis by transcript profiling[J]. Plant Molecμlar Biology, 2002,(48):75-97
    [101] Bart B, Asun F C, Christian W, et al, A novel method for the construction of genome wide transcriptome maps[J].Plant J,2002,31(2):211-222
    [102] Tatiana S, Tamar K, Assaf D ,et al. Identification of a novel gene(hsdr4) involved in water stress tolerance in wild barly.[J]. Plant Mol Biology, 2007,64:17-34.
    [103] Brugmans B, Carmen A F D, Bachem C W B, et al. A novel method for the construction of genome wide transcriptome maps[J].The Plant Journal,2002,31(2):211-222.
    [104] Johnes J T, Rower H. A comparison the efficiency of differential display and cDNA-AFLP as a tools for the isolation of differentially expressed parasite genes[J].Fundamental and Applied Nemadity,1998,21:81-88.
    [105] Zheng X W, Chen X W, Zhang X H, et al. Isolation and identification of a gene in response to rice blast disease in rice[J].Plant Mol Biology,2004,54:99-109.
    [106]谢荣,何志水,刘芳华,等.应用cDNA-AFLP技术鉴定紫花苜蓿根瘤发育相关基因[J].科学通报,2006,51(15):1794-1801.
    [107]李德谋,肖月华,罗明,等.棉花PTS2受体基因(GhPex7)的克隆及表达分析[J].遗传学报,2003,30(9):823-829.
    [108]秘彩莉,张学勇,温小杰,等.利用cDNA-AFLP技术获得小麦耐盐性相关基因TaVHA-C[J].中国农业科学,2006,39(9):1736-1742.
    [109]陈桂平,黄占景,马闻师,等.盐胁迫下小麦耐盐突变体后代差异cDNA的分离和鉴定[J].中国农业科学,2003,36(9):996-999.
    [110] Gui P C, Wen S M, Zhan J H, et al. Isolation and characterization of TaGSKl involved in wheat salt tolerance[J]. Plant Science,2003,165:1369-1375. [111卢秉国,申艳红,蒋际谋,等.利用cDNA-AFLP技术分析龙眼子叶胚基因表达差异[J].热带亚热带植物学报, 2009,17(6): 562-566.
    [112]黄有军,周丽,陈芳芳,等.山核桃成花过程基因表达的cDNA-AFLP分析[J].浙江林学院学报,2009,26 (3): 297-301.
    [113] Jμliette L, Elisabeth B, Stephanie G, et al. Identification of transcripts potentially involved in barley seed germination and dormancy using cDNA-AFLP[J]. Journal of Experimental Botany, 2007,58(3) :425-437
    [114]邹艳敏,于拴仓,张凤兰,等.白菜抽薹性状相关基因的cDNA-AFLP分析[J].遗传, 2009, 31(7): 755-762.
    [115]谷俊涛,鲍金香,王效颖,等.利用cDNA-AFLP技术分析小麦应答低磷胁迫的特异表达基因[J].作物学报, 2009,35(9):1597-1605.
    [116] Anna O A, Eduard V, Paμl R J. Profiling and quantifying differential gene transcription in phytophthora infestans prior to and during the early stages of potato infection[J]. Fungal Genetics and Biology, 2003,40:4-14.
    [117]高凤华,张洪亮,王海光,等.应用cDNA-AFLP比较干旱胁迫条件下水稻和旱稻转录本表达谱[J].科学通报2009, 54(16): 2305-2319.
    [118]董霞,李文正,黄夸克,等.水杨酸诱导云烟85基因表达差减文库的构建及初步分析[J].云南农业大学学报, 2005,20(6) : 771-773.
    [119]刘丽,马永毅,张志明,等.利用cDNA-AFLP分析纹枯病菌诱导的玉米差异表达基因[J].植物病理学报,2009,39(4):385-391.
    [120]赵继荣,李宁,刘红霞,等.小麦抗黄矮病相关基因cDNA-AFLP差异表达片段的验证[J].植物遗传资源学报,2009,10(1):16-20.
    [121] Bianca H, Anne G B, Stephan H. An Ambystom a mexicanum EST sequencing project: analysis of 17,352 expressed sequence tags from embryonic and regenerating blastem a cDNA libraries [J]. Genome Biol, 2004, 5(9): 67.
    [122]黄骥,张红生,曹雅君,等.一个新的水稻C2H2型锌指蛋白cDNA的克隆与序列分析[J].南京农业大学学报, 2002, 25(2):110-112.
    [123] Tang X R, Wu H, Jia M, et al. Isolation and expression analysis of cDNA encoding a dsRNA binding protein homologue OsRBP of rice[J]. Plant Physiol & Mol Biol, 2002,28:41-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700