低磷胁迫大豆SSH文库构建与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是重要粮食油料作物,在国民经济中占有重要地位;大豆需磷量较大,我国大多数土壤有效磷含量较低,限制了大豆产量;利用转基因技术培育磷高效品种是改善磷营养状况的有效途径,但目前可利用的磷高效基因数量有限。针对这一问题,本研究以耐低磷品种“中黄15”为材料,利用SSH技术,构建低磷诱导大豆根系cDNA文库,为进一步挖掘磷高效基因创建平台,为解析磷高效机制奠定基础。主要研究结果如下:
     1.成功构建了大豆耐低磷品种“中黄15”低磷胁迫SSH文库。文库滴度为4.3×105 cfu.mL-1,阳性克隆比为75%,符合一般文库要求,且质量较高。该文库保存阳性克隆1500个,随机挑取500个阳性克隆分析发现,文库插入片段大小在200-1000 bp之间,平均长度在500 bp左右。
     2.完成了文库中200个阳性克隆的测序工作。获得非重复ESTs序列150个,对其进行同源性比对,BLASTx分析发现有79条ESTs序列与已知功能蛋白序列同源性较高,占所有测序ESTs的52.3%;经BLASTn分析,有70条ESTs序列与已知功能的ESTs序列具有较高同源性,占所有测序ESTs的47.0%。
     3.详细分析了所获得的低磷胁迫表达ESTs序列。通过对测序结果进行比对发现,所比对的已知功能同源基因涉及了植物细胞内的多种代谢和应答过程,其中包括参与细胞内的新陈代谢、信号传导、抗病防御、蛋白质合成、蛋白质加工以及细胞生长/分裂等代谢和应答过程。在所有的代谢和应答基因中,以细胞内的抗病/防御类基因所占比例最大,其比例为29.1%;其次以细胞内的信号传导途径基因较多,占所分析基因的13.9%。
     4.综合分析了与植物在低磷条件下的耐低磷特性相关的ESTs序列。主要包括:与菜豆液泡ATPase亚基E同源EST序列(180号)、与蒺藜苜蓿乙醛脱氢酶同源EST序列(61号)、促分裂原活化蛋白质激酶(114号)、酪氨酸蛋白激酶(I24号)、与硫氧还蛋白相关异构体Ⅰ同源EST序列(F5号)、与大豆bZIP转录因子同源EST序列(113号)、与豇豆EIL2转录因子同源EST序列(K3号)、过氧化物酶(38号)、阳离子过氧化物酶Ⅱ(K1)、过氧化物酶甜菜碱醛脱氢酶(134号)等。
Soybean is an important food and economic crop, and plays a very important role in the national economy. It is also a kind of crops which need a large amount of phosphorus, and its production is significantly limited by low phosphorus availability in the soil. Using the transgenic technology to breed high-efficient phosphorus variety is an effective method to improve the nutritional status of phosphorus in soybean. But the limited quantity of related genes is a major bottleneck. To mine and clone more phosphorus-metabolism related genes, in present study, a high quality soybean root cDNA library of low phosphorus-tolerance variety Zhong-Huang 15 was constructed under the low phosphorus stress by using suppression subtractive hybridization (SSH) technique. The results were summarized as follows:
     1. The results showed that the titer of the SSH cDNA library was 4.3×105 cfu.mL-1, and transformation efficiency was 75%. There were 1500 positive clones stored in this library, and the size of insert fragments was ranged from 200 bp to 1000 bp with a average size 500 bp, which was determined by positive clones randomly.
     2. Two hundred positive clones selected randomly were sequenced in the constructed SSH library and 150 unique ESTs were obtained. Then the ESTs similarity was analyzed via BLASTx and BLASTn software and there were 79 ESTs of homology with the known function protein sequences. The results of BLASTn confirmed that there were 70 ESTs homologous with the known ESTs sequences.
     3. Analysis results of the obtained soybean genes in the library induced by the low phosphorus stress showed that the known functions of the homologous genes were involved in many metabolism and response processes such as metabolism, signal transduction, disease/defence, protein synthesis, processing, and cell growth / division etc. The results also showed that the disease / defense category gene products shared a maximum of 29.1%, which was the largest type, and the signal transduction pathway genes fell into another large type, which accounted for13.9% of the total ESTs.
     4. Analyzed the Blast results of the sequenced ESTs, we found that some ESTs were homologous to the related genes of plant tolerance to low phosphorus stress. These homologous ESTs were as follows: EST 180 ( homologous to the vacuolar ATPase subunit E in Phaseolus acutifolius), EST 61 ( homologous to the Aldehyde dehydrogenase in Medicago truncatula), EST 114 ( homologous to MAPK in Glycine max), EST I24 ( homologous to Tyrosine kinase in Glycine max), EST F5 ( homologous to Similar to thioredoxin-related isoformⅠin Vitis vinifera), EST 113 ( homologous to bZIP transcription factor bZIP41 in Glycine max), EST K3 ( homologous to transcription factor EIL2 in Vigna radiata), EST 38 ( homologous to peroxidase in Dimocarpus longan), EST K1 ( homologous to Cationic peroxidaseⅡin Arachis hypogaea) and EST 134 ( homologous to peroxisomal betaine-aldehyde dehydrogenase in Glycine max).
引文
[1]王连铮,郭庆元主编.现代中国大豆[M].北京:金盾出版社, 2007.1-13.
    [2]Raghothama K G. Phosphate acquisition[J]. Annual Review Plant Physiology and Plant Molecular Biology, 1999,50: 665-693.
    [3]Smith F W., Mudge S R., Rae A L., Glassop D. Phosphate transport in plants[J]. Plant and Soil, 2003, 248: 71-83.
    [4]Yan X L, Wu P, Ling H Q, Xu G H, Xu F S, Zhang Q F. Plant nutriomics in China: An overview[J]. Annals of Botany, 2006, 98: 473-482.
    [5]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review[J]. Plant and Soil, 2001, 237 (2) :173-195.
    [6]李海波,稻侧根生长对低磷胁迫的适应性反应[D].浙江大学硕士学位论文, 2001.
    [7]Lynch J P, Beebe S E. Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability[J]. Hort Science, 1995, 30 (66): 1165-1171.
    [8]Taylor G J. Current views of the aluminum stress response:the physiological basis of tolerance[J]. Curr Top Plant Biolchem Physiol, 1991, 10: 57-93.
    [9]中国科学院南京土壤研究所. http://www.soil.csdb.cn/soilkepu/default.htm.
    [10]Devive T E, Bouton J H, Mabrahtu T. Legume genetics and breeding for stress tolerance and nutrient efficiency[M]. Boston: In VC Baligar, RR Duncan, eds, Crops as Enhancers of Nutrient Use. Academic Press, 1990, 211-252.
    [11]刘建中,李振声,李继云.利用植物自身潜力提高土壤磷的生物有效性[J].生态农业研究, 1994, 2 (1) : 16-23.
    [12]任海红,刘学义,李贵全.大豆耐低磷胁迫研究进展[J].分子植物育种, 2008, 6 (2): 316-322.
    [13]李海波,夏铭,吴平.低磷胁迫对水稻苗期侧根生长及养分吸收的影响[J].植物学报, 2001, 43 (11): 1154-1160.
    [14]赵光强,付循成,曹慧.高等植物的磷营养研究[J].安徽农业科学, 2007 ,35 (31): 9851-9854.
    [15]王庆仁.植物高效利用土壤难溶态磷研究动态及展望[J].植物营养与肥料学,1998, 4 (2): 107-116.
    [16]李生秀.植物营养与肥料学科的现状与展望[J].植物营养与肥料学报,1999 ,5 (3) :193-205.
    [17]Harris G. An analysis of global fertilizer application rates for major crops[M]. Toronto : IFA Annual Conference , Agro - Economics Committee Fertilizer Demand Meeting , 1998
    [18]Steen I. Phosphorus availability in the 21st century:Management of a non- renewable resources[J]. Phosphate and Potash , 1998. 217:25-31.
    [19]李玉京,李滨,李振声,等.植物有效利用土壤磷特性的遗传学研究进展[J].遗传, 1998, 20 (3): 38-41.
    [20]段海燕,王运华,徐芳森.植物高效吸收和利用磷营养的遗传学研究进展[J].植物学通报, 2002, 19 (4): 432-438.
    [21]Runge-Metzger A. Closing the cycle : Obstacles to efficient P management for improved global food security. In:Tiessen H (ed.) . The phosphorus in the global environment ; transfers , cycles and management[M]. NY: John Wiley and Sons, 1995, 27-42.
    [22]廖红,严小龙.菜豆根构型对低磷胁迫和适应性变化及其基因型差异[J].植物学报, 2000 ,42: 158-163.
    [23]Diatchenko L, Lukyanov S, Lau Y F, et al. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes[J]. Methods Enzymol, 1999, 303: 349-380.
    [24]Diatachenko L, Lauy F C, Campbell A P, et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA p robes and libraries[J]. Pro Natl Sci USA, 1996, 93: 6025-6030.
    [25]Von Stein O D, Thies W G, Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes[J]. Nucleic Acids Res, 1997, 25 (13): 2598-2602.
    [26]骆蒙,孔秀英,刘越,等.小麦抗病基因表达谱中的文库构建与筛选方法研究[J].遗传学报, 2002, 9 (9): 814-819.
    [27]Cao P, Wang C Y, Zhao H J, et al. Isolation and identification of Submergence- induced genes in maize(Zea mays)seedlings by suppression subtractive hybridization[J]. Acta Botanica Sinica, 2003, 45 (4):479-483.
    [28]刘军,袁自强,刘建东,等.应用抑制差减杂交技术分离水稻幼穗发育早期特异表达的基因[J].科学通报, 2000, 13:1392-1397.
    [29]王永胜,王景,李发强,等.SSH法获取水稻矮化突变体相关的cDNA片段[J].高技术通讯, 2001, 5:20-24.
    [30]Bahn S C, Bae M S, Park Y B, et al.Molecular cloning and characterization of a noval low temperature-induced gene ,blti2,from barley(hardeum vulgare L )[J].Biochim Biophys Act a, 2001, 1522 (2): 134-137.
    [31]Brich P R J, Avrova A O, Duncan J M, et al.Isolation of potato genes that are induced during an early stage of hypersensitive response to Phytcphthora infestans[J]. Moecular Plant-Microbe Interactions, 1999, 12 (4): 356-361.
    [32]Kang H G, Foley R C, Onate-Sanchez L, er al.Target genes for OBP3, a Dof transcription factor, inducible by salicylic acid[J]. plnat J, 2003, 35 (3): 362-372.
    [33]黄鑫,戴思兰,孟丽,等.抑制性差减杂交(SSH)技术在分离植物差异表达基因中的应用[J].分子植物育种, 2006, 4 (5): 735-746.
    [34]Mi L P, Wei C, Huang J S, er al. The cloning and expression of a novel rPDCD5 gene from rice[J]. Yi Chuan, 2004, 26 (6): 893-897.
    [35]Zhang L, Li F G, Liu C L, er al. Construction and analysis of cotton (Gossypium arboreum L.)drought-related cDNA library[J]. BMC Research Notes 2009, 2:120.
    [36]Liao H, Wong F L, Phang T H, er al. Gm PAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency[J]. Gene, 2003, 318 :103-111.
    [37] Tian J, Liao H, Yan X L. Molecular cloning and characterization of phosphorus starvationresponsive genes in common bean (Phaseolus vulgarisL.)[J]. Planta, 2007, 227: 151-165.
    [38]刘春燕,陈庆山,辛大伟,等.大豆花叶病毒侵染初期的抗病性表达序列标签分析[J].作物学报, 2005, 31 (11): 1394-1399.
    [39]唐建新,陈卓,胡晗华.利用抑制差减杂交技术分离三角褐指藻在缺氮条件下上调表达的基因[J].遗传, 2009, 31(8): 865-870.
    [40]Yi K K, Wu Z C, Zhou J, er al. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice[J]. Plant Physiology, 2005, 138, 2087-2096.
    [41]吴忠长.水稻耐低磷胁迫相关转录因子OsPTF1研究[D].浙江大学博士论文, 2004.
    [42]赵静.大豆根构型对缺磷的适应性反应及相关基因的克隆[D],华南农业大学博士学位论文, 2004.
    [43]李喜焕.大豆品种资源耐低磷鉴定及相关转录因子基因GmPTF1的克隆[D].河北农业大学博士论文, 2008.
    [44]叶庆亮.岩溪晚芦成熟果皮与果肉差减cDNA文库的构建及初步分析[D].西南大学硕士学位论文, 2008.
    [45]Yammanoto K, Sasaki T. Large-scale est sequencing in rice[J].Plant Molecular Biology, 1997, 35:135-14.
    [46]H?fte H, Desprez T, Amselem J, et al. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana[J].The Plant Journal, 1993, 4 (6): 1051-1061.
    [47]Beavn M,Bancroft I,Bent E. et al .Analysis of 1.9MB of contigous sequence from chromosome 4 of Ara bidopsis thaliana.1998, 391: 485-488.
    [48]Vallelian-Bindschedler L, M?singer E, Métraux J P, et al. Structure, expression and localization of a germin-like protein in barley (Hordeum vulgare L.) that is insolubilized in stressed leaves[J]. Plant Molecular Biology 1998, 37: 297-308.
    [49]Hurkman W J, Tao P H, Tanaka C K. Germin-like polypeptides increases in barley roots during salt stress[J]. Plant Physiology, 1991, 97: 366-374
    [50]Berna A, Bernier F. Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, an H2O2 producing enzyme[J]. Plant Molecular Biology, 1999, 39: 539-549.
    [51]Michalowski C B, Bohnert H J. Nucleotide sequence of a root-specific transcript encoding a germin-like protein from the halophyte Mesembryanthemum crystallinum[J]. Plant Physiology. 1992, 100: 537-538.
    [52]Dumas B, Freyssinet G, Pallett K E. Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings[J]. Plant Physiology,1995, 107: 1091-1096.
    [53]Carter C, Thornburg R W. Tobacco nectarin. I. Purification and characterization as a germin-like manganese superoxide dismutase implicated in the defense of floral reproductive tissues[J]. Journal of Biological Chemistry, 2000, 275: 36726-36733.
    [54]Seta K A, Millhorn D E. Functional genomics approach to hypoxia signaling[J].Appil Physiol.2004, 96: 765-773.
    [55]叶庆亮,江东,彭爱红.‘岩溪晚芦’椪柑果皮与果肉差减cDNA文库的构建及初步分析[J].园艺学报, 2009, 36 (7): 967-974.
    [56]Diatchenko L, Lau Y F, Campbell A P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proc Natl Acad Sci USA, 1996, 93 (12): 6025-6030.
    [57]Hammond J P, Broadley M R, White P J. Genetic Responses to Phosphorus Deficiency[J]. Annals of Botany 2004,94: 323–332.
    [58]Sze H, Schumacher K, Müller M L, et al. A simple nomenclature a complex proton pump: VHA genes encode the vacuolar H+-ATPase[J]. Trends Plant Sci, 2002. 7 (4):157-161.
    [59]Magnin T, Fraichard A, Trossat C, et al. The tonoplast H+-ATPase of Acer pseudoplatanus is a vacuolar-type ATPase that operates with a phosphoenzyme intermediate[J]. Plant Physiol, 1995. 109: 285-292.
    [60]Perera I Y, Li X, Sze H. Several distinct genes encode nearly identical 16 KDa proteolipids of the vacuolar H+-ATPase from Arabidopsis thaliana[J]. Plant Mol Bio, 1995. 29: 227-244.
    [61]Dietz K J , Tavakoli N , Kluge C , et al. Significance of the V-ATPase for the adaptation to stressful growh conditions and its regulatiun on the molecular and biochemical level[J]. J Exp Bon ,2001, 52 :1969-1980.
    [62]赵雅丽,韩冰,李淑芬,等.液泡膜H+-ATPase在植物的非生物胁迫响应信号转导中的作用[J].植物生理学通讯, 2006, 42 (5): 812-816.
    [63]孙艳香,李平.蒺藜苜蓿液泡膜H+-ATPase A亚基cDNA的电子克隆与序列分析[J].廊坊师范学院学报(自然科学版), 2009, 9 (1): 62-65.
    [64]Michael F. Structure , mechanism and regulation of the clathrin-coated vesicle and yeast vacuolar H+-ATPase [J ]. J Exp Boi, 2000, 203: 71-80.
    [65]Mimuro T, Dietz K J, Kaiser W, et al. Phosphate transport across biomembranes and cytosolic phosphate homeostasis in barley leaves[J]. Planta, 1990, 180: 139-146.
    [66]单树花,宋克敏,刘晶茹,等.磷饥饿下番茄幼苗根系液泡膜H+-ATPase活性的适应性变化[J].植物生理与分子生物学学报, 2006, 32 (6): 685-690.
    [67]Davies W J , Zhang J . Root signals and the regulation of growth and development of plants in drying soil[J]. Annual Review Plant Physiology Plant Molecular Biology ,1991 ,42 :55-76.
    [68]刘贯山.蚕豆CDPK基因克隆、表达分析和玉米V-ATPaseA亚基磷酸化位点鉴定[D].中国农业大学博士学位论文, 2004.
    [69] JOHN P. HAMMOND, MARTIN R. BROADLEY and PHILIP J . WHITE Genetic Responses to Phosphorus Deficiency . Annals of Botany 2004. 94: 323–332.
    [70]Reddy A S. Calcium: silver bullet in signaling[J]. Plant Sci, 2001, 160: 381-404.
    [71]Roberts D M, Harmon A C. Calcium-modulated proteins :targets of intracellular calcium signals in higher plants[J]. Annu Rev Plant Physio Plant Mol Biol ,1992, 43 (2) :375-414.
    [72]Poovaiah B W, Reddy ASN. Calcium and signal transduction in plants[J]. CRC Crit Rev Plant Sci,1992, 12 (3) :185-211.
    [73]Wu P, Ma L G, Hou X L, et al. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves[J]. Plant Physiol, 2003, 132: 1260-1271.
    [74]段瑞君,易可可,吴平.拟南芥中一个类似钙调素蛋白的基因结构及其缺磷、缺钾诱导表达[J].植物生理与分子生物学学报. 2005, 31 (5): 520-526.
    [75]张和臣,尹伟伦,夏新莉.非生物逆境胁迫下植物钙信号转导的分子机制[J].植物学通报, 2007, 24 (1): 114-122.
    [76]Chenk P W, Snaar-Jagalska B E. Signal perception and transduction : the role of protein kinases[J]. Biochim Biophys Acta ,1999 ,1449 :1-24.
    [77]Stone J M, Walker J C. Plant protein kinase families and signal transduction[J]. Plant Physiol, 1995, 108 :451-457
    [78]杨洪强,梁小娥.蛋白激酶与植物逆境信号传递途径[J].植物生理学通讯, 2001,37 (3) :185-190.
    [79]Budicky P L. Identification of putative phosphorus stasrvation inducible protein kinase from Brassica nigra[J]. Plant phsiol., 1993, 102: 68.
    [80]Theodorou M E. Phosphate starvation-inducible synthesis of the a-subm it of the Pytophosphate-dependent phosphofruc-tokinase in black mustard suspension cells[J]. J. Biol. Chem., 1992, 267: 21901-21905.
    [81]李利华,邱旭华,李香花,等.水稻低磷胁迫基因表达谱分析[J].科学通报, 2010, 55 (3): 212-219.
    [82]谷俊涛,鲍金香,王效颖,等.利用cDNA-AFLP技术分析小麦应答低磷胁迫的特异表达基因[J].作物学报, 2009, 35(9): 1597?1605.
    [83]王玉成,杨传平,刘桂丰.紫杆柽柳cDNA文库构建与硫氧还蛋白基因的克隆[J].分子植物育种, 2004, 2 (5): 667-673.
    [84]Sano H , Sata T , Nanri H , et al . Thioredoxin is a ssociated with endotoxin tolerance in mice[J]. Crit Care Med, 2002, 30 (1): 190-194.
    [85]Rey P , Pruvot G, Becuwe N, et al . A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in S olanum tuberosum L plants[J]. Plant Journa1, 1998, 13: 97-107.
    [86]Baker A , Payne C M , Briehl M M , et al . Thioredoxin ,a gene found overexpressed in human cancer , inhibits apoptosis in vitro and in vivo [J]. Cancer Res , 1997, 57 (22): 5162-5167.
    [87]Ueno M , Masutani H , Arai R J , et al . Thioredoxin-dependent redox regulation of p53-mediated p21 activation[J]. J Biol Chem, 2000, 274 (50): 35809-35815.
    [88]Carvalho A P, Fernandes P A, Ramos M J. Similarities and differences in the thioredoxin superfamily[J]. Progress in Biophysics and Molecular Biology, 2006, 91: 229-248.
    [89]刘欣,李云.转录因子与植物抗逆性研究进展[J].中国农学通报, 2006, 22 (4):61-65.
    [90]桑新华,吴忠义,黄丛林,等.植物逆境抗性相关转录因子的研究进展植物学通报[J].2004, 21 (6): 700-708.
    [91]路子显,常团结,刘翔,等.植物碱性亮氨酸拉链(bZIP)蛋白研究进展(一)[J].遗传, 2001, 23(6) :564-570.
    [92]萨其拉,李文彬,孙勇如. G-box和G-box结合蛋白在植物基因诱导表达中的转录调控作用[J].植物生理与分子生物学, 2003, 39 (1): 89-92.
    [93]蒋瑶,胡尚连,孙霞,等拟南芥bZIP基因家族系统发育树比较分析[J].华北农学报, 2008, 23 (1): 22-27.
    [94]Kang J Y, Choi H I , Im M Y, et al . Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling[J]. Plant Cell, 2002, 14: 343-357.
    [95]Zou M J, Guan Y C, Ren H B, et al Characterization of alternative splicing products of bZIP transcription factor OsABI5[J]. Biochemical and Biophysical Research Communications, 2007, 360 (24): 307-313.
    [96]Boo Ja Lee. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promter[J]. Biochemical and Biophysical Research Communications, 2006, 344: 55-62.
    [97]Jackoby M. bZIP transcription factors in Arabidopsis[J]. Trends Plant Science, 2002, 7 (3) :106-111.
    [98]Paulo S S , Fábio T S , Nogueira , et al . Identification of new ABA-and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database[J]. Plant Cell Report ,2008 ,27 :335-345.
    [99]Fujita Y, Fujita M, Satoh R , et al . AREB1 is a Transcription Activator of Novel ABRE-De-pendent ABA Signaling That Enhances drought stress tolerance in Arabidopsis [J]. The Plant Cell ,2005 ,17 :3470-3488.
    [100]Kang J , Choi H , Kim S Y. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling [J] . The Plant Cell ,2002 ,14 :343-357.
    [101]Kim J B , Kang J Y, Kim S Y. Over-expression of a transcription factor regulating ABA res-ponsive gene expression confers multiple stress tolerance [J] . Plant Biotechnology Journal ,2004 ,2 :459-466.
    [102]叶武威,赵云雷,王俊娟,等.盐胁迫下陆地棉耐盐品种根系的抑制消减文库构建[J].棉花学报, 2009 ,21 (5) :339-345.
    [103]Sano T, Nagata T. The possible involvement of a phosphate-induced transcription factor encoded by Phi-2 gene from tobacco in ABA signaling pathways[J]. Plant Cell Physiol, 2002, 43 (1):12-20.
    [104]刘厚诚,邝炎华,陈日远.缺磷胁迫对长豇豆幼苗乙烯产生量的影响[J].中国农业科学, 2006, 39 (4): 855-859.
    [105]Lynch I P, Brown K B. Regulation of root architecture by phosphorus availability- In phosphorus in plant biology: regulatory roles in molecular, cellular organismic, and ecosystem processes[J]. In: Lynch J P, Deikman J (eds). American Society of Plant Physiologists, 1998,:148-156.
    [106]Ma Z, Baskin T I, Brown K M, et al. Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness[J]. Plant Physiol, 2003, 131: 1381-1390.
    [107]Chang, C., Stadler, R.. Ethylene hormone receptor action in Arabidopsis[J]. Bioessays, 2001, 23 (7): 619-627.
    [108]安丰英,郭红卫.乙烯信号转导的分子机制[J].植物学通报2006, 23 (5):531-542.
    [109]Kieber J J, Rothenberg M , Roman G , F et al. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases[J]. Cell, 1993, 72 (3): 427-441.
    [110]Roman G, Lubarsky B, Kieber J J, et al. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana:five novel mutant loci integrated into a stress response pathway[J]. Genetics, 1995, 139: 1393-1409.
    [111]Chao Q, Rothenberg M, Solano R, et al. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins[J]. Cell, 1997, 89: 1133-1144.
    [112]Alonso J M, Hirayama T, Roman G, et al. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis[J]. Science, 1999, 284: 2148-2152.
    [113]Borrás-Hidalgo O, Bart P. H. J. Thomma,Cyrelys Collazo,Osmany Chacón,Carlos J. Borroto,Camilo Ayra,Roxana Portieles,Yunior López,and Merardo Pujol. EIL2 Transcription Factor and Glutathione Synthetase Are Required for Defense of Tobacco Against Tobacco Blue Mold. The American Phytopathological Society. 2006 19( 4):399–406.
    [114]田国忠,李怀方,裘维蕃.植物过氧化酶研究进展[J].武汉植物学研究所, 2001, 19 (4): 332-344.
    [115]梁艳荣,胡晓红,张颖力,等.植物过氧化物酶生理功能研究进展[J].内蒙古农业大学学报, 2003, 24 (2): 110-113.
    [116]Chittoor J M, Leach J E, White F F. Differential induction of peroxidase gene family during induction of rice by Xanthomonas oryzae pv. Oryzae[J]. Mol Plant-Microbe Interact, 1997, 10: 861-871
    [117]Betella M A, Quesada M A, Konowicz A K. Characterization and in situ localization of a salt-induced tomato peroxidaze Mrna[J ]. Plant Mol Biol, 1994, 25: 105-114.
    [118]Miller R, Zilinskas B A: Molecular cloning and characterization of a gene edcoding pea cytosolic ascorbate peroxidase[J]. J Biol Chem, 1992, 267: 21802-21807.
    [119]Fohse D, Claassen N, Jungk A. Phosphorus efficiency of plants.Ⅱ. Significance of root radius , root hairs and cation-anion balance for phosphorus influx in seven plant species[J]. Plant Soil, 1991, 132: 261-272.
    [120]孙海国,张福锁.小麦根系生长对缺磷胁迫的反应[J].植物学报, 2000, 42 (9) :913-919.
    [121]孙海国,张福锁,杨军芳.缺磷胁迫对小麦根细胞周期蛋白基因cyc1At表达的影响[J].植物生理学报, 2000, 26 (5) :441-445.
    [122]张波,李鲜,陈昆松.脂氧合酶基因家族成员与果实成熟衰老研究进展[J].园艺学报, 2007, 34 (1): 245-250.
    [123]李靖,马长乐.植物脂氧合酶研究进展[J].生物学杂志, 2007, 24 (6): 5-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700