不同萝卜抗源抗黑腐病相关基因差异表达比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑腐病是严重影响十字花科蔬菜生产的世界性细菌病害。为了筛选萝卜黑腐病抗源和挖掘抗病优异基因,本文采用三种不同的鉴定方法对萝卜种质资源进行了鉴定,并采用DDRT-PCR和cDNA-AFLP对不同萝卜抗源抗黑腐病相关基因表达进行了研究,主要研究结果如下:
     1.对40份初选萝卜种质分别接种Xcc8004和XccBJ两个菌株,进行黑腐病苗期抗性鉴定;对其中的8份代表性萝卜种质采用肉质根切片接种Xcc8004进行抗性鉴定;对其中的27份萝卜种质接种8个含有效应物基因的农杆菌,进行过敏反应鉴定。结果表明:不同萝卜种质苗期对黑腐病的抗性存在显著差异,筛选出对Xcc8004表现高抗的材料3份,对XccBJ表现高抗的材料1份。萝卜苗期不同材料对Xcc8004和XccBJ的抗性表现极显著相关,萝卜苗期和肉质根对Xcc8004的抗病性极显著相关。稳定可靠抗病资源的获得为萝卜抗病育种和抗病机理深入研究提供了基础材料。筛选出17份对不同效应物表现过敏反应的萝卜种质。不同抗源对不同效应物的过敏反应程度有所不同。
     2.利用cDNA-AFLP技术,研究了4份萝卜抗病材料KB09-1、KB09-12、KB09-17、KB09-16和1份感病材料KB09-29接种和未接种黑腐菌Xcc8004的基因差异表达。256对引物组合在参试材料中扩增出790个差异表达条带。克隆得到的74个差异片段按其功能分为8类。在多份萝卜种质中都涉及信号转导、蛋白质代谢、光合作用、抗病防御及转运等序列的差异表达。不同萝卜抗源表达的抗性相关基因不完全相同。
     3.对高抗黑腐病萝卜种质KB09-12分别接种效应物xopXccN和xopXccX2,利用cDNA-AFLP方法获得153个差异表达条带。25个测序条带分析表明,接种xopXccN和xopXccX2公共差异表达条带主要涉及信号转导和抗病防御,接种xopXccN的特异差异表达条带主要涉及光合作用,接种xopXccX2的特异表达差异条带主要涉及蛋白质合成、加工。比较KB09-12接种效应物与接种Xcc8004的基因差异表达发现:少部分差异条带同时出现在过敏反应和抗病反应中。
Black rot is a bacteria disease seriously influenced the production of cruciferous vegetable worldwide. In order to screen out the resistant radish germplasm and excellent disease resistance gene, three different methods were used to identify a set of radish germplasm, and DDRT-PCR and cDNA-AFLP were used to analyze the differentially expressed ESTs of five accessions of radish. The main results were as follows:
     1. Forty radish germplasm were inoculated with strain Xcc8004 and XccBJ of Xanthomonas campestris pv. campestris (Xcc) at seedling stage, respectively, and the fleshy root of eight germplasm among them were sliced and inoculated with strain Xcc8004. Twenty-seven accessions of them were inoculated with eight Agrobacterium with different effectors. The result indicated that radish germplasm resistant to black rot was significantly different. Three highly resistant accessions of radish germplasm to Xcc8004 were selected; one highly resistant accession of radish germplasm to XccBJ was selected. The resistance of radish seedlings to Xcc8004 was significantly correlated to the resistance to XccBJ; radish resistance of seedlings and fleshy roots to Xcc8004 was also significantly correlated. Access to reliable resources provides the basic materials for the radish resistance breeding and resistance mechanism in-depth study. Seventeen radish germplasm exhibited hypersensitive response (HR) to different effectors. HR extent of different germplasm to different effectors was different.
     2. cDNA-AFLP was employed to study the resistance mechanism of different radish germplasm to Xcc8004. Four resistant accessions of radish germplasm KB09-1, KB09-12, KB09-17, KB09-16 and one susceptible accession KB09-29 were used. 790 differentially expressed ESTs were obtained by 256 primers in all materials. 74 fragments were sequenced, and were divided into 8 categories according to their function. Genes related to signal transduction, protein metabolism, photosynthesis, defensive response and transport were differentially expressed in different accessions of radish germplasm. Gene differential expression of five accessions of radish germplasm against black rot disease was not identical.
     3. Highly resistant accession of radish germplasm ?KB09-12? was inoculated with effectors xopXccN and xopXccX2, respectively, and 153 differentially expressed ESTs were obtained by cDNA-AFLP. Twenty-five fragments were sequenced. Common ESTs from the inoculation of two effectors were mostly involved in signal transduction and defensive responses. Specific ESTs in radish inoculated with xopXccN were mostly involved in photosynthesis, while specific ESTs in radish inoculated with xopXccX2 were mostly involved in protein synthesis and processing. In comparison with differentially expressed ESTs in KB09-12 inoculated with effectors and Xcc8004, a few ESTs appeared in both hypersensitive response and disease resistance response.
引文
1.蔡新忠,徐幼平,郑重.植物病原物无毒基因及其功能.生物工程学报, 2002, 18(1): 5-9
    2.曹家树,叶纨芝,张明,等.白菜核雄性不育两用系花蕾的mRNA差别显示及其cDNA差异片段分析.浙江大学学报(农业与生命科学版), 2001, 27(6): 596-600
    3.陈娟,潘开文,辜彬.逆境胁迫下植物体内脱落酸的生理功能和作用机制.植物生理学通讯, 2006, 42(6): 1176-1182
    4.崔瑞峰,杜娟.甘蓝幼苗感染黑腐病后SOD、POD活性的变化.吉林农业科学, 2009, 34(5): 35-37
    5.单家林,郑学勤.利用mRNA差别显示技术分离红树植物许树耐盐相关cDNA.热带作物学报, 2005, 26(2): 34-38
    6.董继新,董海涛,何祖华,等.一个水稻与稻瘟病菌(Magnaporthe grisea)互作相关新基因的克隆.农业生物技术学报, 2001, 9(1): 41-44
    7.范家国.萝卜黑腐病的发生与防治.现代园艺, 2009, (12): 77
    8.范敏,金黎平,刘庆昌,等.马铃薯PPR蛋白家族基因SoDIPPR的克隆及其在干旱条件下的表达特征分析.中国农业科学, 2008, 41(8): 2249-2257
    9.范淑英,乐建刚,成广杰,等.用cDNA-AFLP技术构建白菜转录图谱.中国农业科学, 2008, 41(6): 1735-1741
    10.范芸,周晓燕,王幼平.脂质转移蛋白在植物抗病中的作用.分子植物育种(网络版), 2011, 9: 1245-1252
    11.方春媛,陈年来,任晓燕,等.水杨酸诱导的甜瓜DDRT-PCR分析及其基因差异表达片段的分离.甘肃农业大学学报, 2008, 43(2): 90-95
    12.龚静,朱玉英,吴晓光.甘蓝黑腐病抗性材料筛选及接种方法的研究.上海农业科技, 2001, (4): 87
    13.古瑜,毛英伟,赵前程,等.花椰菜(Brassica oleracea var. botrytis)抗黑腐病差异表达cDNA片段的克隆及功能的初步研究.南开大学学报(自然科学版), 2008, 41(4): 42-48
    14.古瑜,赵前程,刘松,等.花椰菜(Brassica oleracea var. botrytis)黑腐病抗性基因同源序列分离及克隆的研究.南开大学学报(自然科学版), 2007, 40(2): 62-66
    15.谷俊涛,鲍金香,王效颖,等.利用cDNA-AFLP技术分析小麦应答低磷胁迫的特异表达基因.作物学报, 2009, 35(9): 1597-1605
    16.江汉民,郝擘,于雪梅,等.花椰菜抗黑腐病消减cDNA文库的构建和分析.南开大学学报(自然科学版), 2010, 43(2): 15-22
    17.姜立杰,张开春,张晓明. cDNA-AFLP技术及其在基因表达研究中的应用.中国生物工程杂志, 2003, 23(12): 82-86
    18.孔秋生.萝卜种质资源遗传多样性和亲缘关系的研究. [硕士学位论文].武汉:华中农业大学, 2003
    19.李红双.萝卜对芜菁花叶病毒病和黑腐病抗性的遗传分析. [博士学位论文].北京:中国农业科学院, 2009
    20.李经略,赵晓明,李惠兰.甘蓝苗期黑腐病菌致病性分化研究.陕西农业科学, 1990, (3): 26-27
    21.李平,龙菊英,张燕,等.水稻黄单胞细菌的无毒基因.南京农业大学学报, 2004, 27(3): 119-124
    22.李巧云,尹钧,牛洪斌,等. Trxs基因对铝胁迫下转基因大麦幼苗叶片抗氧化酶的影响.山西大学学报(自然科学版), 2008, 31(1): 114-118
    23.李锡香,沈镝.萝卜种质资源描述规范和数据标准.北京:中国农业出版社, 2008
    24.李星,于秀梅,李亚宁,等.叶锈菌诱导的小麦叶片抑制差减杂交文库构建及其分析.中国农业科学, 2008, 41(12): 4069-4076
    25.李有志,唐纪良,马庆生.植物病原细菌无毒基因研究进展.广西农业大学学报, 1997, 16(3): 215-219
    26.李玉蓉,邹丽芳,武晓敏,等.水稻黄单胞菌avrBs3/PthA家族基因研究进展.中国农业科学, 2007, 40(10): 2193-2199
    27.刘红娟,刘洋,刘琳.脱落酸对植物抗逆性影响的研究进展.生物技术通报, 2008, (6): 7-9
    28.刘松,宋文芹,赵前程,等.与花椰菜(Brassica oleracea ssp. botrytis)抗黑腐病基因连锁的RAPD标记.南开大学学报(自然科学), 2002, 35(1): 126-128
    29.芦燕,张鲁刚,惠麦侠,等.陕西省大白菜主产区黑腐病菌致病型的研究.西北农林科技大学学报(自然科学版), 2008, 36(10): 132-138
    30.陆光涛,唐纪良,何勇强,等.野油菜黄单胞菌野油菜致病变种一个新的致病相关基因的克隆和鉴定.浙江大学学报(农业与生命科学版), 2003, 29(6): 591-598
    31.马月萍,戴思兰. mRNA差别显示技术及其在植物基因研究中的应用.北京林业大学学报, 2003, 25(2): 81-84
    32.毛国红,宋林霞,孙大业.植物钙调素结合蛋白研究进展.植物生理与分子生物学学报, 2004, 30(5): 481-488
    33.毛毅辉,李会勇,王天宇,等.玉米液泡ATP酶亚基A基因的克隆及表达分析.作物学报, 2008, 34(1): 31-36
    34.彭锐,雷建军.甘蓝抗黑腐病研究现状.西南园艺, 1998, (3): 29-32
    35.邱杨.小白菜耐盐性的遗传分析与耐盐相关基因的差异表达研究. [硕士学位论文].北京:中国农业科学院, 2004
    36.曲世松,张炎光,张玉勋,等.萝卜优异种质资源的鉴定与评价.黑龙江农业科学, 2002, (2): 16-18
    37.冉昆,马怀宇,杨洪强.植物细胞程序性死亡中的类胱天蛋白酶研究进展.西北植物学报, 2008, 28(12): 2564-2570
    38.万里红,周奕华,陈正华.植物防御系统中抗病相关基因的研究进展.遗传, 2002, 24(4): 486-492
    39.王康,徐慧妮,李昆志.植物ABC转运蛋白及其在Al胁迫下的功能研究进展.生物技术, 2010, 20(5): 89-92
    40.王昕,种康.植物小G蛋白功能的研究进展.植物学通报, 2005, 22(1): 1-10
    41.王育华,邹杰,陈信波.植物丝氨酸羧肽酶及其类蛋白的研究进展.生物学杂志, 2010, 27(6): 72-76
    42.王媛,杨红玉.植物的抗病性及其分子机制.安徽农学通报, 2006, 12(9): 47-50
    43.王振英,郑坚瑜.用mRNA差别显示方法分析黑麦盐胁迫下应答基因cDNA片段的表达特性.作物学报, 2001, 27(6): 851-856
    44.蔚丽珍,张鲁刚,贺少轩,等.大白菜幼苗叶片抗氧化酶系统对黑腐病菌入侵的反应.植物病理学报, 2010, 40(2): 122-128
    45.吴乃虎.基因工程原理(第二版).北京:科学出版社, 1998: 356-364
    46.吴晓丽,李建民,段留生,等.花椰菜幼苗叶片抗氧化酶系统与抗黑腐病关系的研究.植物病理学报, 2005, 35(6): 509-513
    47.吴晓丽,李巧云,解备涛,等.黑腐病菌对抗感不同花椰菜品种叶片超微结构的影响.作物杂志, 2010, (2): 11-14
    48.吴晓丽,田晓莉,王郁铨,等.花椰菜幼苗抗黑腐病的生理机制研究.西北植物学报, 2006, 26(3): 484-489
    49.肖崇刚,刘灼均,蔡岳松.甘蓝黑腐病菌细菌学研究.西南农业大学学报, 1996, 18(2): 162-164
    50.谢永梅,张成玲,赵永强,等.山东省大白菜黑腐病病原的鉴定及其生物学特性的研究.山东农业科学, 2007, (6): 68-70
    51.邢继红,翁巧云,董金皋.拟南芥抗灰霉病菌相关基因的差异表达分析.植物病理学报, 2006, 36(6): 562-565
    52.徐相波,邱登林,孙永堂,等. PPR基因家族的研究进展.遗传, 2006, 28(6): 726-730
    53.徐小万,曹必好,陈国菊,等. mRNA差别显示技术及其在植物逆境胁迫研究中的应用.种子, 2007, 26(11): 77-79
    54.徐作珽,李林,孙传宏,等.济南市郊区白菜黑腐病症状及其病原菌致病性测定.山东蔬菜, 1997, (4): 30-31
    55.薛勇.萝卜黑腐病的发生及防治.农业科技与信息, 2000, (11): 19
    56.闫桂平,马凤鸣,韩天富,等. mRNA差别显示技术在植物发育研究中的应用.植物学通报, 2001, 18(1): 52-57
    57.杨章民,王一理,司履生.磷脂酰肌醇-3激酶家族研究进展.国外医学分子生物学分册, 2003, 25(5): 285-289
    58.印莉萍,刘维仲,刘祥林,等.铁胁迫小麦根DDRT-PCR分析及ABC基因的表达差异.中国农业科学, 2001, 34(3): 301-303
    59.于秀梅,喻修道,屈志鹏,等.条锈菌诱导的小麦抑制差减杂交文库构建及其表达序列标签研究.植物病理学报, 2007, 37(1): 50-55
    60.袁峥嵘,柳小春,马海明,等.二脂酰甘油酰基转移酶2基因研究进展.遗传, 2008, 30(3): 289-294
    61.翟文慧,张涛涛,胡俊,等.大白菜黑腐病鉴定的湿度试验及其苗期与成株期抗性的相关分析.中国蔬菜, 2010, (10): 59-63
    62.翟文慧.我国十字花科蔬菜黑腐病菌生理小种的鉴定及优势种群分析. [硕士学位论文].包头:内蒙古农业大学, 2010
    63.张弛,陈受宜.利用DDRT-PCR技术分析在盐胁迫下水稻耐盐突变体中特异表达的基因.中国科学(B辑), 1995, 25(8): 840-847
    64.张峰,宋文芹,李凌,等.利用AFLP-银染法筛选与抗甘蓝黑腐病性状连锁的分子标记.南开大学学报(自然科学), 1999, 32(3): 177-181
    65.张凤兰.白菜对黑腐病抗性的室内鉴定方法及抗原筛选.北京农业科学, 1994, 12(4): 28-29
    66.张鹏,王飞,张列峰,等.丝氨酸内肽酶在黄瓜叶片衰老中的作用.植物生理与分子生物学学报, 2006, 32(5): 593-599
    67.张茵.植物三型信号分泌系统下的抗病基因防御机制.植物保护科学, 2007, 23(6): 504-507
    68.张玉勋,曲士松,黄宝勇,等.萝卜种质资源抗黑腐病鉴定.山东农业科学, 2000, (6): 33-34
    69.张玉勋,徐月军,张炎光,等.萝卜黑腐病菌致病性测定及苗期抗性鉴定方法的初步研究.山东农业科学, 1999, (2): 34-36
    70.赵玄之,萧浪涛.脱落酸受体及相关信号转导的研究进展.生物技术通报, 2007, (5): 58-61
    71.郑琼,马徐俊,杨传平.硫氧还蛋白的研究进展.分子植物育种, 2006, 4(6): 78-82
    72.朱妍,王超.利用SSH技术分离甘蓝抗黑腐病相关基因的研究.中国蔬菜, 2010, (10): 20-24
    73. Aufsatz W. and Grimm C.. A new, pathogen-inducible gene of Arabidopsis is expressed in an ecotype-specific manner. Plant Molecular Biology, 1994, 25: 229-239
    74. Aufsatz W., Amry D. and Grimm C.. The ECS1 gene of Arabidopsis encodes a plant cell wall-associated protein and is potentially linked to a locus influencing resistance to Xanthomonas campestris. Plant Molecular Biology, 1998, 38: 965-976
    75. Ayala M., Balint R. F., Fernandez de Cossio M. E., et al. New primer strategy improves precision of differential display. Biotechniques, 1995, 18(5): 842-845
    76. Bacbem C. W. B., Oomen R. J. F. J., and Visser R. G. F.. Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Molecular Biology Reporter, 1998, 16: 157-173
    77. Bachem C. W. B., Vander H. R. S., de Bruijn S. M., et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. The Plant Journal, 1996, 9(5): 745-753
    78. Bain D. C.. Resistance of cabbage to black rot. Phytopathology, 1955, 45: 35-37
    79. Bauer D., Müller H., Reich J., et al. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Research, 1993, 21(18): 4272-4280
    80. Bauer D., Warthoe P., Rohde M., et al. Detection and differential display of expressed genes by DDRT-PCR. Genome Research, 1994, 4: S97-S108
    81. Bertioli D. J., Schlichter U. H. A., Adams M. J., et al. An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Research, 1995, 23(21): 4520-4523
    82. Broin M. and Rey P.. Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress. Plant Physiology, 2003, 132(3): 1335-1343
    83. Buell C. R. and Somerville S. C.. Use of Arabidopsis recombinant inbred lines reveals a monogenic and a novel digenic resistance mechanism to Xanthomonas campestris pv. campestris. The Plant Journal, 1997, 12(1): 21-29
    84. Castaneda A., Reddy J. D., Yacoubi B. E., et al. Mutagenesis of all eight avr genes in Xanthomonas campestris pv. campestris had no detected effect on pathogenicity, but one avr gene affected race specificity. Molecular Plant-Microbe Interactions, 2005, 18 (12): 1306-1317
    85. Coffeen W. C. and Wolpert T. J.. Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. The Plant Cell, 2004, 16: 857-873
    86. da Silva A. C. R., Ferro J. A., Reinach F. C., et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 2002, 417: 459-465
    87. Dangl J. L. and Jones J. D. G.. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411(14): 826-833
    88. Daniels M. J., Barber C. E., Turner P. C., et al. Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFRI. The EMBO Journal, 1984, 3: 3323-3328
    89. Diatchenko L., Lau Y. F. C., Campbell A. P., et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences, 1996, 93: 6025-6030
    90. Dickson M. D. and Hunter J. E.. Inheritance of resistance of cabbage to black rot. Hortscience, 1987, 22(1): 23-28
    91. Donson J., Fang Y., Espiritu S. G., et al. Comprehensive gene expression analysis by transcript profiling. Plant Molecular Biology, 2002, 48: 75-97
    92. Eckardt N. A.. Aminotransferases confer“enzymatic resistance”to downy mildew in melon. Plant Cell, 2004, 16(1): 1-3
    93. Flor H. H.. Current status of the gene-for-gene concept. Annu. Rev. Phytopathology, 1971, 9: 275-296
    94. Gilman A. G.. G proteins: transducers of receptor-generated signals. Annual Review of Biochemisty, 1987, 56: 615-649
    95. Gisele A. M. T., Stephanie P., Fabienne C. M., et al. Identification of novel drought-related mRNAs in common bean roots by differential display RT-PCR. Plant Science, 2006, 171: 300-307
    96. Habu Y., Fukada T. S., Hisatomi Y., et al. Amplified restriction fragment length polymorphism-based mRNA fingerprinting using a single restriction enzyme that recognizes a 4-bp sequence. Biochemical and Biophysical Research Communications, 1997, 234: 516-521
    97. Hacker J. and Kaper J. B.. Pathogenicity islands and the evolution of microbes. Annual Review of Microbiology, 2000, 54: 641-679
    98. Hansen L. N. and Earle E. D.. Transfer of resistance to Xanthomonas campestris pv. campestris into Brassica oleracea L. by protoplast fusion. Theoretical and Applied Genetics, 1995, 91:1293-1300
    99. He Y. Q., Zhang L., Jiang B. L. et al. Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris. Genome Biology, 2007, 8(10): R218
    100. Henry S. A. and Patton-Vogt J. L.. Genetic regulation of phospholipid metabolism: yeast as a model eukaryote. Progress Nucleic Acids Research Molecular Biology, 1998, 61(2): 133-179
    101. Hulbert S. H., Webb C. A., Smith S. M., et al. Resistance gene complexes: evolution and utilization. Annual Review of Phytopathology, 2001, 39: 285-312
    102. Hutcheson S. W.. Current concepts of active defense in plants. Annual Review of Phytopathology, 1998, 36: 59-90
    103. Hwang C. F., Bhakta A. V., Truesdell G. M., et al. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell, 2000, 12: 1319-1329
    104. Ignatov A., Kuginuki Y. and Hida K.. Race-specific reaction of resistance to black rot in Brassica oleracea. European Journal of Plant Pathology, 1998, 104: 821-827
    105. Jamwal R. S. and Sharma P. P.. Inheritance of resistance to black rot (Xanthomonas campestris pv. campestris) in cauliflower (Brassica oleracea var. botrytis). Euphytica, 1986, 35: 941-943
    106. Jia Y. L., McAdams S. A., Bryan G. T., et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 2000, 19(15): 4004-4014
    107. Jiang B. L., He Y. Q., Cen W. J., et al. The type III secretion effector xopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Research in Microbiology, 2008, 159: 216-220
    108. Jiang H. M., Song W. Q., Li A., et al. Identification of genes differentially expressed in cauliflower associated with resistance to Xanthomonas campestris pv. campestris. Molecular Biology Reports, 2010, 38(1): 621-629
    109. Joao P. F., Franco M. L. and Jo?o R. O. N.. Cloning and characterization of transcripts differentially expressed in the pulp of ripening papaya. Scientia Horticulturae, 2009, 121: 159-165
    110. Jones J. D. G. and Dangl J. L.. The plant immune system. Nature, 2006, 444: 323-329
    111. Kamoun S., Kamdar H. V., Tola E., et al. Incompatible interactions between crucifers and Xanthomonas campestris involve a vascular hypersensitive response: role of the hrpX locus. Molecular Plant-Microbe Interactions, 1992, 5: 22-23
    112. Keen N. T.. Gene-for-gene complementarity in plant-pathogen interactions. Annual Review of Genetics, 1990, 24: 447-463
    113. Kuhn E.. From library screening to microaaray technology: strategies to determine gene expression profiles and to identify differentially regulated genes in plants. Annuals of Botany, 2001, 87: 139-155
    114. Leach J. E. and White F. F.. Bacterial avirulence genes. Annual Review of Phytopathology, 1996,34: 153-179
    115. Liang P. and Pardee A. B.. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257: 967-971
    116. Liang P., Zhu W. M., Zhang X. Y., et al. Differential display using one-base anchored oligo-dT primers. Nucleic Acids Research, 1994, 22(25): 5763-5764
    117. Liu J. L., Liu X. L., Dai L. Y., et al. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. Journal of Genetics and Genomics, 2007, 34 (9): 765-776
    118. Lohmann J., Schickle H., Bosch T. C., et al. Display a rapid and efficient method for nonradioactive differential display and mRNA isolation. Biotechniques, 1995, 18(2): 200-202
    119. Maldonado A. M., Doerner P., Dixon R. A., et al. A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature, 2002, 419(6905): 399-403
    120. Meyer D., Lauber E., Rob Y. D., et al. Optimization of pathogenicity assays to study the Arabidopsis thaliana-Xanthomonas campestris pv. campestris pathosystem. Molecular Plant Pathology, 2005, 6(3): 327-333
    121. Mokryakova M. V., Abdeeva I. A., Piruzyan E. S., et al. Diversity of effector genes in plant pathogenic bacteria of genus Xanthomonas. Microbiology, 2010, 79 (1): 58-65
    122. Opalski K. S., Schultheiss H., Kogel K. H., et al. The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulates actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f. sp. hordei. Plant Journal, 2005, 41(2): 291-303
    123. Qian W., Jia Y. T., Ren S. X., et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Research, 2005, 15: 757-767
    124. Sharma B. R., Swarup V. and Chatterjee S. S.. Inheritance of resistance to black rot in cauliflower. Canadian Journal of Genetics and Cytology, 1972, 14: 363-370
    125. Smith T. F., Gaitatzes C., Saxena K., et al. The WD repeat: a common architecture for diverse functions. Trends in Biochemical Sciences, 1999, 24(5): 181-185
    126. Soengas P., Hand P., Vicente J. G., et al. Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theoretical and Applied Genetics, 2007, 114: 637-645
    127. Taylor J. D., Conway J., Robert S. J., et al. Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica Genomes. Phytopathology, 2002, 92(1): 105-111
    128. Tewari R. N., Chatterjee S. S. and Swarup V.. Inheritance of resistance to black rot in cabbage. Vegetable Science, 1979, 6: 27-36
    129. Tonguc M. and Griffiths P. D.. Development of black rot resistant interspecific hybrids between Brassica oleracea L. cultivars and Brassica accession A19182, using embryo rescue. Euphytica, 2004, 136: 313-318
    130. Tonguc M., Earle E. D. and Griffiths P. D.. Segregation distortion of Brassica carinata derivedblack rot resistance in Brassica oleracea. Euphytica, 2003, 134: 269-276
    131. Traut T. W.. The function and consensus motifs of nine types of peptide segments that form different types of nucleiotide-binding sites. European Journal of Biochemistry, 1994, 222: 9-19
    132. Vicente J. G., Conway J., Roberts S. J., et al. Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology, 2001, 91(5): 492-499
    133. Vicente J. G., Ignatov A., Conway J., et al. Development of an improved Brassica differential series for the identification of races of Xanthomonas campestris pv. campestris. Int. Cong. Plant Pathology, 7th, 1998: 2.2.71
    134. Wang X. J., Liu W., Chen X. M., et al. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biology, 2010, 10: 9
    135. Wang X. J., Tang C. L., Zhang G., et al. cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici. BMC Genomics, 2009, 10: 289
    136. White F. F., Yang B. and Johnson L. B.. Prospects for understanding avirulence gene function. Current Opinion in Plant Biology, 2000, 3: 291-298
    137. Williams P. H., Staub T. and Sutton J. C.. Inheritance of resistance in cabbage to black rot. Phytopathology, 1972, 62: 247-252
    138. Williams P. H.. Black rot: a continuing threat to world crucifers. Plant Disease, 1980, 64: 736-742
    139. Wulff E. G., Mguni C. M., Mortensen C. N., et al. Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. European Journal of Plant Pathology, 2002, 108: 317-325
    140. Xu R. Q., Blanvillain S., Feng J. X., et al. AvrACXcc8004, a type III effector with a leucine-rich repeat domain from Xanthomonas campestris pathovar campestris confers avirulence in vascular tissue of Arabidopsis thaliana ecotype Col-0. Journal of Bacteriology, 2008, 190(1): 343-355
    141. Xu R. Q., Li X. Z., Wei H. Y., et al. Regulation of eight avr genes by hrpG and hrpX in Xanthomonas campestris pv. campestris and their role in pathogenicity. Progress in Natural Science, 2006, 16(12): 1288-1294
    142. Xu Y. W., Tao X., Shen B. H., et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature, 2000, 408: 111-115
    143. Yin J., Wang G. J., Xiao J. L., et al. Identification of genes involved in stem rust resistance from wheat mutant D51 with the cDNA-AFLP technique. Molecular Biology Reports, 2010, 37: 1111-1117

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700