小麦缺磷特异响应基因TaIPS的克隆和分子特征及磷高效和磷低效品种之间的表达比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IPS(induced by Pi starvation)是植物对缺磷反应非常敏感和特异的一类非编码蛋白基因,克隆小麦的IPS基因有助于了解小麦高效利用土壤磷元素的分子机理和实现小麦磷营养状况的分子诊断,本研究通过大麦(Hordeum vulgare)与小麦(Triticum aestivum L.)的比较基因组学策略克隆了5个小麦IPS基因,其中3个为TaIPS1基因(TaIPS1.1, TaIPS1.2 and TaIPS1.3),2个为TaIPS2基因(TaIPS2.1 and TaIPS2.2)。用半定量RT-PCR方法分别对TaIPS的缺磷诱导特性和缺氮或/和缺磷反应进行了研究,并结合分根实验分析了TaIPS基因表达的信号控制,还比较了两个不同小麦品种TaIPS1基因的表达情况和品种间的磷效率差异,最后利用中国春缺失系对小麦TaIPS1基因进行了染色体物理定位。实验结果如下:
     小麦TaIPS1基因具有22个非常保守的核苷酸,没有内含子,编码框很小,属于典型的TPSI1/MT4基因家族,该基因的表达受缺磷特异诱导,不受钾、铁、镁等其它营养元素的影响。TaIPS1基因对缺磷反应强烈并被缺氮所抑制,TaIPS2基因对缺磷反应较弱但不受缺氮影响。小麦TaIPS基因在根系中的缺磷诱导作用比地上部强烈,但地上部亦存在缺磷响应较强的TaIPS1.1基因,在小麦幼苗出现缺磷症状之前就可以明显检测到TaIPS1.1基因的诱导。TaIPS1.1/2和TaIPS1.3基因的表达模式不同,TaIPS1.3在小麦根系属于缺磷诱导性表达而到了叶片则成为组成性表达。TaIPS1基因的表达主要是受局部缺磷信号的控制而非植株系统信号所控制,局部根系磷含量越低TaIPS1表达量越高。
     与“京411”相比“小偃54”是一个磷高效基因型,在低磷环境下“小偃54”比“京411”表现出较高的根系磷利用效率、根系干物重、分蘖数和和较低的叶片花青素含量。基因TaIPS1.1和TaIPS1.2在“小偃54”的根系和叶片中不论是高磷环境还是低磷环境均表达,而在“京411”中只是低磷环境下表达,而且同一供磷水平下TaIPS1.1和TaIPS1.2基因在磷高效小麦品种“小偃54”中的表达量总是高于磷低效小麦品种“京411”,但TaIPS1.3基因在两个品种之间没有明显差异。“中国春”缺失系的基因定位结果显示,三个TaIPS1基因全部位于小麦第4号染色体的长臂末端。
     小麦TaIPS基因对缺磷反应的专一性、敏感性及在不同磷效率小麦当中的不同表达调控模式,能够为磷高效小麦种质资源的筛选、小麦磷营养的遗传改良、新品种培育及小麦磷营养高效利用的分子机理研究提供有用的线索和帮助。
IPSs (induced by Pi starvation)are non-protein coding genes, which respond rapidly and specifically to phosphorous (P) deficiency. Analysis of IPS genes of wheat (Triticum aestivum L.) will enhance the understanding of the genetic response to P starvation and the developing of molecular diagnosis of P deficiency in wheat. In this study, through comparative genomics strategy between wheat and barley(Hordeum vulgare), three TaIPS1 genes (TaIPS1.1, TaIPS1.2 and TaIPS1.3) and two TaIPS2 genes (TaIPS2.1 and TaIPS2.2) were cloned in wheat. The genes specific character on P deficiency, and interaction of N with P were specially studed using RT-PCR. The signal regulation of TaIPS1 genes were analysized also by divided-roots experiment. Besids, phosphate efficiency and the expression of TaIPS1s were compared in two wheats, and the genes were finally physically located on the chromosomes of wheat“Chinese Spring”. The results are as follows:
     P deficiency but not any other elements, is strongly increased the expressions of TaIPS1 genes in roots, while it is moderately increased the expressions of two TaIPS2 genes in roots and TaIPS1.1 in shoots, and is slightly increased the expressions of TaIPS1.2 and the two TaIPS2 genes in shoots. N deficiency completely repressed the responses of the three TaIPS1 genes to P deficiency in both roots and shoots, but had no significant influence on the expressions of the two TaIPS2 genes, suggesting that responses of some TaIPS genes to P deficiency depends on N status in wheat plants. It is interesting that TaIPS1.3 was induced by P deficiency in roots, but unexpectedly became compositive expression in lesves or shoot. Divided root experiment showed that TaIPS1 were mainly regulated by local signal instead of systemic signal of plant. The lower local Pi concentration is, the stronger expression of TaIPS1 is.
     “Xiaoyan54”is a high-afficient phosphate genotype wheat, while“Jing411”is a low-afficient phosphate genotype wheat.“Xiaoyan54”displayed higher phosphate efficiency
引文
[1] 潘瑞炽,董愚得.植物生理学(第三版).高等教育出版社,1995,pp:32.
    [2] 吴平,印莉萍,张立平 等.植物营养分子生物学.科学出版社,2001,pp:103-105.
    [3] Lopez-Bucio J,de La Vega OM,Guevara-Garcia A et al. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat Biotech,2000,18(4):450-453.
    [4] Raghothama KG. Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol,1999,50: 665-693.
    [5] Lynch JP. Root architecture and plant productivity. Plant Physiol,1995,109:7-13.
    [6] 张福锁.植物营养生态生理学和遗传学. 北京农业大学出版社,1993.
    [7] 张福锁,林翠兰.植物磷营养基因型差异的机理.土壤与植物营养研究新动态.北京农业大学出版社,1992.
    [8] Gahoonia TS,Nielsen NE. Variation in acquisition of soil phosphorus by wheat and barely genotypes.Plant Soil,1996,178:223-230.
    [9] Li JY,Li ZS,Liu XD et al. Technique of wheat breeding for efficiently utilizing soil nutreint elements. Science in China (Series B),1995,38:1313-1320.
    [10]刘建中.不同生产发展阶段普通小麦品种与小麦-黑麦附加系有效利用土壤磷特性鉴定与遗传分析.中国科学院遗传研究所博士论文.1995.
    [11]李 玉 京 , 李 滨 , 李 继 云 , 李 振 声 . 植 物 有 效 利 用 土 壤 磷 特 性 的 遗 传 学 研 究 进 展 . 遗传,1998,20(3):38-41.
    [12]于福同.水稻缺磷胁迫应答基因的研究.中国农业大学博士学位论文,2000,pp:3-10
    [13]Richardson AE. Soil microorganisms and phosphorus availability. Soil Biology and Biochemistry,1994,50-62.
    [14]刘建中,李振声,李继云.利用植物自身潜力提高土壤中磷的生物有效性.生态农业研究,1994,2(1):16-22
    [15]聂 艳 丽 , 郑 毅 , 林 克 惠 . 根 分 泌 物 对 土 壤 中 磷 活 化 的 影 响 . 云 南 农 业 大 学 学报,2002,17(3):281-286
    [16]Barber SA,Walker JM,Vasey EH. Mechanisms for the movement of plant nutrients from the soil and fertilizer to the plant root. J Agric Food Chem,1963,11:204-207.
    [17]Runge-Metzger A. Closing the cycle: obstacles to efficient P management for improved global security.In: Tiessen H, ed. Phosphorus in the global environment: transfers, cycles and management.New York:John Wiley & Sons,1995,pp:27-42.
    [18]Von Uexkuèll HR,Mutert E. Global extent, development and economic impact of acid soils. Plant and Soil,1995,171:1-15.
    [19]Schachtman DP,Reid RJ, Ayling SL. Phosphorus uptake by plants: from soil to cells. Plant Physiology,1998,116:447-453.
    [20]苏俊英.普通小麦中控制磷效率相关性状的 QTL 定位.中科院遗传与发育所博士学位论文,2005.
    [21]Gahoonia TS,Nielsen NE. Direct evidence of participation of root hairs in phosphorus (32P) uptake from soil. Plant Soil,1998,198:147-152.
    [22]Anghinoni I,Barber SA. Phosphorus influx and growth characteristics of corn roots asinfluenced by phosphorus supply. Agron J,1980,72:685-688.
    [23]Gardner WK,Boundy KA. The acquisition of phosphorus by Lupinus albus L.IV.The effect of interplanting wheat and white lupin on the growth and mineral composition of the two species. Plant Soil,1983,70:391-402.
    [24]Skene KR. Cluster roots: some ecological considerations. J.Ecol,1998,86:1060-1064.
    [25]Watt M and Evans JR. Proteoid roots physiology and development. Plant Physiol,1999,121: 317-323.
    [26]Gardner WK, Parbery DG and Barber DA. Proteoid root morphology and function in Lupinus albus. Plant Soil,1981,60:143-147.
    [27]梁瑞霞,春俭,宋建兰. 6-BA 对缺磷白羽扇豆排根形成和有机酸分泌的影响.植物生理与分子生物学学报,2004,30(6):619-624.
    [28]Wightman F,Schneider EA,Thimann KV.Hormonal factors controlling the initiation and development of lateral roots.II. Effects of exogenous growth factors on lateral root formation in pea roots.Physiol Plant,1980,49:304-314.
    [29]Torrey JG. Endogenous and exogenous influences in the regulation of lateral root formation. In:Jackson MB(ed).New Root Formation in Plants and Cuttings. Dordrecht: Martinus Nijhoff,1986.
    [30]Gilbert GA,Knight JD,Vance CP, Allan DL. Proteoid root development of phosphorus-deficient lupin is mimicked by auxin and phosphonate. Ann Bot,2000,85:921-928.
    [31]Neumann G, Massonneau A, Langlade N,etal. Martinoia E. Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Ann Bot,2000,85:909-919.
    [32]Skene KR,James WM. A comparison of the effects of auxin on cluster root initiation and development in Grecillea robusta Cunn.ex R.Br.(Proteaceae) and in the genus Lupinus (Leguminosae).Plant Soil,2000,219:221-229.
    [33]Werner T,Motyka V,Strnad M,Schmuelling T.Regulation of plant growth by cytokinin.Proc Natl Acad Sci USA,2001,98:10487-10492.
    [34]Margarete Muller and Wolfgang Schmidt.Environmentally induced plasticity of root hair development in arabidopsis. Plant Physiology,2004,134:409-419.
    [35]Koide R and Schreiner R. Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol,1992,43:557-581.
    [36]Marschner H and Dell B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil,1994,159: 89-102.
    [37]Smith SE,Gianinazzi-Pearson V,Koide R,Cairney JWG. Nutrient transport in mycorrhizae: structure,physiology,and consequences for efficiency of the symbiosis.Plant and Soil, 1994,159:103-113.
    [38]Sanders F and Tinker P. Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature,1971,233:278-279.
    [39]Smith S, Gianinazzi-Pearson V. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants.Annu.Rev.Plant.Physiol.Plant MolBiol,1988,39: 221-244.
    [40]Pearson J,Jakobsen I.The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytol,1993,124:489-494.
    [41]Newsham K, Fitter A, AR W. Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol,1995,83:991-1000.
    [42]Merryweather J and Fitter A. Arbuscular mycorrhiza and phosphorus as controlling factors in the life history of Hyacinthoides non-scripta (L.) Chouard ex Rothm. New Phytol,1995,129: 629-636.
    [43]Smith SE and Read DJ. Mycorrhizal symbiosis, 2nd edn. San Diego,CA, USA: Academic Press, 1997.
    [44]Abbott L. Comparative anatomy of vesicular-arbuscular mycorrhizas formed on subterranean clover. Aust J Bot,1982,30:485-499.
    [45]Bethlenfalvay G. Mycorrhizae and crop productivity. In: Bethenfalvay G, Linderman R (eds) Mycorrhizae in sustainable agriculture, American society of agronomy:1992,pp:1-27.
    [46]Olsen SR.Flowerday AD.Fertilizer phosphorus interactions in alkaline soil(A).In:Olsen RA,Army TT,Hanway TT,et al eds. Fertilizer technology and use(C).Soil Sci Soc Am Inc.Medison,Wis,1971,pp153-185.
    [47]Gardner WK and Boundy KA. The acquisition of phosphorus by Lupinus albus L. IV. The effect of interplanting wheat and white lupin on the growth and mineral composition of the two species. Plant Soil,1983,70:391-402.
    [48]Dinkelarker B, R?mheld V and Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ, 1989,12:285-292.
    [49]Goldstein A H,Baertlein D A.McDaniel R G.Phosphate starvation inducible metablism in L.Esculeutum I.The excreted phosphate starvation inducible Apase of tomato.Plant Physio1,1988,87:7l6-720.
    [50]Tadano T,Sakai H.Secretion of axid phosphatase by the roots of several crop species under phosphorus-deficient conditions.Soil Sci Plant Nutr,1991,37:129-140.
    [51]Tarfdar J C,Junk A.Phosphatase activity in the rhisoshere and its relation to the depletion of soil organic phosphorus.Bio Fertil Siols,1987,3:1l99-l204.
    [52]James E S,Russel L W,Mtrick A J. Phosphate stress response in hydroponiclly growth maize.Plant Soil,1991,132:85-90.
    [53]Elliott S, Chang C W, Schweingruber M E, Schaller J, Rickli EE, Carbon J. Isolation and characterization of the structural gene for secreted acid phosphatase from Schizosaccharomyces pombe.J Biol Chem,1986,261(6):2936-2941.
    [54]张恩和,黄高宝,黄鹏 等.不同供磷水平对小麦/大豆根系分布、根际效应的影响.草业学报,1999,8(3):35-38.
    [55]张恩和.供磷水平对间套作物根系酸性磷酸酶活性的影响.西北植物学报,2001,21(1):53-58.
    [56]Wasaki J, Ando M, Ozawa K,et al. Properties of secretory acid phosphatase from lupinroots under phosphorus-deficient conditions. Soil Sci. Plant Nutr,1997,43:981-986.
    [57]Wasaki J, Omura M, Osaki M,et al.Structure of a cDNA for an acid phosphatase from phosphate-deficient lupin (Lupinus albus L.) roots. Soil Sci Plant Nutr,1999a,45:439-449.
    [58]Wasaki J, Omura M, Ando M, et al. Molecular cloning and root specific expression of secretory acid phosphatase from phosphate deficient lupin (Lupinus albus L.). Soil Sci Plant Nutr, 2000,46:427-437.
    [59]Jun Wasaki , Takuya Yamamura, Takuro Shinano and Mitsuru Osaki. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency.Plant and Soil.,2003,248:129-136.
    [60]Tadano T and Komatsu K. Utilization of organic phosphorus in soil by plant roots. Proc Trans 15th World Congr Soil Sci,1994,9:521-522.
    [61]Ozawa K, Osaki M, Matsui H et al. Purification and properties of acid phosphatase secreted from lupin roots under phosphorus-deficiency conditions. Soil Sci Plant Nutr,1995,41:461-469.
    [62]Liu J, Samac D A, Bucciarelli B,et al. Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport.Plant J, 2005,41(2):257-68.
    [63]James C. Baldwin, Athikkattuvalasu S. Karthikeyan, and Kashchandra G. Raghothama. LEPS2, a Phosphorus Starvation-Induced Novel Acid Phosphatase from Tomato. Plant Physiology,2001,125:728-737.
    [64]Juan Carlos del Pozo, Isabel Allona, Vicente Rubio,Antonio Leyva, et al. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. The Plant Journal,1999,19(5):579-589.
    [65]Tasaki Y, Azwan A, Yazaki J,et al. Structure and expression of two genes encoding secreted acid phosphatases under phosphate-deficient conditions in Pholiota nameko strain N2. Curr Genet,2006,2:1-10.
    [66]Lim J H, Chung I M, Ryu S S, et al. Differential responses of rice acid phosphatase activities and isoforms to phosphorus deprivation.J Biochem Mol Biol, 2003,36(6):597-602.
    [67]孙海国,张福锁. 缺磷条件下的小麦根系酸性磷酸酶活性研究.应用生态学报,2002,13(3):379-381
    [68]Hoffland E,Findenegg G R,Nelemans J A.Solubilization of rock phosphate by rape II.Local exudation of organic acids as a response to P-starvation. Plant and Soil,l989,113:161- l65.
    [69]Jungk A,Sealing B,Gerke J .Mobilization of different phosphate fraction in the rhizosphere,In:Barrow N J ed. Plant nutrition from genetic engineering to field practice.Dordrecht:Kluwer Academic Publishers,1993,95-98.
    [70]刘国栋,肖世和.植物营养与作物育种.作物杂志,2000,(3):4-7
    [71]Wissuwa M and Ae N. Genotypic variation for phosphorus uptake from hardly solubleiron-phosphate in groundnut (Arachis hypogaea L.). Plant and Soil,1999,206:163-171.
    [72]Bruetsh F F and Estes G O. Genetic Variation in nutrient uptake efficiency in corn. Agronomy Journal,1976,68: 521-523.
    [73]刘向生,陈范骏,春亮 等.玉米自交系耐低磷胁迫的基因型差异.玉米科学,2003,11(3):23-27
    [74]Clark RB and Brown JC. Plant response to mineral element toxicity and deficiency, In: Breeding plants for less favorable environment. New York: John Wiley and Sons,1982.
    [75]Wissuwa M, and Ae N. Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breeding,2001,120: 43.
    [76]Wissuwa M and Ae N. Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant and Soil,2001b,237:275–286.
    [77]Wissuwa M, Wegner J, Ae N, and Yano M. Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet, 2002,105:890–897.
    [78]Wissuwa M, Yano M, and Ae N. Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet,1998,97:777–783.
    [79]Mego A, Saric MR and Loughman (Eds) BC. Difference in phosphate absorption in various barley genotypes. Genetic Aspects of Plant Mineral Nutrition,1983,pp:129-131.
    [80]Fohse D, Classen N, and Jung KA. Phosphorus efficiency of plants I. External and internal P requirement and P uptake efficiency of different plant species. Plant and Soil,1988,110:101-109.
    [81]丁洪,郭庆元.大豆品种磷素积累和利用效率的基因型差异.中国油料,1997,19(4):52-54.
    [82]刘慧,刘景福.不同磷营养油菜品种根系形态及生理特性差异研究.植物营养与肥料学报,1999,5(1):4O-45.
    [83]王庆仁,李继云.不同基因型小麦磷素营养阀值的研究.西北植物学报,1999,19(3):363- 37O.
    [84]Toshiaki Tadano,Hiroshi Sakai.Secretion of acid phopsphatase by the roots of several crop species under phosphorus-deficient conditions.Sail Sei Plant Nutr,1991,37(1):129-140.
    [85]魏志强, 史衍玺 , 孔凡美. 缺磷胁迫对花生磷酸酶活性的影响. 中国油料作物学报,2002,24(3):44-46.
    [86]Raghothama,K G. Phosphate acquisition. Annu Rev Plant Physiol,1999,50:665-693.
    [87]Rausch C and Bucher M. Molecular mechanisms of phosphate transport in plants. Planta, 2002,216:23-37.
    [88]Ticconi CA and Abel S. Short on phosphate: Plant surveillance and countermeasures. Trends Plant Sci, 2004,9:548–555.
    [89]Umesh S. Muchhal, Jose M. Pardo and K. G. Raghothama. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci,1996,93:10519-10523.
    [90]Uthappa T. Mukatira, Chunming Liu, Deepa K. Varadarajan, and Kashchandra G. Raghothama.Negative regulation of phosphate starvation-induced genes. Plant Physiology, 2001,127(4):1854-1862.
    [91]Bun-ya M, Nishimura M, Harashima S & Oshima Y. Mol Cell Biol.1991,11:3229-3238.
    [92]Versaw WK. A phosphate-repressible, high-affinity phosphate permease is encoded by the pho-5 gene of Neurospora crassa.Gene,1995,153:135-139.
    [93]Harrison MJ, Van Buuren ML. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature,1995,378:626-629.
    [94]Karthikeyan AS, Varadarajan DK, Mukatira UT,et al. Regulated expression of Arabidopsis phosphate transporters.Plant Physiology,2002,130:221-233.
    [95]Mitsukawa N,Okumura S,Shirano Y,et al.Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Natl Acad Sci USA. 1997,94(13):7098-7102.
    [96]Okumura S, Mitsukawa N, Shirano Y, Shibata D. Phosphate transporter gene family of Arabidopsis thaliana. DNA Res.1998,5(5):261-269.
    [97]Daram P, Brunner S, Rausch C,et al. Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis.Plant Cell,1999,11(11): 2153-2166.
    [98]Versaw WK, Harrison MJ. A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. The Plant Cell, 2002,14(8),1751-1766.
    [99]Rausch C, Zimmermann P, Amrhein N, Bucher M. Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2;1 in auto- and heterotrophic tissues in potato and Arabidopsis. The Plant Journal. 2004, 39(1): 13-28.
    [100]Lejay L, Gansel X, Cerezo M,et al. Regulation of root ion transporters by photosynthesis: Functional importance and relation with hexokinase. Plant Cell,2003,15:2218–2232.
    [101]Franco-Zorrilla J M, Martin A C, Leyva A, and Paz-Ares J. Interaction between phosphate-starvation, sugar and cytokinin signalling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol.2005,138:847-857.
    [102]Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J. PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. The Plant Cell,2005,17:3500-3512.
    [103]Mudge SR, Rae AL, Diatloff E and Smith FW. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J, 2002,31:341-353.
    [104]Shin H, Shin HS, Dewbre GR and Harrison MJ. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J, 2004,39: 629-642.
    [105]Goff SA, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002,296:92–100.
    [106]Chiou TJ, Liu H and Harrison MJ. The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface.Plant J.2001,25,281–293.
    [107]Rausch C and Bucher M. Molecular mechanisms of phosphate transport in plants. Planta,2002,216:23-37.
    [108]P. H. D. Schuènmann, A. E. Richardson, F. W. Smith and E. Delhaize. Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). Journal of Experimental Botany, 2004,55(398):855-865.
    [109]Muchhal US, Pardo JM, Raghothama KG. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci.1996,93:10519-10523.
    [110]Smith FW, Ealing PM, Dong B and Delhaize E. The cloning of two Arabidopsis genes belonging to a phosphate transporter family. The Plant Journal,1997,11(1):83-92.
    [111]Furihata T,Suzuki M and Sakurai H. Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts. Plant Cell Physiol,1992,33:1151-1157.
    [112]Paszkowski U, Kroken S, Roux C, and Briggs SP. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Prc. Natl Acad Sci USA, 2002,20:13324-13329.
    [113]Daram P, Brunner S, Persson B L., Amrhein L and Bucher M. Functional analysis and cell specific expression of a phosphate transporter from tomato. Planta,1998,206:225-233.
    [114]Leggewie G, Willmitzer L and Riesmeier J W. Two cDNAs from potato are able to compliment a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants. Plant Cell,1997,9:381-392.
    [115]Rausch C, Daram P, Brunner S, et al.A phosphate transporter expressed in arbuscule-containing cells in potato. Nature,2001,414:462-466.
    [116]Kai M, Masuda Y, Kikuchi Y, Osaki M and Tadano T. Isolation and characterization of a cDNA from Catharanthus roseus which is highly homologous with phosphate transporter. Soil Sci Plant Nutr,1997,43:227-235.
    [117]T G E. DAVIES, J YING, Q XU, Z S LI, J LI& R GORDON-WEEKS. Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats. Plant, Cell and Environment 2002,25,1325-1339.
    [118]曾雅娟,英加,刘建中 等.小麦吸收土壤磷转运子在酵母突变体中的功能互补分析. 遗传学报,2002,29(11):1017-1020.
    [119]Bariola PA , Howard CJ , Taylor CB , Verburg MT , Jaglan VD , Green PJ. The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant J,1994,6(5):673-685.
    [120]Li DP, Zhu HF, Liu KF,et al. Purple acid phosphatases of Arabidopsis thaliana: comparative analysis and differential regulation by phosphate deprivation. Journal of Biological Chemistry,2002,277:27772-27781.
    [121]Yuki Nakamura, Koichiro Awai, Tatsuru Masuda,et al. A Novel Phosphatidylcholine-hydrolyzing Phospholipase C Induced by Phosphate Starvation in Arabidopsis. The Journal of Biological Chemistry, 2005,280(9):7469–7476.
    [122]Horgan JM. and Wareing PF. Cytokinins and the growth responses of seedlings of Betula pendula Roth. & Acer pseudoplatanus L. to nitrogen and phosphorus deciency. J Exp Bot, 1980,31:525-532.
    [123]Wagner BM and Beck E. Cytokinins in the perennial herb Urtica dioica L. as influenced by its nitrogen status. Planta,1993,190: 511-518.
    [124]Abel S and Glund K. Localisation of RNA-degrading enzyme activity within vacuoles of cultured tomato cells. Physiol Plant,1986,66:79-86.
    [125]Nurnberger T,Abel S,Jost W,Glund K.Induction of all extracellular ribonuclease in cultured tomato cells upon phosphate starvation.The Plant Journal,1990,92:970-976.
    [126]Jost W, Bak H, Glund K, Terpstra P, Beintema JJ. Amino acid sequence of an extracellular, phosphate-starvation-induced ribonuclease from cultured tomato (Lycopersicon esculentum) cells. Eur J Biochem,1991,198(1):1-6.
    [127]Tayloe C B,Green P J.Genes with homology to fungal and S-gene RNases are expressed in Arabldopsis thaliana.Plant Physiol,1991,96:980-984.
    [128]Taylor CB, Bariola PA, delCardayre SB, Raines RT, Green PJ. RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proc Natl Acad Sci USA, 1993, 90(11):5118-5122.
    [129]Anderson MA, Cornish EC, Mau S-L,et al.Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature,1986,321: 38-44.
    [130]Shimizu T , Inoue T , Shiraishi H . A seneacence-agsociated S-like RNage in the multicellular green alga Volvox carteri. Gene,2001,274:227-235.
    [131]Blank A,MeKeon T A.Three RNases in senescent and nonsenescent wheat leaves .Plant Physiol,199l,97:1402-l408.
    [132]Kock M, Loffler A, Abel S, Glund K. cDNA structure and regulatory properties of a family of starvation-induced ribonucleases from tomato.Plant Mol Biol,1995,27(3):477-485.
    [133]Dodds PN, Clarke AE, Newbigin E. Molecular characterisation of an S-like RNase of Nicotiana alata that is induced by phosphate starvation.Plant Mol Biol,1996,31(2):227-238.
    [134]Bariola PA, MacIntosh GC, Green PJ. Regulation of S-like ribonuclease levels in Arabidopsis. Antisense inhibition of RNS1 or RNS2 elevates anthocyanin accumulation.Plant Physiol,1999,119(1):331-342.
    [135]李玉京,李滨,李继云 等.低磷营养胁迫条件下小麦RNA酶与酸性磷酸酶活性的变化.西北植物学报,1997,17(4):417-425.
    [136]CHANG Sheng-He ,YING Jia,ZHANG Ji-Jun,et al.Expression of a Wheat S-like RNase (WRN1) cDNA During Natural-and Dark-induced Senescence. Acta Agronomica Sinica,2003,45(9):1071-1075
    [137]CHANG Sheng-He ,SHU Hai-Yan ,TONG Yi-Ping ,et al.Expressions of three wheat S-like RNase genes were diferentially regulated by phosphate starvation. Acta Agronomica Sinica, 2005,31(9):1115-1119.
    [138]Poirier Y, Thoma S, Somerville C, Schiefelbein J. Mutant of Arabidopsis Deficient in Xylem Loading of Phosphate.Plant Physiol.1991,97(3):1087-1093.
    [139]Delhaize E, Randall PJ. Characterization of a phosphate accumulator mutant of Arabidopsis thaliana. Plant Physiol,1995,107:207–213.
    [140]Hamburger D, Rezzonico E, MacDonald-Comber Petetot J, et al. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem.Plant Cell,2002,14(4):889-902.
    [141]Wang Y, Ribot C, Rezzonico E, Poirier Y. Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis.Plant Physiol,2004,135(1):400-411.
    [142]Quaghebeur M, Rengel Z. Arsenic uptake, translocation and speciation in pho1 and pho2 mutants of Arabidopsis thaliana. Physiol Plant,2004,120(2):280-286.
    [143]Vicente Rubio, Francisco Linhares, Roberto Solano,et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes and development,2001,15:2122–2133.
    [144]Bajwa W, Meyhack B, Rudolph H,et al. Structural analysis of the two tandemly repeated acid phosphatase genes in yeast. Nucleic Acids Res,1984,12: 7721-7739.
    [145]Legrain M, De Wilde M and Hilger F. Isolation, physical characterization and expression analysis of the Saccharomyces cerevisiae positive regulatory gene PHO4. Nucleic Acids Res, 1986,14:3059–3073.
    [146]Sengstag C and Hinnen A. The sequence of the Saccharomyces cerevisiae gene PHO2 codes for a regulatory protein with unusual amino acid composition. Nucleic Acids Res,1987,15:233–246.
    [147]Madden SL, Creasy CL, Srinivas V,et al. Structure and expression of the PHO80 gene of Saccharomyces cerevisiae. Nucleic Acids Res,1988,16:2625–2637.
    [148]Gilliquet V, Legrain M, Berben G and Hilger F. Negative regulatory elements of the Saccharomyces cerevisiae PHO system: Interaction between PHO80 and PHO85 proteins. Gene,1990,96:181–188.
    [149]Creasy CL, Madden SL.and Bergman LW. Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae. Nucleic Acids Res,1993,21:1975–1982.
    [150]Wykoff DD, Grossman AR, Weeks DP,et al. Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci,1999,96:15336–15341.
    [151]Esperanza Gonzalez, Roberto Solano, Vicente Rubio, et al. PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. The Plant Cell, 2005,17:3500–3512.
    [152]Lau WT, Howson RW, Malkus P,et al. Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p. Proc Natl Acad Sci USA,2000,97:1107–1112.
    [153]Liu C, Biddinger E and Raghothama KG. Phosphate starvation and gene expression in roots of tomato. Proc. of the 5th International Sym. on Genetics and Mol. Biol of Plant Nutrition,1994,pp:85.
    [154]Chunming Liu, Umesh S. Muchhal and K.G. Raghothama. Differential expression of TPS11, a phosphate starvation-induced gene in Tomato. Plant Molecular Biology,1997,33:867–874.
    [155]Liu C, Raghothama KG. Cloning and characterization of pTPSI1, a cDNA (Accession No. U34808) for a phosphate starvation induced gene from tomato. Plant Physiol,1995,109: 1126-1127.
    [156]Kenji Miura, Ana Rus, Altanbadralt Sharkhuu,et al. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. PNAS,2005,102(21):7760-7765.
    [157]Stephen H. Burleigh and Maria J. Harrison. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Molecular Biology,1997,34:199-208.
    [158]Burleigh SH, Harrison MJ. Characterization of the Mt4 gene from Medicago truncatula. Gene,1998,216:47-53.
    [159]Stephen H. Burleigh and Maria J. Harrison. The Down-Regulation of Mt4-Like Genes by Phosphate Fertilization Occurs Systemically and Involves Phosphate Translocation to the Shoots. Plant Physiology,1999,119:241-248.
    [160]Martin AC, del Pozo JC, Iglesias J,et al. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. The Plant Journal,2000,24(5): 559-567.
    [161]Jun Wasaki , Ryoma Yonetani, Takuro Shinano, Motoshi Kai and Mitsuru Osaki.Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytologist,2003,158: 239–248.
    [162]Hou XL,Wu P,Jiao FC,et al. Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and local Pi signaling and hormones.Plant Cell and Environment,2005,28:353–364.
    [163]Fu YH, Marzluf GA . NIT-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein. Proc Natl Acad Sci USA.,1990,87:5331-5335.
    [164]Ma L, Gao Y, Qu L,et al. Genomic evidence for COP1 as repressor of light regulated gene expression and development in Arabidopsis. Plant Cell,2002,14:2383-2398
    [165]Ma L, Li J, Qu L, rt al. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell,2001,13:2589-2607.
    [166]Ma L, Zhao HY, Deng XW . Analysis of the mutational effects of the COP/DET/FUS loci on genome expression profiles reveals their overlapping yet not identical roles in regulating Arabidopsis seedling development.Development,2003,130:969-981.
    [167]Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH. Multiple transcription-factor genes are early targets of phytochrome A signaling.Proc Natl Acad Sci USA.2001,98:9437-9442.
    [168]Wang H, Ma LG, Habashi J,et al. Analysis of far-red light regulated genome expression profiles of phytochrome A pathway mutants in Arabidopsis. Plant J,2002,32:723-733.
    [169]Harmer SL, Hogenesch JB, Straume M,et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 2000,290:2110-2113.
    [170]Maleck K, Levine A, Eulgem T,et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet,2000,26:403-410.
    [171]Kawasaki S, Borchert C, Deyholos M,et al. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell,2001,13:889-905.
    [172]Seki M, Narusaka M, Abe H,et al. Monitoring the expression pattern of 1,300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell,2001,13:61-72.
    [173]Wang R, Guegler K, Labrie ST, Crawford NM. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell,2000,12:1491-1509.
    [174]Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol,2003, 132(3):1260-71.
    [175]Misson J, Raghothama KG, Jain A,wt al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci U S A, 2005,102(33):11934-9.
    [176]Simpson RJ, Lambers H and Dalling MJ. Translocation of nitrogen in vegetative wheat plant (Triticum aestivum). Physiol Plant,1982,56:11-17.
    [177]Cooper HD and Clarkson DT. Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals-A possible mechanism integrating shoot and root in the regulation of nutrient uptake. J Exp Bot,1989,40:753-762.
    [178]赵学强.小麦氮素吸收系统编码基因的克隆和表达分析.中科院遗传与发育所博士学位论文,2005.
    [179]Vidmar JJ, Zhuo D, Siddiqi MY and Glass AD.Isolation and characterization of HvNRT2.3 and HvNRT2.4, cDNAs encoding high-affinity nitrate transporters from roots of barley. Plant Physiol,2000a,122:783-792.
    [180]Zhao Xue-Qiang, Li Yu-Jing, Liu Jian-Zhong,et al. Isolation and Expression Analysis of a High-Affinity Nitrate Transporter, TaNRT2.3, from Roots of Wheat (Triticum aestivum). Acta Bot Sin,2004,46:347-354.
    [181]Yiping Tong, Jing-Jiang Zhou, Zhensheng Li and Anthony J. Miller. A two-component high-affinity nitrate uptake system in barley. Plant Journal,2005,41(3):442-450.
    [182]Anne L. Rae, Daisy H. Cybinski, Janine M. Jarmey and Frank W. Smith. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Molecular Biology,2003,53:27-36.
    [183]Petra H.D. Schunmann, Alan E. Richardson, Claudia E. Vickers, and Emmanuel Delhaize. Promoter Analysis of the Barley Pht1;1 Phosphate Transporter Gene Identifies Regions Controlling Root Expression and Responsiveness to Phosphate Deprivation. Plant Physiology, 2004,136:4205-4214.
    [184]Liu CM, Muchhal US, Mukatira U,et al. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus.Plant Physiol, 1998,116:91–99.
    [185]孙海国,张福锁,杨军芳.不同供磷水平小麦苗期根系特征与其相对产量的关系.华北农学报,2001,16(3):98-104.
    [186]Shin H, Shin HS, Chen R, Harrison MJ. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. The Plant Journal,2006, 45(5):712-26.
    [187]Singh A, Selvi MT, Sharma R. Sunlight-induced anthocyanin pigmentation in maize vegetative tissues. J Exp Bot,1999,50:1619-1625

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700