小麦幼苗对干旱、低温逆境交叉适应的反应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱和低温作为两种最常见的逆境,严重地影响着植物的正常生长发育以及生理代谢。本文选用对干旱、低温抗性不同的长武134、晋麦47号和郑引1号3个小麦品种为试验材料,在人工控制条件下,通过PEG处理模拟干旱胁迫和人工气候箱程序降温模拟低温胁迫,研究小麦幼苗对干旱、低温逆境交叉适应的生理生化基础和可能机理。同时,用外施ABA作为一种预处理条件,探讨ABA在交叉适应中的调节作用。主要研究结果如下:
     (1)经单一干旱、低温逆境处理后,3个小麦品种的叶水势都显著下降,降幅在1.01~1.26Mpa之间,其中抗旱性弱的郑引1号下降的幅度最大。单一干旱、低温逆境处理后恢复正常条件,生长恢复正常后两种逆境进行交叉处理,结果表明“干旱+低温”和“低温+干旱”处理后3种小麦的叶水势下降幅度在0.39~0.77Mpa之间,均比单一低温或干旱逆境下水势下降幅度明显减小。在“ABA+干旱”和“ABA+低温”的交叉组合处理中,叶水势的下降幅度也明显小于单一干旱和低温逆境处理。这表明ABA在一定程度上可代替干旱、低温预处理的效果在交叉适应中起作用。
     (2)单一干旱或低温胁迫时,与正常生长的幼苗相比,3个品种小麦幼苗的细胞膜相对透性都明显增大,丙二醛含量增多,其中细胞膜相对透性增加幅度在54.48%~68.63%,丙二醛含量增加在40.88%~64.29%,说明细胞膜严重受损,膜脂质过氧化程度加深。而经干旱、低温和外施ABA预处理的小麦幼苗,与单一干旱或低温胁迫相比,质膜相对透性明显降低,降幅在25.45%~38.96%,丙二醛含量也显著降低,降幅在9.52%~23.21%,明显地抑制了膜脂过氧化作用,表明交叉处理的小麦幼苗比单一进行胁迫的小麦幼苗确实具有较强的抗性,交叉适应性可避免或减轻膜受损的程度,提高抗逆性,且外施ABA处理具有同交叉适应性相同的处理效果。
     (3)经单一干旱、低温逆境处理后,与正常生长的幼苗相比,3个小麦品种的SOD、CAT活性及GSH含量均明显下降,降幅分别在25.08%~39.65%、7.71%~9.78%和9.60%~25.97%,POD活性及AsA含量虽有上升,但上升幅度很小且郑引1号表现为下降,总体表现为活性氧清除能力下降;而经干旱、低温和外施ABA预处理的小麦幼苗,与单一干旱或低温胁迫相比,SOD、CAT、POD活性分别上升在25.37%~42.68%、10.77%~19.57%和2.23%~31.14%,GSH及AsA含量上升在0.59%~41.87%,表明交叉处理的小麦幼苗保护酶活性及内源抗氧化剂含量均明显增高,说明活性氧清除能力增强,且抗性强的品种表现出更强的活性氧清除能力。
     (4)单一干旱或低温胁迫时,由于活性氧对蛋白质等生物大分子伤害极其严重,而引起了可溶性蛋白质含量的下降。与正常生长的幼苗相比,3个品种小麦幼苗的可溶性蛋白质含量的降幅在2.47%~12.18%。而经干旱、低温、外施ABA预处理后经历干旱或低温逆境,与单一干旱或低温胁迫相比,可溶性蛋白质含量也有明显增多,增幅在14.33%~53.89%。表明交叉适应明显提高植株的抗逆性,其生理基础与ABA的作用机制密切相关。
As two most commonly seen stresses , drought and chilling affected the growth and metabolism of plant seriously . In this thesis, three different resistance to drought and chilling of wheat seedlings ( Changwu 134 , Jinmai No.47 and Zhengyin No.1 ) were used for experimental material . At the artificial controlled condition , the mechanism of drought and chilling injury and cross-adaptation was induced by drought and chilling in wheat seedlings were studied , by PEG was used to simulated drought stress and procedural lower temperature was used to simulated chilling stress in this experimentation ; meanwhile , as another pretreated method , exogenous abscisic acid ( ABA ) was used to discuss the adjustment function of ABA in cross-adaptation .The main result are as follows:
     1. After the injury of drought or chilling , the leaf water potential of three wheat seedlings decreased observably, the degressive range at 1.01~1.26Mpa, and the infirm resistance to drought of Zhengyin No.1 decreased mostly in the three breeds. When the wheat seedlings renewed up to snuff, drought and chilling injury were used to cross- disposal in wheat seedlings, the result was shown that the degressive range of the leaf water potential at 0.39~0.77Mpa, which decreased visibly compared with the injury of drought or chilling, after the wheat seedlings were treated by“drought + chilling”and“chilling + drought”. At the cross- disposal of“ABA + drought”and“ABA + chilling”, the leaf water potential of three wheat seedlings have same change. The change was shown that ABA can replace the pretreated seedlings of drought and chilling at a certain extent and react on the cross-adaptation.
     2. When the wheat seedlings were treated by the injury of drought or chilling, compared with natural seedlings, membrane leakage rate and the content of MDA , a product of membrane lipid peroxidation of three wheat seedlings increased markedly. The increased range of the membrane leakage rate at 54.48%~68.63%, and the content of MDA increased at 40.88%~64.29%, the result was shown that the membrane system damnified badly, which growed on the extent of membrane lipid peroxidation. Compared with the injury of drought or chilling, the membrane leakage rate of wheat seedlings which pretreated by the drought or chilling or ABA decreased observably, the degressive range at 25.45%~38.96%, the content of MDA decreased too, and the degressive range at 9.52%~23.21%, which restrained membrane lipid peroxidation clearly, and shown that the seedlings of cross- disposal have doughty resistance in troth. Cross-adaptation can avoid or mitigate the mangled of membrane system , which could improved the resistance of plant, and ABA pretreated have similar impact.
     3. After the injury of drought or chilling , compared with natural seedlings, the SOD、CAT activity and GSH content of three wheat seedlings decreased observably, the degressive range at 25.08%~39.65%、7.71%~9.78% and 9.60%~25.97% respectively. POD activity and AsA content have little rise and Zhengyin No.1 decreased, but the ability of activated oxygen scavenging system decreased in the mass; Compared with the injury of drought or chilling, the SOD、CAT、POD activity and GSH、AsA content of wheat seedlings which pretreated by the drought or chilling or ABA increased observably, the degressive range at 25.37%~42.68%、10.77%~19.57%、2.23%~31.14% and 0.59%~41.87% respectively. The result was shown that the activity of protected enzyme and the content of endogenesis antioxidant all heightened visibly, the ability of activated oxygen scavenging system enhanced, and the strong resistance of breed puttde up stronger than others.
     4. When the wheat seedlings were treated by the injury of drought or chilling, the content of soluble protein decreased because of the activated oxygen injured badly to great biology numerator as protein. Compared with natural seedlings, the content of soluble protein of three wheat seedlings decreased range at 2.47%~12.18%. Compared with the injury of drought or chilling, the content of soluble protein of wheat seedlings which pretreated by the drought or chilling or ABA also increased observably, the increased range at 14.33%~53.89%. The result was shown that cross-adaptation enhanced resistance of plant obviously , the physiological elements have nearly relation to functionary mechanism of ABA.
引文
[1] 张煜.水分胁迫对不同进化型小麦抗氧化与叶绿素荧光的影响[D].陕西杨凌.2005 年.
    [2] 张俊环,黄卫东.植物对温度逆境的交叉适应性及其机制研究进展[J].中国农学通报,2003 年 4月,19(2):95~100.
    [3] 王利军,李绍华,李家永等.温度逆境交叉适应对葡萄叶片膜脂过氧化和细胞钙分布的影响[J].植物生态学报,2004,28(3):326~332.
    [4] 陈善福,舒庆尧.植物耐干早胁迫的生物学机理及其基因工程研究进展[J].植物学通报,1999,16(5):555-560.
    [5] 张继澍.植物生理学[M].陕西西安.世界图书出版公司.1999,1:379.
    [6] 王俊刚,陈国仓,张承烈.水分胁迫对 2 种生态型芦苇的可溶性蛋白含量、SOD、POD、CAT活性的影响[J].西北植物学报.2002,22(3):561~565.
    [7] 刘彦琴,张丰雪,杨敏生等.电导率在自杨杂种无性系耐旱性鉴定中的应用[J]. 河北林果研究,1997, 12, (4): 301~305.
    [8] 许振柱.土壤干旱对冬小麦旗叶乙烯释放、多胺积累和细胞质膜的影响[J].植物生理学报.1995,21 (3) :295~301.
    [9] Dhindsa R S, W Matowe. Drought tolerance in two Mosses correlated with enzymatic defence against lipid peroxidation.[ J]. Exp. Bot., 1981, 32: 79~91.
    [10] 唐连顺,李广敏.水分胁迫下玉米叶肉细胞超微结构的变化及其与膜脂过氧化伤害的关系[J].植物学报,1994,36(增刊):43~49.
    [11] Li Zhijun et al. Changes in the motolerance of photosynthetic apparatus in cucumber leaves in response to water stress and exogenous ABA treatments [J]. J of the Japanese Soc. for Hort Sci , 1996,65 (3):587~594.
    [12] Baker J, et al. Sequence and characterization of 6 Lea proteins and their genes from cotton [J]. Plant Mol Biol ,1988,11:277~291.
    [13] 简令成,孙龙华,卫翔云等.从细胞膜系统的稳定性与植物抗寒性关系的研究到抗寒剂 的研制[J]. 植物学通报,1994, 11(特刊):1~22.
    [14] 张继澍.植物生理学[M].陕西西安.世界图书出版公司.1999,1:371~372.
    [15] 简令成, 吴素萱.植物抗寒性的细胞学研究—小麦越冬过程中细胞结构的变化[J].植物学报,1965, 13: 1 ~15.
    [16] Christiansen M N. Stimulation of Solute Loss from Radicles of Gossypium hirsutum L. by Chilling, Anaerobiosis and Low pH [J]. Plant Physiol , 1970, 46: 53~56.
    [17] Lyons J M. Chilling injury in plants [J]. Ann Rev Plant Physiol , 1973,24: 445~466.
    [18] Simon E.W. Phospholipids and plant membrane permeability [J]. New Phytol , 1974, 73:377~420.
    [19] 马德华,庞金安,霍振荣 .黄瓜耐低温研究进展[J].天津农业科学,1997,3(4):1~7 .
    [20] 王宝山.生物自由基与植物膜伤害[J].植物生理学通讯,1988, (2):12~16.
    [21] 陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27 (2): 84~89.
    [22] 曾韶西,王以柔,刘鸿先.水稻幼苗的低温伤害与膜脂过氧化[J].植物学报,1987, 29 (5): 506~512.
    [23] 曾韶西,王以柔.低温胁迫对黄瓜子叶抗坏血酸、过氧化物酶活性和谷酰甘肽含量的影响[J].植物生理学报,1990,16(l):37~43.
    [24] 沈文云,候锋,吕淑珍. 低温对杂交一代黄瓜幼苗生理特性的影响[J]. 华北农学报, 1995,10(1):56~59.
    [25] 马德华,孙其信 .温度逆境对不同品种黄瓜幼苗膜保护系统的影响[J].西北植物学报, 2001, 21(4):656~661.
    [26] 王英强,曾目卿,王成海.低温对观音莲幼苗膜脂过氧化作用的影响[J].热带农业利学,2001, 2:4~7.
    [27] 李晶,阎秀峰,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J].植物学报,2000, 42 (2):148~152.
    [28] 沈曼,王明麻,黄敏仁.植物抗寒机理研究进展[J]. 植物学通报,1997, 14(2) :1~8.
    [29] 张继澍.植物生理学[M].陕西西安.世界图书出版公司.1999,1.
    [30] 张继澍.植物生理学[M].陕西西安.世界图书出版公司.2003,1.
    [31] 李富生,何丽莲.植物对非生物胁迫的生理响应及甘蔗抗旱抗寒性研究进展[J].甘蔗,2004,11(1):31~37.
    [32] 张继澍.植物生理学[M].陕西西安.世界图书出版公司.1999,1:374~375.
    [33] Ming Gong, Bo Chen, Zhang Guangli , Li Hongguo. Heat-shock-induced cross adaptation to heat , chilling ,drought and salt stresses in maize seedlings and involvement of H2O2 [J]. Plant Physoil ,2001, 158:1125~1130.
    [34] Javier P D, Jose I J, Manuel S D. Chilling of drought-hardened and no-hardened plants of different chilling- sensitive maize lines- changes in water relations and ABA contents [J]. Plant Sci, 1997, 122: 71~79.
    [35] Arora R , Pitchay DS , Bearce BC. Water-stress- induced heat tolerance in geranium leaf tissues: A possible linkage through stress proteins [J]. Physiol Plant. 1998, 103: 24~34.
    [36] Ryu SB, Costa A, Xin ZG, Li PH . Induction of cold hardness by sa1t stress involves synthesis of cold and acid-responsive proteins in potato ( Solanum commersonii Dun ) [J]. Plant Cell Physiol , 1995, 36: 1245~1251.
    [37] Kell E, Steffen KL. Increased chilling tolerance and altered carbon metabolism in tomato leaves following application of mechanical stress [J]. Physiol Plant, 1995, 93: 519~525.
    [38] Caldwell CR. Modification of the cellular heat sensitivity of cucumber by growth under supplemental ultraviolet-B radiation [J]. Plant Physiol , 1994, 104: 395~399.
    [39] 曾韶西,王以柔,李美如.不同胁迫顶处理提高水稻幼苗抗寒性期间膜保护系统的变化比较[J].植物学报,1997, 39 (4): 308- 314.
    [40] 刘明池.提高黄瓜幼苗抗冷性研究[J].华北农学报,1994, 9(3):52~ 58.
    [41] Fu P, Wilen RW, Roertson AJ, Low NH, Tyler RT, Gusta LV. Heat tolerance of cold-acclimated Puma winter rye seedlings and the effect of a heat shock on freezing tolerance [J]. Plant Cell Physiol , 1998, 39: 942~949.
    [42] 马德华,庞金安.温度逆境锻炼对高温下黄瓜幼苗生理的影响[J]. 园艺学报,1998, 25 (4):350~355.
    [43] Cohen A, Bray EA. Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevate levels of endogenous abscisic acid [J]. Planta , 1990, 182:27~33.
    [44] Tseng MJ, Li PH. Changes in protein synthesis and translatable messenger RNA populations with ABA-induced cold hardiness in potato [J]. Physiol Plant , 1991, 81: 349~358.
    [45] 郭确,潘瑞炽.ABA 对水稻幼苗抗冷性的影响[J].植物生理学报,1986,10(4):294~303.
    [46] 林定波.非低温理化逆境因子诱导植物抗寒性增强的分子生物学基础[J].植物生理学通讯,1998,34(3):225~229.
    [47] Bowler C, Van Montagu M, Inze D. Superoxide dismutase and stress tolerance.[J].Ann. Rev. Plant Physiol Plnt Mol Biol. 1992,43:83~116.
    [48] Foyer CH, Descourvieres P, Kunert KJ. Protection against oxygen radicals: an important defense mechanism studied in trandgenic plants [J]. Plant Cell Environ ,1994,17:507~523.
    [49] Naot D, Ben-Hayyim G, Eshdat Y et al, Drought, heat and salt stress induce the expression of a citrus homologus of a typical late-embryogenesis Lea 5 gene [J]. Plant Mol Biol , 1995, 27:619~622.
    [50] Bina D, Welbauth GE, Grayson RL, et al. Protein synthesis in pea epicotyl tissue in response to cold , dehydration and abscisic acid [J] . Plant Physiol , 1994, 105:170.
    [51] Vierling E. The role of heat hock proteins in plants [J] . Annu Rev Plant Physiol Plant Mol Biol , 1991, 42: 579~620.
    [52] Mantyla E, Lang V, Palva ET. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT 178 and RAB18 protein in Arabidopsis thaliana[J]. Plant Physiol, 1995, 107: 141~ 148.
    [53] Zhang H, Jennings PH . The effect of heat shock on the induction of chilling tolerance in cucumber seedling roots [J]. Hort Sci, 1995, 30: 851.
    [54] Kell E, Steffen KL. Increased chilling tolerance and altered carbon metabolism in tomato leaves following application of mechanical stress [J]. Physiol Plant, 1995, 93: 519~525.
    [55] Neven LG, Haskel DW, Hofig A et al. Characterization of a spinach gene responsive to low temperature and water stress[J]. Plant Mol Biol, 1993, 21:291~305.
    [56] Naot D, Ben-Hayyim G, Eshdat Y et al, Drought, heat and salt stress induce the expression of a citrus homologus of a typical late-embryogenesis Lea 5 gene [J]. Plant Mol Biol , 1995, 27:619~622.
    [57] Albert J,Robertson et al. Abscisic acid induced heat tolerance in Bromus inermis 1eyss cell-suspension-cultures: Heat-stable, abscisic acid- responsive polypeptides in combination with sucrose confer enhanced the mostability [J]. P1ant Physiol, 1994, 105: 181~190.
    [58] 张俊环,黄卫东.植物对温度逆境的交叉适应性及其机制研究进展[J].中国农学通报,2003 年4 月,19(2):95~100.
    [59] Krishna P, et al . Cold- induced accumulation of hsp90 transcripts in Brassica Napus [J].Plant Physiol, 1995, 107: 915~923.
    [60] 白嵩.水稻幼苗对二氧化硫、盐、干旱交叉适应性诱导的研究[D].中国科学院华南植物研究所,1999 年.
    [61] Boussiba S, Rikin A, Richmond A E. The role of abscisic acid in cross-adaptation of tobacco plant [J]. Plant Physiol , 1975, 56:337~339.
    [62]曾韶西,王以柔,李美如.不同胁迫顶处理提高水稻幼苗抗寒性期间膜保护系统的变化比较[J].植物学报,1997, 39 (4): 308- 314.
    [63] 高俊凤.植物生理学实验技术[M]. 陕西西安.世界图书出版公司.2000,1.
    [64] 曾韶西,王以柔,李美如.不同胁迫顶处理提高水稻幼苗抗寒性期间膜保护系统的变化比较[J].植物学报,1997, 39 (4): 308- 314.
    [65] 赵黎芳,张金政,张启翔等.盐和水分预处理对扶藤幼苗抗寒性的影响[J].植物研究,2004,24(3):313~316.
    [66] 王利军,李绍华,李家永等.温度逆境交叉适应对葡萄叶片膜脂过氧化和细胞钙分布的影响[J].植物生态学报,2004,28(3):326~332.
    [67] 牛明功,王贤,陈龙等. 干旱、渍涝和低温胁迫对小麦生理生化特性的影响[J].种子,2003,4:19~21.
    [68] 陈红兵 ,郭继虎 ,王金胜等. 水分胁迫时小麦生化指标与抗旱性的关系[J]. 山西农业大学学报,2000,2:129~131.
    [69] 李锦树.干旱对玉米叶片细胞透性及膜脂的影响[J].植物生理学报,1983(9):223~278.
    [70] 张继澍.植物生理学[M].陕西西安.世界图书出版公司.1999,1.
    [71] 孙群,胡景江.植物生理学研究技术[M].陕西杨凌.西北农林科技大学出版社.2006,1:68~70.
    [72] Francois C, Genevieve C, Jean-christophe B. Molecular and physiological response to water deficit in drought-tolerant and drought-sensitive lines of sunflower[J].Plant Physiol. 1998,116:319~328.
    [73] Kazuo S, Kazuo Y S. Gene expression and signal transduction in water stress response [J].Plant Physiol.1997, 115:327~334.
    [74] Elizabeth A B. Molecular responses to water deficit [J]. Plant Physiol . 1993,103:1035~1040.
    [75] Shinozakik , Yamaguchisk , Mizogukchit . Molecular responses to water stress in Arabidopsis thaliana [J] . Journal of Plant Research ,1998, 111:345~351.
    [76] 沈玉芳,曲东,王保莉.干旱低磷胁迫对不同品种小麦根系导水率的影响[J].西北植物学报,2004,24(9):1578~1582.
    [77] 张静,刁治民,王健等. N0 参与热激诱导玉米幼苗耐旱性调节机制的研究[J].青海草业,2006,15(1):10~15.
    [78] 戴高兴,邓国富,周萌. 干旱胁迫对水稻生理生化的影响[J].广西农业科学,2006,37(1):4~6.
    [79] 刘娥娥,宗会,郭振飞等. 干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J].热带亚热带植物学报,2000,8(3):235~238.
    [80] 张继澍.植物生理学[M].陕西西安.世界图书出版公司.1999,1:369~371.
    [81] Ming Gong, Bo Chen, Zhang Guangli , Li Hongguo. Heat-shock-induced cross adaptation to heat , chilling ,drought and salt stresses in maize seedlings and involvement of H2O2 [J]. Plant Physoil ,2001, 158:1125~1130.
    [82] 曾韶西,王以柔,李美如.不同胁迫顶处理提高水稻幼苗抗寒性期间膜保护系统的变化比较[J].植物学报,1997, 39 (4): 308~314.
    [83] 张俊环,张国强,刘悦萍等.温度逆境交叉适应过程中葡萄幼苗质膜 Ca2+-ATPase 的细胞化学定位与活性变化[J]. 中国农业科学, 2006, 39(8):1617~1623.
    [84] 王利军,李绍华,李家永等,温度逆境交叉适应对葡萄叶片膜脂过氧化和细胞钙分布的影响[J],植物生态字报,2004,28(3):326~332.
    [85] 郭丽红,吴晓岚,龚明.谷胱甘肽还原酶和超氧化物歧化酶在玉米幼苗热激诱导的交叉适应中的作用[J].植物生理通讯, 2005, 41(4): 429~432.
    [86] 彭艳华,黄永秀.脱落酸应答基因的结构、表达调控及信号转导[J].植物生理学通讯,1996,(2):155~158.
    [87] 沈拔,李云荫.渗透胁迫和脱落酸对冬小麦叶片蛋白质的影响[J].作物学报,1996,22(3):228~294.
    [88] 张继澍.植物生理学[M].陕西西安.世界图书出版公司.1999,1:407.
    [89] 陈娟,潘开文,辜彬.逆境胁迫下植物体内脱落酸的生理功能和作用机制[J].植物生理学通讯,2006,42(6):1176~1182.
    [90] 王纬,李德全,邹琦等.水分胁迫下外源 ABA 对玉米幼苗根叶渗透调节的影响[J].植物生理学通讯,2000,36(6):523~526.
    [91] 赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京.化学工业出版社,2004.
    [92] Mayaba M, Beckett RP, Csintalan Z, Tuba Z. ABA increasers the desiccation tolerance of photosynthesis in the Afromontane under storey moss atrichum and rogymum. [J]. Ann Bot, 2001,88:1093~1100.
    [93] 李广敏,史吉平,董永华等.脱落酸和多效唑对水分胁迫条件下小麦幼苗活性氧代谢的影响[J].河北农业大学学报,1994,17(4):26~30.
    [94] 姚满生,杨小环,郭平毅. 脱落酸与水分胁迫下棉花幼苗水分关系及保护酶活性的影响[J].棉花学报,2005,17(3):141~145.
    [95] 陈娟,潘开文,辜彬.逆境胁迫下植物体内脱落酸的生理功能和作用机制[J].植物生理学通讯,2006,42(6):1176~1182.
    [96] 张继澍.植物生理学[M].陕西西安.世界图书出版公司.1999,1:407.
    [97] 白嵩.水稻幼苗对二氧化硫、盐、干旱交叉适应性诱导的研究[D].中国科学院华南植物研究所,1999 年.
    [98] Hale H B: Cross-adaptation . [J] . Environ . Res. 1969,2:423~434.
    [99] Lewitt J , Sullivan C Y and Krull E . Some problems in drought resistance [J]. Bull. Res. Counc. Isr. Sect. D Bot. 1960,8:173~179.
    [100] 罗利军,张启发.栽培稻抗旱性研究的现状与策略[J].中国水稻科学.2001,15(3):209~214.
    [101] 张继澍.植物生理学[M].陕西西安.世界图书出版公司.1999,1:380.
    [102] Ming Gong, Bo Chen, Zhang Guangli , Li Hongguo. Heat-shock-induced cross adaptation to heat , chilling ,drought and salt stresses in maize seedlings and involvement of H2O2 [J]. Plant Physoil ,2001, 158:1125~1130.
    [103] 曾韶西,王以柔,李美如.不同胁迫顶处理提高水稻幼苗抗寒性期间膜保护系统的变化比较[J].植物学报,1997, 39 (4): 308- 314.
    [104] 郭确,潘瑞炽.ABA 对水稻幼苗抗冷性的影响[J].植物生理学报,1984,10:295~303.
    [105] 王纬,李德全,邹琦等.水分胁迫下外源 ABA 对玉米幼苗根叶渗透调节的影响[J].植物生理学通讯,2000,36(6):523~526.
    [106] 赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京.化学工业出版社,2004.
    [107] 武惠肖,吉艳芝,何海龙等.落叶松几个抗寒生理指标研究[J].河北林果研究.2000, 15(2):105~108.
    [108] 张俊环,黄卫东.植物对温度逆境的交叉适应性及其机制研究进展[J].中国农学通报,2003年 4 月,19(2):95~100.
    [109] 马德华,庞金安.温度逆境锻炼对高温下黄瓜幼苗生理的影响[J]. 园艺学报,1998, 25(4):350~355.
    [110] Javier P D, Jose I J, Manuel S D. Chilling of drought-hardened and no-hardened plants of different chilling- sensitive maize lines- changes in water relations and ABA contents [J]. Plant Sci, 1997, 122: 71~79.
    [111] 刘明池.提高黄瓜幼苗抗冷性研究[J].华北农学报,1994, 9(3):52~ 58.
    [112] 姚满生,杨小环,郭平毅. 脱落酸与水分胁迫下棉花幼苗水分关系及保护酶活性的影响[J].棉花学报,2005,17(3):141~145.
    [113] 赵黎芳.藤本植物—扶芳藤对水分和低温胁迫的反应和适应性研究[D]. 北京林业大学,2003年.
    [114] 白嵩.水稻幼苗对二氧化硫、盐、干旱交叉适应性诱导的研究[D].中国科学院华南植物研究所,1999 年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700