甘蓝型油菜低磷胁迫应答cDNA差异表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是植物所必须的大量元素之一,土壤中有效磷的浓度偏低(2-10μmol/L),已成为作物生长的重要限制因子。油菜是全球重要的油料作物之一。而油菜是对磷敏感的作物,缺磷导致油菜产量和品质下降,因此培育耐低磷作物新材料已迫在眉睫。
     为进一步揭示油菜耐低磷机理以及其耐低磷性的遗传基础,本工作以大田筛选的耐低磷油菜和磷敏感油菜品种为材料,研究磷素营养特征以及它们在低磷胁迫前后基因表达情况。主要工作内容与结果如下:
     1.不同基因型油菜在低磷胁迫下膜脂过氧化、保护酶活性和叶绿素含量的变化
     研究表明耐低磷品种的SOD活性在实验期间相对稳定,而低磷敏感品种在低磷胁迫初期有明显的增加,尔后又快速下降,这表明保护酶的绝对活力与低磷胁迫无关,而变化趋势与低磷胁迫有关。低磷引起耐低磷品种MDA的增量明显小于低磷敏感品种,而叶绿素含量在整个胁迫期间并没有显著变化。
     2.甘蓝型油菜银染mRNA差别显示条件的建立及优化
     本实验对油菜差别显示体系进行了筛选,最终获得了优化的差别显示体系。即RNA模板在2μg,反转录产物用量为1.5μl时,PCR退火温度在40℃扩增条带清晰。
     3.甘蓝型油菜低磷胁迫应答cDNA差异表达分析
     本研究用银染mRNA差异显示技术分析了耐低磷油菜品种中油821和磷敏感品种1182在低磷胁迫前后基因的差异表达情况。共获得差异表达cDNA片段61个。从中挑选差异显著的16个片段进行克隆分析,它们在低磷胁迫下表达增强或受到抑制。bnr2与拟南芥编码木葡聚糖转葡糖苷酶基因相似达到85%。bnl1与推测的光合系统Ⅱ类型Ⅰ叶绿体a/b结合蛋白基因同源性很高,bnr3编码的产物为DNA结合蛋白。低磷胁迫还调动了蛋白质合成与代谢(核糖体蛋白基因、RNA结合蛋白基因、叶绿体核糖体大亚基蛋白基因)及其与胁迫相关的EST如bnr10等相关基因的差异表达。还有一些未知功能的基因(bnr4,bnr6,bnr9,bnr15,bnl5,bnl9)还需进一步研究。
     4.差异显示片段的半定量RT-PCR分析
     bnl1推导的氨基酸序列是叶绿体a/b结合蛋白靠近3’端一保守区,Northern杂交及半定量RT-PCR分析表明该基因低磷胁迫6h后表达增强。bnl4cDNA片段推测的氨基酸序列与拟南芥核糖体结构蛋白的相似性为98%。RT-PCR分析表明该基因在胁迫后6h表达增强。bnl8的核苷酸序列与拟南芥的类囊体膜蛋白磷酸酯酶的基因同源性较高,且在胁迫后24h表达量最大。
     bnr2推测的氨基酸序列与拟南芥木葡聚糖转葡糖苷酶(xyloglucan endotransglycosylase,XET)相似性为88%,XET在植物根毛形成过程中起到非常重要的作用,半定量RT-PCR分析表明该基因在磷敏感品种1182根中受低磷胁迫的抑制。bnr8cDNA片段推测的44个氨基酸序列与拟南芥的FAD-binding domain-containing蛋白有较高的同源性,该蛋白位于线粒体内膜上,参与电子传递。
Phosphorus (P) is one of essential macronutrients required by plants.The concentration of Pi in thesoil solution is often low (2 to 10μmol/L) that limit the yield of crops. Rapeseed is one of the most important oilcrops in the world.But the rapeseed is sensitive to P. The output and quality of rapeseed reduce because of p deficiency .Under these situations, it is urgent to breed low-P-tolerance crop by bio-techniques.
     In this thesis, our goal is to study the low phosphorus-tolerance mechanism of and investigate the genetic basis of its low p-tolerance. The P nutrition characteristics of the phosphorus-tolerance zhongyou No.821 and phosphorus-sensitive No. 1182 were investigated under sand culture conditions. Analysis of cDNA fragments responded to low- p-stress was showed by using mRNA differential display technique and their expression characters were analyzed. The results were shown as follows:
     1. Effects of low-phosphorus-stress on membrane lipid peroxidation and protection enzyme and the chlorophyll content of different genotype rapeseed.
     During the period of low-p-stress, the activities of SOD maintained relatively stable in low-p-tolerant cultivars. whereas those increased obviously at early stage and subsequently decreased rapidly in the low-p-sensitive cultivars, suggesting that the absolute activities of protective enzymes had no relation with the low-p-stress, while the changing trend was reverse. The increased MDA content in low-phosphorus tolerant cultivars was obviously less than that in low p-sensitive cultivars. The chlorophyll content is stable during low phosphorus stress
     2. Establishment and optimization of sliver staining differential display of rapeseed
     The results showed: Many clear bands were observedwhen the amount of RNA used was about 2ug and the amount of reverse transcription products used was 1.5μl. The annealing temperature on DDRT-PCR amplification was 40°C, which produced many cDNA bands.
     3. Analysis of gene expression of rapeseed under low phosphorus condition
     In this research work, the different expression in low-phosphorus stressed and unstressed between low-p-tolerant rapeseed zhongyou No. 821 and low-p-sensitive No.1182 were analyzed by the silver staining mRNA differential display method. Total 61 low-phosphorus-induced cDNA fragments expressing differentially were isolated. 16 cDNA fragments were sequenced and analyzed. They were induced or suppressed. The deduced amino acid of bnr2 exhibited 85% identity to xyloglucan endotransglycosylase. The deduced amino acid of bull showed homologous to putative photosystem II type I chlorophyll a/b binding protein.The deduced amino acid of bnr3 showed homology to DNA binding protein. In addition, a lot of genes, in relation to protein synthesis and metabolism (such as structural constituent of ribosome mRNA, RNA binding protein, chloroplast ribosomal large subunit protein L21) and ESTs in relation to abiotic stresses (such as bnll0) were expressed under low-p stress. And some genes, which were involved in low-p-stress response (bnr-4、6、15 and bnl-5、9), but their function were unknown, need to be verified next.
     4. Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses of differential display cNDA fragments
     The analysis of the deduced amino acid sequence of bull indicated homologous to putative photosystem II type I chlorophyll a/b binding protein, the expression level in zhongyou No.821 leaves increased after 6 hour treatment with low phosphorus by Northern blotting and RT-PCR. The deduced amino acid of bnl4 exhibited 85% identity to Arabidopsis thaliana RNA binding/structural constituent of ribosome. After 6 hour under low-p the level of bnl4 mRNA in leaves increased significantly. Based on the analysis of the deduced amino acid sequence, it is inferred that bnl8 encodes thylakoid membrane phosphoprotein of 14 kda. The expression of bnl8 in the leaves of zhongyou No.821 was induced by low-p stress by semi-quantitative RT-PCR, and the expression was highest after 24 hour treatment with low-p.
     The deduced amino acid of bnr2 exhibited 88% identity to Arabidopsis thaliana xyloglucan endotransglycosylase (XET). XET is the key gene related to the root hair forming. The expression of bnr2 in the roots of No.1182 was suppressed under low-p stress by semi-quantitative RT-PCR. The analysis of the deduced 44 amino acid sequence of bnr8 indicated homologous to FAD-binding domain-containing protein. This protein in the mitochondria endomembrane takes part in electric transport.
引文
1.F·奥斯伯.精编分子生物学实验指南.北京:科学出版社,1999.
    2.段海燕,王运华,徐芳森.甘蓝型油菜不同品种磷运转和再利用差异的研究.中国油料作物学报,2002,24(4):46~49.
    3.李德华, 向春雷, 姜益泉, 贺立源,.低磷胁迫下水稻不同品种根系有机酸分泌的差异.中国农学通报,2005,21(11):186~188.
    4.李志玉,郭庆元,廖星.油菜不同类型品种磷效率特性研究.中国油料作物学报,2001,23(4):57~61.
    5.李志玉,廖星,郭庆元.不同基因型油菜品种对缺磷敏感性差异的研究.迎接21世纪的中国油料科学.第四次全国代表大会论文集,2000,60(3).
    6.廖星,李志玉,郭庆元.甘蓝型油菜耐缺磷种质筛选指标的研究.中国农业科学,1999,32(增刊):109~111.
    7.刘建中.利用植物自身潜力提高土壤中磷的生物有效性.生态农业研究,1994,2:16~23.
    8.明风,路群,戴薇,沈大棱.水稻高亲和力磷酸盐转运蛋白功能的初步研究.中国水稻科学,2004,18(3):203~207.
    9.潘廷国,柯玉琴,王元贞.盐逆境下甘蔗叶片膜脂过氧化与保护酶活性.福建农业大学学报,1995,24(2):129~132.
    10.沈善敏.论我国磷肥的生产与应用.土壤通报,1985,3:97~103.
    11.田中民.根系分泌物在植物营养中的作用.咸阳师范学院学报,2001,16(6):60~69.
    12.万美亮,邝炎华,陈建勋.缺磷胁迫对甘蔗膜脂过氧化及保护酶系统活性的影响.华南农业大学,1999,20(2):1~6.
    13.王振镒,郭蔼光,罗淑萍.水分胁迫对玉米SOD和POD活力及同工酶的影响.西北农业大学学报,1989,17(1):48~49.
    14.吴平,印莉平,张立平.植物营养分子生理学(北京:科学出版社),2001,pp103~162.
    15.席章营,吴克宁,王通朝.玉米抗旱生理生化鉴定指标及利用价值分析.河南农业大学学报,2000,34(1):7~12.
    16.肖凯,谷俊涛,邹定辉.杂种小麦及亲本旗叶老化过程中CO_2导度的研究.作物学报,1998.24:503~507.
    17.肖凯,谷俊涛,Harrison M,Wang Z.Y..MtPAP1表达特性及异源表达对拟南芥有机态磷吸收的影响.植物生理与分子生物学报,2006,32(1):99~106.
    18.杨瑞吉,牛俊义.磷胁迫对油菜根系分泌物的影响.西南农业大学学报,2006,28(6):895~899.
    19.印莉萍,刘维仲,刘祥林。DD-PCR分析铁高效和铁低效小麦品种基因表达的差异.首都师范大学学报,2000,21(2):58~63.
    20.张驰,陈受宜.利用DDRT-PCR技术分析在盐肋迫下水稻耐盐突变体中特异表达的基因.中国科学,1995,43(22):2419~2422.
    21.张建恒,李宾兴,王斌,郭程瑾,李雁鸣,肖凯.不同磷效率小麦品种光合碳同化和物质生 产特性研究.中国农业科学,2006,39(11):2200~2207.
    22.张立平,吴平,祝金明.利用DD-PCR技术分析水稻铝诱导基因的表达差异.中国农业科学,1997,30(5):71~74.
    23.张丽梅,贺立源,李建生,徐尚忠.不同耐低磷基因型玉米磷营养特性研究.中国农业科学,2005,38(1),110~115.
    24.支立峰,余涛,彭茂民,朱英国,李阳生。利用改进的DDRT-PCR分离并鉴定水稻细胞缺铁胁迫相关cDNA克隆.武汉植物学研究,2005,23(1):7~10.
    25.种康,杨维才,王台,瞿礼嘉,蒋高明,王小菁,许亦农,陈之端,于昕.2004年中国植物科学若干领域研究进展.植物学报,2005,22:385~395.
    26.周志高,汪金舫,周健民.植物磷营养高效的分子生物学研究进展.植物学通报,2005,22:82~91
    27. Andersson M. X., Stridh M. H., Larsson K. E., Liljenberg C., Sandelius A. E.. Phosphate-deficient replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyliacylglycerol. FEBS Letters, 2003, 537: 128~132.
    28. Bariola P. A., Howard C. J., Taylor C. B., Verburg M. T., Jaglan V. D., Green P. J.. The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. Plant Journal, 1994, 6: 673~685.
    29. Bauer D., Muller H., Reich J. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Res, 1993, 21(18): 4272~4280.
    30. Burleigh, S. H. and Harrison, M. J.. A novel gene whose expression in Medicago truncatula is suppressed in response to colonization by ( vesicular-arbuscular mycorrhizal, VAM) fungi and to phosphate nutrition. Plant Mol. Biol., 1997, 34: 199~208.
    31. Burleigh S. H. and Harrison M. J.. Characterization of the Mt4 gene from Medicago truncatula. Gene, 1998, 216: 67~76.
    32. Burleigh S. H., Harrison M. J.. The down-regulation of Mt4-1ike genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiology, 1999, 119: 241~248.
    33. Carswell M. C., Grant B. R., Plaxton W. C. Disruption of the phosphate-stavation response of oilseed rape suspension cells by the Fungicide phosphate. Planta, 1997, 203: 67~74.
    34. Chen W., Provart N. J., Glazebrook J., Katagiri F., Chang H. S., Eulgem T, Mauch F., Luan S., Zou G., Whitham S. A., et al. Expression profile matrix of arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 2002, 14: 559~574.
    35. Chen W., Provart N. J., Glazebrook J. et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 2002, 14: 559~574.
    36. Ciereszko I., Johansson H., Hurry V., Kleczkowski L. A.. Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis. Planta, 2001, 212: 598-605.
    37. Clark RB. 1983. Plant genotype differences in the uptake, translocation, accumulation and use of mineral elements required for plant growth. In : Saric MR and Loughmn BC (eds) .Genetic aspect of plant nutri Martinus Ni jhoff/ Dr.W. Junk publishers., 49-70.
    38. Daram P., Brunner S., Rausch C, Steiner C, Amrhein N., Bucher, M.. Pht2:1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell, 1999, 11, 2153-2166.
    39. del Pozo J.C., Allona I., Rubio V., Leyva A., de la Pena A., Aragoncillo C, Paz-Ares J. . A type 5 acid Phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. Plant Journal, 1999, 19: 579-589.
    40. Duff S.M.G., Plaxton W.C., Lefebvre D.D. . Phosphate-starvation response in plant cells: De novo synthesis and degradation of acid phosphatases. Proceedings of the National Academy of Sciences of the USA, 1991, 88: 9538-9542.
    41. Epstein E.. Better crops for food. Ciba Foundation Symposium. 1983, 97 :61-68
    42. Forde B.G . The role of long-distance signaling in plant responses to nitrate and other nutrients. J. Exp. Bot, 2002, 53: 39-43.
    43. Franco-Zorrilla J.M., Gonzalez E., Bustos R., Linhares F., Leyva A., Paz-Ares J.. The transcriptional control of plant responses to phosphate limitation. The Journal Experimental Botany, 2004, 55: 285-293.
    44. Fukaki H., Tameda S., Masuda H., Tasaka M.. Lateral root formation is blocked by a gain-of-function mutation in the solitary-root/IAA14 gene of Arabidopsis. Plant Journal, 2002, 29: 153-168.
    45. Gardiner D.T. and Christensen N.W.. Characterization of phosphorus efficiencies of two winter wheat cultivars. Soil Sci. Soc. Amer. J., 1990, 54: 1337-1340.
    46. Gaume A., Machler F., Leon C.D., Narro L., Frossard, E.. Low-P tolerance by maize (Zea may L.) genotypes, significance of root growth, and organic acids and acid Phosphatase root exudation. Plant Soil, 2001, 228(2): 253-264.
    47. Goldstein A.H., Mayfield S.D., Mcdaniel R.G.. Phosphate starvation inducible metabolism in Lycopersicon esculentum III, Protein secretion by suspension cultured cells. Plant Physiol, 1989, 91: 175-182.
    48. Graham J.H., Leonaed R.T., Menge J.A.. Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol, 1981,68:549-552.
    49. Green P.J .. The ribonucleases of higher plants. Annu Rev Plant Phys, 1994, 45: 421-445.
    50. Grinsted M.J., Hedley M.Y., White R.E.. Plant induced changes in the rhizosphere of rape seedlings. I. pH change increase in concentration of soil solution. New Phytol, 1982, 91:19-29.
    51. Guppy C.N., Menzies N.W., Moody P.W., Blarney F.P.C. .Competitive sorption reactions between phosphorus and organic matter in soil: a review. Australian Journal of Soil Research, 2005, 43: 180-201.
    52. Hammond J.P., Bennett M.J., Bowen H.C., Broadley M.R., Eastwood D.C., May S.T., Rahn C, Swarup R., Woolaway K.E., White P.J.. Changes in gene expression in arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiology, 2003, 132: 578-596.
    53. Hodge A.. The plastic plant, root responses to heterogeneous supplies of nutrients. New Phytology, 2004, 162: 9-24.
    54. Hoffland E., Van den Boogaard R., Nelemans J., Findenegg G. . Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol, 1991, 122: 675-680.
    55. Hoffland E., Findenegg G.R., Nelemans J.A.. Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P- starvation. Plant Soil, 1989, 113: 161 - 165.
    56. Johnson J.F., Allan D.L., Vance C.P., Weiblen, G.. Root carbon dioxide fixation by phosphorus-deficient Lupinus albus, Contribution to organic acid exudation by proteoid roots,. Plant Physiol, 1996,112:19-30.
    57. Johnson J.F., Allan D.L., Vance C.P.. Phosphorus stress induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol, 1994, 104: 657-665.
    58. Jun W., Takuro S., Kazuki O.. Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. Journal of Experimental Botany, 2006, 9: 2049-2059.
    59. Karandashov V., Bucher M. . Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci, 2005, 10(1): 22-29.
    60. Klok E.J., Wilson I.W., Wilson D., Chapman S.C, Ewing R.M., Somerville S.C., Peacock W.J., Dolferus R., Dennis E.S. . Expression profile analysis of the low-oxygen response in arabidopsis root cultures. Plant Cell, 2002, 14: 2481-2494.
    61. Kock M., Loffier A., Abel S., Giund K...Structural and regulatory properties of a family of phosphate starvation induced ribonucleases from tomato. Plant Aid.Biol, 1995, 27: 477-185.
    62. Kummer, K.. In: Proceeding of the international conference on the management and fertilization of upland soils in the tropics and subtropics., Nanjing, 1988, ppl37-144.
    63. Lambers H., Shane M.W., Cramer M.D., Pearse S.J., Veneklaas E.J.. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of Botany, 2006, 10: 1093-1114.
    64. Lamont B.B. . Structure, ecology and physiology of root clusters-a review. Plant Soil, 2003, 248: 1-19.
    65. Li D., Zhu H., Liu K., Liu X., Leggewie G., Udvardi M., Wang D. . Purple acid phosphatases of Arabidopsis thaliana. Journal of Biological Chemistry, 2002, 277: 27772-27781.
    66. Liang P., Zhu W.M., Zhang X.Y.. Differential display using one-base anchored oligo-dT primers, Nucleic Acids Res, 1994, 22(25): 5763-5764.
    67. Liang P., Averboukh L., Pardee A.B.. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinement and optimization.Nucleic Acids Res ,1993, 21(14): 3269-3275.
    68. Liang P., Pardee A. B.. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257(14): 967-968.
    69. Linkohr B.I., Williamson L.C., Fitter A.H., Leyser H.M.O. . Nitrate and phosphate availability and distribution effects on root system architecture of Arabidopsis. Plant Journal, 2002, 29: 751-760.
    70. Lisa C.W., Sebastien P.C.R., Ribriowx, Alasrair H.F.. Phosphate availability regulates root system architecture in arabidopsis. Plant Physiology, 2001, 126: 875-882.
    71. Liu C, Muchhal U.S., Raghothama K.G. . Differential expression of TPSI1, a phosphate starvation-induced gene in tomato. Plant Molecular Biology, 1997, 33: 867 - 874.
    72. Loffler A., Glund K., Irie M.. Amino acid sequence of an intracellular, phosphate starvation-induced ribonuclease from cultured tomato (Lycopersicon esculentum) cells. Eur. Jour. Biochem, 1993, 214: 627-633.
    73. Lopez-Bucio J., de la Vega O.M., Guevara-Garcia A., Herrera-Estrella L.. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nature Biotechnology, 2000, 18: 450-453.
    74. Lynch J.P. and Brown K.M.. Topsoil foraging - an architectural adaptation of plants to low phosphorus availability. Plant and Soil, 2001, 237: 225-237.
    75. Ma Z., Baskin T.I. . Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiology, 2003, 131: 1381 - 1390.
    76. Malboobi M.A.,Lefebvre D.D..Isolation of cDNA clones of genes with altered expression levels in phosphate-starved Brassica nigra suspension cells. Plant Mol Biol, 1995, 28(5):859-870.
    77. Marschner H.. Mineral nutrition of higher plants. London: Academic Press, 1995, 537-597.
    78. Martin A.C., del Pozo J.C., Iglesias J., Rubio V., Solano R., de la Pena A., Leyva A., Paz-Ares J..Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant Journal, 2000, 24: 559-567.
    79. Moraes T. and Plaxton W.C.. Purification and characterization of phosphoenolpyruvate carboxylase from Brassica napus (rapeseed) suspension cell cultures: implications for phosphoenolpyruvate carboxylase regulation during phosphate starvation, and the integration of glycolysis with nitrogen assimilation. Eur. J. Biochem, 2000, 267: 4465-4476.
    80. McCulley R.L., Jobbagy E.G., Pockman W.T., Jackson, R.B.. Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Oecologia, 2004, 141: 620-628.
    81. Mikami Y., Horiike G., Kuroyanagi M., Noguchi H., Shimizu M., Niwa Y., Kobayashi H. . Gene for a protein capable of enhancing lateral root formation. FEBS Letters, 1999, 451(1): 45-50.
    82. Ming F., Mi G.H., Lu Q., Yin S., Zhang S.S., Guo B., Shen da L.. Cloning and characterization of cDNA for the Oryza sativa phosphate transporter. Cellular and Molecular Biology Letters, 2005, 10(3): 401-411.
    83. Misson J., Raghothama K.G., Jain A.. A genome-wide transcriptional analysis using Arabidopsis thaliana affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences, USA, 2005, 102: 11934~11939.
    84. Muchhal U. S., Pardo J. M., Raghothama K. G.. Phosphate transporters from the higher plant Arabidopsis thaliana. Plant Biol, 1996, 93: 10519~10523.
    85. Mukatira U. T., Liu C., Varadarajan D. K., Raghothama K. G.. Negative regulation of phosphate starvation-inducible genes. Plant Physiology, 2001, 127: 1854~1862.
    86. Muller M., Schmidt W.. Environmentally induced plasticity of root hair development in arabidopsis. Plant Physiology, 2004, 134: 409~419.
    87. Muller R., Morant M., Jarmer H., Nilsson L., Nielsen T. H.. Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Phys, 2007, 143: 156~171.
    88. Neumann G., Massonneau A., Martinoia E., Romheld V. Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta, 1999, 208(3): 373~382.
    89. Nurnberger T., Abel S., Jost W., Glund K.. Induction of an extracellular ribonuclease in cultured tomato cells upon phosphate starvation. Plant Physiol, 1990, 92: 970~976.
    90. Oshima Y., Ogawa N., Harashima S.. Regulation of phosphatase synthesis in Saccharomyces cerevisiae. Gene, 1996, 179: 171~177.
    91. Penaloza E. and Munoz G. . Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin. The Journal of Experimental Botany, 2005, 56: 145~153.
    92. Peterson R. L. and Farquhar M. L.. Root hairs: specialized tubular cells extending root surfaces. Bot Rev, 1996, 62: 2~33.
    93. Plaxton W. C. and Carswell M. C.. Metabolic aspects of the phosphate starvation response in plants. In: Lerner HR, eds. Plant responses to environmental stress from phytohormones to genome reorganization. New York: Marcel Dekker, 1999, 349~372.
    94. Poirier Y. and Bucher M.. Phosphate transport and homeostasis in Arabidopsis. In The Arabidopsis Book. Chris S., Elliot M., Jeff D. and Mark S., (eds) Wshington D. C., 2002, pp. 1~35.
    95. Raghothama K. G.. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 665~693.
    96. Rausch C., Zimmermann P., Amrhein N., Bucher M.. Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2; 1 in auto-and heterotrophic tissues in potato and Arabidopsis. Plant Journal, 2004, 39: 13~28.
    97. Rengel, Z.. Genetic control of root exudation. Plant Soil, 2002, 245, 59~70.
    98. Reymond M., Svistoonoff S., Loudet O., Nussaume L., Desnos T.. Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant, Cell and Environment, 2006, 29: 115~125.
    99. Rubio V., Linhares F., Solano R., Marti'n A.C., Iglesias J., Leyva A., Paz-Ares J.. A conserved MYB transcription factor in phosphate starvation signalling both in vascular plants and in unicellular algae. Genes and Development, 2001, 15:2122-2133.
    100. Ryan P.R., Delhaize E., Randall P.J.. Characterization of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots . Planta, 1995, 196:103-110.
    101. Sanchez-Calderon L., Lopez-Bucio J., Chacon-Lopez A., Cruz-Ramirez A., Nieto-Jacobo F., Dubrovsky J.G., Herrera-Estrella L. . Phosphate starvation induces a determinate development program in the roots of Arabidopsis thaliana. Plant and Cell Physiology, 2005, 46: 174-184.
    102. Schindler U., Beckmann H., Cashmore A.R.. TGA1 and G-box binding factors: two distinct classes of arabidopsis leucine zipper proteins compete for the G-box-like element TGACGTGG. Plant Cell, 1992,4: 1309-1319.
    103. Schunmann P.H.D., Richardson A.E., Smith F.E., Delhaize E.. Characterization of promoter expression patterns derived from the Phtl phosphate transporter genes of barley (Hordeum vulgare L.). The Journal of Experimental Botany, 2004, 55(399): 855-865.
    104. Smalle J., Vander Straeten D.. Ethylene and regtative development. Plant Physiology, 1997, 100: 593-605.
    105. Smith F.W., Ealing P.M., Dong B., Delhaize E.. The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant Journal, 1997, 11:83-92.
    106. Smith F.W.. The phosphate uptake mechanism. Plant and Soil, 2002, 245: 105-114.
    107. Stitt M., Hurry V. . A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Current Opinion in Plant Biology, 2002, 5: 199-206.
    108. Tadano T., Ozawa K., Sakai H., Osaki M., Matsui H.. Secretion of acid Phosphatase by the roots of crop plants under phosphorus deficient conditions and some properties of the enzyme secreted by lupin roots. Plant Soil, 1993, 156: 95-98.
    109. Tang Z., Sadka A., Morrishige D.T., Mullet J.E.. Homeodomain leucine zipper proteins bind to the phosphate response domain of the soybean VspB tripartite promoter. Plant Physiology, 2001, 125: 797-809.
    110. Ticconi C.A., Abel S. . Short on phosphate: plant surveillance and countermeasures. Trends in Plant Science, 2004, 9: 548-555.
    111. Ticconi C.A., Delatorre C.A., Abel S.. Attenuation of phosphate starvation responses by phosphite in Arabidopsis. Plant Physiology, 2001, 127: 963-972.
    112. Toyota K., Koizumi N., Sato F. . Transcriptional activation of phosphoenolpyruvate carboxylase by phosphorus deficiency in tobacco. Journal of Experimental Botany, 2003, 54: 961-969.
    113. Uhde-Stone C, Zinn K.E., Ramirez-Ydnez M., Li A., Vance C.P., Allan D.L. . Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorous deficiency. Plant Physiology, 2003, 131: 1064-1079.
    114. van der Rest B., Boisson A.M., Gout E., Bligny R., Douce R.. Glycerophosphocholine metabolism in higher plant cells. Evidence of anew glyceryl-phosphodiester phosphodiesterase. Plant Physiology, 2003, 130: 244-255.
    115. Vance C.P., Uhde-Stone C, Allan D.L.. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003, 157: 423-447.
    116. Varadarajan D.K., Karthikeyan A.S., Matilda P.D., Raghothama K.D. . Phosphite, an analog of Phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiology, 2002, 129(3): 1232-1240.
    117. Venter M., Botha F.C. . Promoter analysis and transcriptional profiling: Integration of genetic data enhances understanding of gene expression. Physiologia Plantarum, 2004, 120: 74-83.
    118. Versaw W.K., Harrison M.J.. A chloroplast phosphate transporter, PHT2; 1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell, 2002, 14: 1751-1766.
    119. Vissenberg K.., Fry S.C., Verbelen J.P.. Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in Arabidopsis roots, plant physiol, 2001, 127(3): 25-35.
    120. Wang Y.H., Garvin D.F., Kochian L.V.. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiology, 2002, 130: 1361 -1370.
    121. Wasaki J., Yonetani R., Kuroda S., Shinano T., Yazaki J., Fujii F., Shimbo K., Yamamoto K., Sakata K. Sasaki T., et al.. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant, Cell and Environment, 2003, 26: 1515-1523.
    122. Wieneke, J.. Phosphorus efficiency and phosphorus remobilization in two sorghum (Sorghum bicolor L.) Moench cultivators. Plant Soil, 1990, 123: 139-145.
    123. Williamson L.C., Ribrioux S. P.C. P., Fitter A.H., Leyser H.M.O.. Phosphate availability regulates root system architecture in arabidopsis. Plant Physiology, 2001, 126, 875-882.
    124. Wu P, Ma L., Hou X., Wang M., Wu Y., Liu F., Deng X.W.. Phosphate starvation triggers distinct alterations of genome expression in arabidopsis roots and leaves. Plant Physiology, 2003, 132: 1260-1271.
    125. Xia M., Wang S.F., Wang X.B., Li H.B., Wu p.. Identification of Phosphorus Starvation Inducible Genes in Rice by Suppression Subtractive Hybridization. Acta Botanica Sinica, 2003,45(6): 736-741.
    126. Yu B., Xu C, Benning C.. Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proceedings of the National Academy of Sciences of the USA, 2002, 99: 5732-5737.
    127. Zhang H., Forde B.G.. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 1998, 279: 407-409.
    128. Zhao L.M., Versaw W.K., Liu J.Y., Harrison M.J.. A phosphate transporter from Medicago truncatula is expressed in the photosynthetic tissues of the plant and located in the chloroplast envelope. New Phytologist, 2003, 157: 291-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700