小麦类钙调磷酸酶B亚基蛋白TaCBL4和TaCBL3的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非生物逆境是作物产量的主要制约因素。现代分子生物学手段现已广泛应用于育种研究,并获得不少具有优良耐逆能力的作物新品种。类钙调磷酸酶B亚基蛋白(calcineurin B-like proteins, CBL)是一类重要的钙信号受体蛋白,在非生物胁迫应答反应中具有重要作用,主要通过与CBL相互作用蛋白激酶(CBL-interacting protein kinases, CIPK)相互作用将信号向下游传递。拟南芥中CBL和CIPK家族成员在耐逆中的作用已有较深入的研究,其中AtSOS3(CBL4)和AtCIPK24(SOS2)是SOS途径的两个关键组分,在植物盐胁迫应答中发挥重要作用。但是小麦中CBL和CIPK家族成员功能以及是否存在SOS途径还不清楚,SOS途径在植物中是否具有保守性和通用性还未见报道。
     本研究基于以上科学问题,利用生物信息学方法系统分析了小麦CBL和CIPK基因家族,从本室培育的小麦渐渗系耐盐品种山融3号(SR3)中克隆了一系列TaCBLs和TaCIPKs基因,并初步验证了TaCBL4、TaCBL3在非生物胁迫应答中的功能。
     一、小麦CBL和CIPK的生物信息学分析和新基因克隆
     通过生物信息学分析,电子克隆了14个小麦CBL家族成员和34个小麦CIPK家族成员。多序列比对及进化树分析显示,这些TaCBLs在大小和结构上非常保守,其中5个具有豆蔻酰化位点,2个具有跨膜疏水区,暗示这7个TaCBLs在抗逆中发挥重要作用。TaCIPKs间序列差异比较大,但结构十分保守。SR3中TaCIPKs间也存在差异,这可能与基因倍增过程相关。进化树分析显示,小麦中TaCBLs和TaCIPKs都存在许多旁系同源基因,并且它们与水稻中同源基因的相似性高于拟南芥。
     将这些电子克隆的TaCIPK基因与实验室定制的小麦cDNA芯片探针进行比对,以分析它们的盐胁迫应答特征。结果发现,8个TaCIPKs在芯片中有特异性匹配探针,其中4个为盐诱导表达基因,4个盐下调表达基因:另外,芯片中有3个探针分别对应多个TaCIPK序列,而且这3个探针在盐胁迫24h后表达量都显著提高。这些盐胁迫应答的TaCIPKs(?)可能都参与植物的盐胁迫应答反应,其功能需要进一步研究。
     根据电子克隆序列,从SR3中克隆3个TaCBL和9个TaCIPK新基因,按照与拟南芥CBLs的同源性,分别命名为TaCBL1/3/4和TaC1PK2/8/11/15/17/19/30/32/34。 TaClPKs中,TaCIPK8、TaCIPK15在盐胁迫下上调表达,TaCIPK11下调表达,其他基因的应答模式有待进一步验证,为耐盐候选基因的鉴定及TaCBL互作蛋白的筛选奠定了基础。
     二、小麦TaCBL4和TaCBL3功能分析
     1、TaCBL4结构与可能作用分析
     TaCBL4有7个内含子,其编码产物定位于细胞膜,与拟南芥同源基因AtSOS3(CBL4)相似,是AtSOS3同源基因。TaCBL4在小麦的根、叶、茎、幼穗、麦芒、幼胚、旗叶等组织中均能表达,NaCl(?)协迫下其表达量明显增加,表明TaCBL4在小麦生长发育和盐胁迫应答过程中均发挥重要作用。
     为了验证TaCBL4(?)的生物学功能及其与AtSOS3(?)的异同,将其在拟南芥Col-0野生型和sos3突变体中异源表达,观察表型变化,并用AtSOS3在拟南芥中的过表达系作为对照。TaCBL4过表达不影响拟南芥的营养和生殖生长。在1/2MS培养基中,Col-0(WT)、TaCBL4过表达野生型系(OE)、TaCBL4过表达sos3(sOE)幼苗根长和地上部分无显著性差异。NaCl胁迫下,与WT相比,sos3幼苗的主根更短、地上部分漂白程度高,与朱建康实验室结果一致;而OE系和sOE系幼苗根与WT没有显著差别,但是叶片显著变小。这显示,TaCBL4能够恢复sos3根的表型,但首次发现OE系和sOE系在胁迫下抑制叶生长。LiCl胁迫下,与WT相比,sos3幼苗的主根明显变短、地上部分变小,而OH系、sOE系及AtSOS3过表达系幼苗正好相反,主根更长、地上部分更大,首次表明TaCBL4和AtSOS3过表达可以提高幼苗期锂离子胁迫抗性。在ABA处理和渗透胁迫下不同株系无明显差异,表明TaCBL4是一个离子特异性响应基因。
     相比植株发育,盐胁迫对种子萌发的影响更大。为了分析TaCBL4在这阶段是否发挥重要作用,我们以绿色子叶张开率为标准,比较了不同株系在钠、锂离子胁迫下的萌发率差异。NaCl胁迫下,sos3不萌发,WT萌发率降低,而OE系和sOE萌发率受影响少,萌发率明显比WT高。LiCl处理下,WT和sos3的萌发率降低,基中sos3(?)降低更明显,而OE系和sOE萌发率无显著变化。
     高盐土壤一般碱性较高,我们发现与WT相比,OE系在盐碱条件下的萌发率明显提高。
     以上结果显示,TaCBL4和AtSOS3一样,也是钠、锂离子特异性响应基因,并且TaCBLA和AtSOS3在盐胁迫应答中发挥相似的功能,表明小麦中也存在SOS系统,而且不同植物间SOS系统存在保守性和通用性。本实验发现,TaCBL4在小麦抗钠离子育种中应该有针对性地设计在种子萌发阶段特异性表达,而在抗锉离子育种中则不受此限制。
     有趣的是,低钾条件下,与Col-0相比,OE系和sOE系幼苗的地上部分明显变小,而AtSOS3过表达系则无显著变化,推测TaCBL4可能还调控钾离子通道的活性。这一结果表明,TaCBL4在盐胁迫应答中的作用与钾相关,幼苗阶段TaCBL4降低对Na+的耐性是由于负调控K+的转运引起的,显示了不同物种间SOS系统的特异性。
     为了进一步认识TaCBL4的作用机制及其与AtSOS3功能的异同,我们利用酵母双杂交方法分离拟南芥中与TaCBL4相互作用的CIPK蛋白。结果发现,TaCBL4能与AtCIPK5/10/11/15/18/21/24这7个CIPKs互作,其中AtCIPK15/24为AtSOS3互作蛋白,而AtCIPK6/7不与TaCBL4互作。推测TaCBL4通过与AtCIPK11相互作用而抑制了后者活性,提高了植株的抗盐碱性,通过AtCIPK24(SOS2)互作而激活SOS通路促进Na+外排。TaCBL4和AtSOS3互作CIPKs种类存在相似性和特异性,而且TaCBL4和AtSOS3对与其共同互作的CIPKs的调控也可能存在差异性,那么这种特异性和差异性是否与TaCBL4过表达导致的低钾敏感型相关,需要进。步研究。
     2、TaCBL3功能的初步分析
     TaCBL3与水稻OsCBL6及拟南芥AtCBL2、AtCBL6相似性较高,其编码蛋白定位于液泡膜。离子和渗透胁迫下,TaCBL3过表达拟南芥株系与Col-0无明显差异。缺钾诱导TaCBL3的表达,而且缺钾条件下,与Col-0相比,TaCBL3过表达株系黄化更严重,植株生长抑制程度更显著。这表明,TaCBL3可能是钾离子通道的抑制因子,为植物离子转运机制研究提供了新的基因资源。
     总之,本论文通过生物信息学和分子生物学方法,系统分析了小麦CBL和CIPK家族成员的序列和表达特征,通过CBL4的功能分析明确了不同物种间SOS通路对高盐、低钾响应存在通用性和特异性,为进一步认识SOS通路调控机制及离子胁迫响应特征奠定了基础,并为培育耐盐、钾营养高效作物新品种提供了分子元件。
Abiotic stress is one of major adverse constraints for crop yield. Modern molecular biology has been widely used for breeding, and a lot of stress tolerant crops were developed. In plants, the calcineurin B-like protein (CBL) family represents a unique group of calcium sensors and plays a key role in decoding calcium transients by specifically interacting with and regulating a family of protein kinases (CIPKs). Molecular genetics analyses of loss-of function mutants have implicated several CBL proteins and CIPKs as important components of abiotic stress responses. In Arabidopsis, the role of CBL and CIPK families in the response to abiotic stress has been largely elucidated; AtCBL4(SOS3) and AtCIPK24(SOS3) are two crucial component of SOS pathway, a ionic stress specific pathway in plants. However, the function of CBL and CIPK families as well as whether SOS pathway is present in wheat is still not clear, and whether SOS pathway is conserved in plants has not been documented.
     Based on these scientific issues, we comprehensively analyzed the sequences of CBL and CIPK families, and isolated a set of TaCBL and TaCIPK genes from a wheat introgression cultivar SR3with high salt tolerance, and confirmed the role of two CBL genes TaCBL4and TaCBL3in the response to abiotic stress. The main research contents and results are summarized as follows:
     1. The bioinfomatic analysis of wheat CBL and CIPK families and isolation of novel CBL/CIPK genes
     According to the bioinformatic analysis, we electronically cloned14putative CBL genes and34putative CIPK genes from wheat. Multiple sequence alignment and phylogenetic tree analysis showed that these TaCBLs are much conserved in size and structure. Of them, five TaCBL proteins have N-myristoylation site and two possess transmembrane hydrophobic region, suggesting that these seven members play important roles in the stress response in wheat. TaCIPKs vary in sequence, but their second structure is very conserved. TaCIPKs from SR3were also difference from each other, which may possibly be resulted from gene duplication during evolution. Phylogenetic analysis showed that both TaCBLs and TaCIPKs had many paralogs, and they had higher similarity to homologues of rice than to those of Arabidopsis.
     To know their salt-responsive patterns, these TaCIPKs were subject to BlastN against probes of our customized cDNA microarray. Among them, eight TaCIPKs had specifically matched probes, including four salt-inducible and four salt-restricted ones respectively; there had three salt-inducible probes, each of which referred to several TaCIPKs. These salt-responsive TaCIPKs may be involved in the response to salt stress, and their function is worthy of be elucidated.
     According to these electronically cloned sequences, We cloned three TaCBLs and nine TaCIPKs for SR3. Based on their similarity to CBLs and CIPKs in Arabidopsis, these isolated genes were named as TaCBL1, TaCBL3, TaCBU, as well as TaCIPK2, TaCIPK8, TaCIPK15, TaCIPK17, TaCIPK19, TaCIPK30, TaCIPK32and TaCIPK34. Among TaCIPKs, TaCIPK8and TaCIPK15were up-regulated after exposure to salt, while TaCIPKI I was down-regulated.
     2. The function analysis of wheat TaCBL4and TaCBL3
     2.1TaCBL4structure and putative function analysis
     TaCBL4possesses seven introns, and encodes a putative homolog of Arabidopsis CBL4/SOS3protein. TaCBL4localized in the cell membrane. TaCBL4transcribed in roots, leaves, stems, young panicle, awn, immature embryo and flag leaf, and it was drastically induced after exposure to200mM NaCl, suggesting its roles in development and response to salt stress.
     To know its role in the response to abiotic stress, and its similarity to and difference from AtSOS3, TaCBL4was transformed into Arabidopsis Col-0wild type and sos3mutant to observe the phenotypic alteration, and AtSOS3overexpression Arabidopsis were used as the control. We found that TaCBL4ovevcxpression had no effect on vegetative and reproductive growth. In1/2MS medium, there had no difference among both roots and leaves of seedlings of Col-0(WT), TaCBL4overexpression (OE) lines, sos3overexpression TaCBL4(sOE)-Under NaCl treatment, in comparison with WT, sos3had shorter roots, and its leaves was severely bleached; both OE and sOE lines showed no significant difference, while there leaves became smaller, which phenocopied the effect of AtSOS3. This indicates that TaCBL4rescued the root phenotype of sos3, and firstly found that TaCBL4inhibited leaf growth under salt stress. Under LiCl treatment, in comparison with WT, sos3had shorter roots and smaller leaves, while OE and sOE lines as well as AtSOS3overexpression lines had longer roots and larger leaves, firstly demonstrating that TaCBL4and AtSOS3can enhance Li+tolerance. Under ABA and osmotic stress, no significant difference was found, indicating that TaCBL4is a salt specifically responsive gene.
     In comparison with plant development, salt stress has a more severe adverse effect on seed germination. To know the role of TaCBL4at this stage, we compared the germination rate. Under NaCl treatment, sos3did not germinate, the germination rate of WT was reduced, while the germination rate of OE and sOE lines were comparable. Under LiCl treatment, the germination rate of WT and sos3was significantly lowered with a more extent in sos3, while that of OE and sOE lines was not affected; the growth of early-stage seedlings of WT and sos3was obviously inhibited, while the effect on OE and sOE lines was slight.
     High saline soils are often alkaline. We found that under saline and alkaline conditions, OE lines had higher germination rate and superior growth ability at early stage than WT.
     Above results indicate that, alike AtSOS3, TaCBL4was a Na+and Li+responsive gene, and they performed similar roles in the response to salt stress. This suggests that SOS pathway is under work in wheat, this pathway shares conservation among plants. Our work also shows that, it is a ideal strategy to let TaCBL4specifically transcribe at germination stage when breeding Na+tolerant wheat, and the gene can be constitutively expressed when breeding Li+tolerant cultivars.
     Interestingly, under low K+conditions, in comparison with WT, the leaves of OE and sOE lines were smaller, while those of AtSOS3overexpression lines were similar, suggesting that TaCBL4can modulate the activities of K'channels. This result indicates that the role of TaCBL4in the response to salt was associated with K+ which outline the specificities of SOS pathway among different plants.
     To further uncover the mechanism of TaCBL4performance and its similarity to and difference from AtSOS3, we isolated TaCBL4interacting AtCIPKs using the yeast two hybridization method. TaCBL4interacted with AtCIPK5,10,11,15,18,21and24, among which AtCIPK15and24are AtSOS3interacting proteins, while AICIPK6,7, the other AtSOS3interacting proteins, did not bind to TaCBL4. We speculate that TaCBL4interacts with AtCIPK11and inhibits its activity to improve the tolerance to saline and alkaline stress, and it interacts with AtCIPK24(SOS2) and triggers SOS pathway to accelerate Na+efflux. The coming question is whether or not the similarity and difference between TaCBL4and AtSOS3with respective to CIPK interaction, along with the putative difference between the modulation of TaCBL4and AtSOS3on their shared interacting CIPKs, are associated with the enhancement of TaCBL4-mediated sensitivity to low K+
     2.2The primary analysis of TaCBL3function
     TaCBL3shared high identities to rice OsCBL6and Arabidopsis AtCBL2and AtCBL6, and its encoding protein localized in vacuolar membrane. Under NaCl and osmotic stress, there had no phenotypic difference among Col-0and TaCBL3overexpression lines. Lack K'induced the expression of TaCBL3; under lack K+conditions, in comparison with Col-0, TaCBL3overexpression lines were more seriously etiolated, and their growth was more obviously inhibited. This demonstrated that TaCBL3is possibly a inhibitory factor of K'channels.
     In summary, we comprehensively analyzed the sequence and expression characteristics of wheat CBL and CIPK families, and found the similarity and difference among SOS pathway of different plants during response to high Na+/Li+and low K+, which provided evidence for further understanding the regulatory mechanisms of SOS pathway and response to ionic stress, and these CBL and CIPK genes can be used for breeding new cultivars with salt tolerance and high K+utilization efficiency.
引文
Albrecht, V., Ritz, O., Linder, S., Harter, K., and Kudla, J. (2001). The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. The EMBO journal 20, 1051-1063.
    Albrecht, V., Weinl, S., Blazevic, D., D'Angelo, C., Batistic, O., Kolukisaoglu, U., Bock, R., Schulz, B., Harter, K., and Kudla, J. (2003). The calcium sensor CBL1 integrates plant responses to abiotic stresses. The Plant journal:for cell and molecular biology 36,457-470.
    An, R., Chen, Q.J., Chai, M.F., Lu, P.L., Su, Z., Qin, Z.X., Chen, J., and Wang, X.C. (2007). AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li/H antiporter. The Plant journal:for cell and molecular biology 49,718-728.
    Anderson, J.A., Huprikar, S.S., Kochian, L.V., Lucas, W.J., and Gaber, R.F. (1992). Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences 89,3736-3740.
    Ashley, M.K., Grant, M., and Grabov, A. (2006). Plant responses to potassium deficiencies:a role for potassium transport proteins. Journal of experimental botany 57,425-436.
    Banuelos, M.a.A., Garciadeblas, B., Cubero, B., and Rodnguez-Navarro, A. (2002). Inventory and Functional Characterization of the HAK Potassium Transporters of Rice. Plant physiology 130, 784-795.
    Batistic, O., and Kudla, J. (2004). Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219,915-924.
    Batistic, O., and Kudla, J. (2012). Analysis of calcium signaling pathways in plants. Biochimica et biophysica acta 1820,1283-1293.
    Batistic, O., Rehers, M., Akerman, A., Schlucking, K., Steinhorst, L., Yalovsky, S., and Kudla, J. (2012). S-acylation-dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses. Cell research 22,1155-1168.
    Benlloch, M., Ojcda, M.A., Ramos, J., and Rodrigucz-Navarro, A. (1994). Salt sensitivity and low discrimination between potassium and sodium in bean plants. Plant Soil 166,117-123.
    Blumwald, F. (2000). Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12,431-434.
    Burstrom, H.G. (1968). CALCIUM AND PLANT GROWTH. Biological Reviews 43,287-316.
    Cellier, F., Conejero, G., Ricaud, L., Luu, D.T., Lepetit, M., Gosti, F., and Casse, F. (2004). Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. The Plant Journal 39,834-846.
    Chcrcl, I. (2004). Regulation of K+ channel activities in plants:from physiological to molecular aspects. Journal of experimental botany 55,337-351.
    Chccseman, J.M. (1988). Mechanisms of salinity tolerance in plants. Plant physiology 87,547-550.
    Cheong, Y.H., Kim, K.N., Pandey, G.K., Gupta, R., Grant, J.J., and Luan, S. (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. The Plant cell 15,1833-1845.
    Cheong, Y.H., Pandey, G.K., Grant, J.J., Batistic, O., Li, L., Kim, B.G., Lee, S.C., Kudla, J., and Luan, S. (2007). Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. The Plant journal:for cell and molecular biology 52,223-239.
    Cheong, Y.H., Sung, S.J., Kim, B.-G., Pandcy, O.K., Cho, J.-S., Kim, K.-N., and Luan, S. (2010). Constitutive ovcrexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Molecules and cells 29,159-165.
    Clapham, D.E. (2007). Calcium signaling. Cell 131,1047-1058.
    Day, I.S., Reddy, V.S., Shad Ali, G., and Reddy, A.S. (2002). Analysis of EF-hand-containing proteins in Arabidopsis. Genome biology 3, RESEARCH0056.
    DeFalco, T.A., Bender, K.W., and Snedden, W.A. (2010). Breaking the code:Ca2+ sensors in plant signalling. The Biochemical journal 425,27-40.
    Drcrup, M.M., Schlucking, K., Hashimoto, K., Manishankar, P., Steinhorst, L., Kuchitsu, K., and Kudla, J. (2013). The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Molecular plant 6, 559-569.
    Elumalai, R.P., Nagpal, P., and Reed, J.W. (2002). A Mutation in the Arabidopsis KT2/KUP2 Potassium Transporter Gene Affects Shoot Cell Expansion. The Plant Cell Online 14.119-131.
    FAO (2008). FAO Land and Plant Nutrition Management Service. http://wwwfaoorg/ag/agl/agll/spush.
    Fisarakisa I., Chartzoulakisb K., and D., S. (2001). Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agricultural Water Management 51,13-27.
    Flowers, T.J., and Hajibagheri, M.A. (2001). Salinity tolerance in Hordeum vulgare:ion concentrations in root cells of cultivars differing in salt tolerance**. Plant Soil 231,1-9.
    Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlec, C., Jones, J.D., et al. (2003). Reactive oxygen species produced by NADPII oxidase regulate plant cell growth. Nature 422,442-446.
    Fu,H.-H., and Luan, S. (1998). AtKUP1:A Dual-Affinity K+ Transporter from Arabidopsis. The Plant Cell Online 10,63-73.
    Fuglsang, A.T., Guo, Y., Cuin, T.A., Qiu, Q., Song, C., Kristiansen, K.A., Bych, K., Schulz, A., Shabala, S., Schumakcr, K.S., et al. (2007). Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. The Plant cell 19,1617-1634.
    Gambalc, F., and Uozumi, N. (2006). Properties of Shaker-type Potassium Channels in Higher Plants. The Journal of membrane biology 210,1-19.
    Gassmann, W., and Schroeder, J.I. (1994). Inward-Rectifying K+ Channels in Root Hairs of Wheat (A Mechanism for Aluminum-Sensitive Low-Affinity K+ Uptake and Membrane Potential Control). Plant physiology 105,1399-1408.
    Gierth, M., and M ser, P. (2007). Potassium transporters in plants? Involvement in K+ acquisition, redistribution and homeostasis. FEBS letters 581.2348-2356.
    Golldack, D., Quigley, F., Michalowski. C., Kamasani. U., and Bohncrt,H. (2003). Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant molecular biology 51,71-81.
    Gong, D., Guo, Y., Schumaker, K.S., and Zhu, J.K. (2004). The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant physiology 134,919-926.
    Grattan, S.R., and Grieve, C.M. (1998). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae 78,127-157.
    Grattana S.R., and C.M, G. (1998). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae 78,127-157.
    Gu, Z., Ma, B., Jiang, Y., Chen,Z., Su, X., and Zhang, H. (2008). Hxpression analysis of the calcincurin B-likc gene family in rice (Oryza sativa L.) under environmental stresses. Gene 415, 1-12.
    Halfter, U., Ishitani, M., and Zhu, J.-K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences 97,3735-3740.
    Hasegawa, P.M., Bressan, R.A., Zhu, J.K., and Bohnert, H.J. (2000). Plant Cellular and Molecular Responses to High Salinity. Annual review of plant physiology and plant molecular biology 51, 463-499.
    Held, K., Pascaud, F., Eckert, C., Gajdanowicz, P., Hashimoto, K., Corratge-Faillic, C., Offenborn, J.N., Lacombe, B., Dreyer, I., Thibaud, J.B., et al. (2011). Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell research 21,1116-1130.
    Hepler, P.K. (2005). Calcium:a central regulator of plant growth and development. The Plant cell 17, 2142-2155.
    Hirsch, R.E., Lewis, B.D., Spalding, E.P., and Sussman, M.R. (1998). A Role for the AKT1 Potassium Channel in Plant Nutrition. Science 280,918-921.
    Hu, H.C., Wang, Y.Y., and Tsay, Y.F. (2009). AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. The Plant journal:for cell and molecular biology 57,264-278.
    Ishitani, M., Liu; J., Halfter, U., Kim, C.S., Shi, W., and Zhu, J.K. (2000). SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. The Plant cell 12,1667-1678.
    Israelsson, M., Siegel, R.S., Young, J., Hashimoto, M., Iba, K., and Schroeder, J.I. (2006). Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Current opinion in plant biology 9,654-663.
    Jeong, H.J., Jwa, N.-S., and Kim, K.-N. (2005). Identification and characterization of protein kinases that interact with the CBL3 calcium sensor in Arabidopsis. Plant Science 169,1125-1135.
    Jones, R.G.W., and Lunt, O.R. (1967). The function of calcium in plants. Bot Rev 33,407-426.
    Kim, B.G., Waadt, R., Cheong, Y.H., Pandey, G.K., Dominguez-Solis, J.R., Schultke, S., Lee, S.C., Kudla, J., and Luan, S. (2007). The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. The Plant journal:for cell and molecular biology 52,473-484.
    Kim, E.J., Kwak, J.M., Uozumi, N., and Sehroeder, J.I. (1998). AtKUP1:An Arabidopsis Gene Encoding High-Affinity Potassium Transport Activity. The Plant Cell Online 10,51-62.
    Kolukrsaoglu, U., Weinl, S., Blazcvie. D., Batistic, O., and Kudla, J. (2004). Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-C1PK signaling networks. Plant physiology 134,43-58.
    Krasensky, J., and Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of experimental botany 63,1593-1608.
    Kronzucker, H., Szczerba, M., and Britto, D. (2003). Cytosolic potassium homeostasis revisited: 42K-tracer analysis in Hordeum vulgare L. reveals set-point variations in [K+]. Planta 217, 540-546.
    Kudla, J., Batistic, O., and Hashimoto, K. (2010). Calcium signals:the lead currency of plant information processing. The Plant cell 22,541-563.
    Laude, A.J., and Simpson, A.W. (2009). Compartmentalized signalling:Ca2+ compartments, microdomains and the many facets of Ca2+ signalling. The FEBS journal 276, 1800-1816.
    Lcbaudy, A., Very, A.-A., and Sentenac, H. (2007). K+ channel activity in plants:Genes, regulations and functions. FEBS letters 581,2357-2366.
    Liu, J., and Zhu, J.-K. (1997). An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proceedings of the National Academy of Sciences 94,14960-14964.
    Liu, K.H., and Tsay, Y.F. (2003). Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. The EMBO journal 22,1005-1013.
    Liu, L.-L., Ren, H.-M., Chen, L.-Q., Wang, Y., and Wu, W.-H. (2012). A protein kinase CIPK9 interacts with calcium sensor CBL3 and regulates K+ homeostasis under low-K+ stress in Arabidopsis. Plant physiology.
    Luan, S. (2009). The CBL-CTPK network in plant calcium signaling. Trends in plant science 14,37-42.
    Luan, S., Kudla, J., Rodriguez-Concepcion, M., Yalovsky, S., and Gruissem, W. (2002). Calmodulins and calcineurin B-like proteins:calcium sensors for specific signal response coupling in plants. The Plant cell 14 Suppl, S389-400.
    Maathuis, F.M., and Sanders, D. (1995). Contrasting roles in ion transport of two K+-channel types in root cells of Arabidopsis thaliana. Planta 197,456-464.
    Maresova, L., and Sychrova, H. (2005). Physiological characterization of Saccharomyces ccrevisiae khal deletion mutants. Molecular microbiology 55,588-600.
    Maresova, L., and Sychrova, H. (2006). Arabidopsis thaliana CHX17 gene complements the khal deletion phenotypes in Saccharomyces cerevisiae. Yeast 23,1167-1171.
    Martinez-Cordero, M.A., Martinez, V., and Rubio, F. (2004). Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant molecular biology 56,413-421.
    McAinsh, M.R., and Pittman, J.K. (2009). Shaping the calcium signature. The New phytologist 181, 275-294.
    Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu Rev Plant Biol 59,651-681.
    Nieves-Cordones, M., Martinez-Cordero, M.A., Martinez, V., and Rubio, F. (2007). An NH4+-sensitive component dominates high-affinity K+ uptake in tomato plants. Plant Science 172,273-280.
    Nieves-Cordones, M., Miller, A.J., Aleman, F'., Martinez, V., and Rubio, V. (2008). A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant molecular biology 68,521-532.
    Pandey, G.K., Grant, J.J., Cheong, Y.H., Kim, B.G., Li le, G., and Luan, S. (2008). Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Molecular plant 1,238-248.
    Parvaiz, A., and Satyawali. S. (2008). Salt stress and phyto-biochemical responses of plants a review. PLANT SOIL ENVIRON 54,89-99
    Perochon, A., Aldon, D., Galaud, J.P., and Runty, B. (2011). Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93,2048-2053.
    Piao, H.L., Xuan, Y.H., Park, S.H., Jc, B.I., Park, S.J., Park, S.H., Kim, C.M., Huang, J., Wang, G.K., Kim, M.J., et al. (2010). OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Molecules and cells 30,19-27.
    Qiu, Q.S., Guo, Y., Dietrich, M.A., Schumaker, K.S., and Zhu, J.K. (2002). Regulation of SOSI, a plasma membrane Na+/H+exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America 99,8436-8441.
    Quan, R., Lin, H., Mcndoza, I., Zhang, Y., Cao, W., Yang, Y., Shang, M., Chen, S., Pardo, J.M., and Guo, Y. (2007). SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. The Plant cell 19,1415-1431.
    Quintero, F.J., and Blatt, M.R. (1997). A new family of K+ transporters from Arabidopsis that arc conserved across phyla. FEBS letters 415,206-211.
    Rains, D.W., and Epstein, E. (1967). Sodium Absorption by Barley Roots:Role of the Dual Mechanisms of Alkali Cation Transport. Plant physiology 42,314-318.
    Ren, X.L., Qi, G.N., Feng, H.Q., Zhao, S., Zhao, S.S., Wang, Y., and Wu, W.H. (2013). Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K(+) homeostasis in Arabidopsis. The Plant journal:for cell and molecular biology 74,258-266.
    Rodriguez-Navarro, A., and Rubio, F. (2006). High-affinity potassium and sodium transport systems in plants. Journal of experimental botany 57,1149-1160.
    Rodriguez-Rosales, M.P., Jiang, X., Galvez, F.J., Aranda, M.N., Cubero, B., and Venema, K. (2008). Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytologist 179,366-377.
    Rubio, F., Santa-Maria, G.E., and Rodriguez-Navarro, A. (2000). Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiologia plantarum 109, 34-43.
    Rus, A., Yokoi, S., Sharkhuu, A., Reddy, M., Lee, B.-h., Matsumoto, T.K., Koiwa, H., Zhu, J.-K., Bressan, R.A., and Hasegawa, P.M. (2001). AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proceedings of the National Academy of Sciences 98,14150-14155.
    Santa-Maria, G.E., Danna, C.H., and Czibener, C. (2000). High-Affinity Potassium Transport in Barley Roots. Ammonium-Sensitive and -Insensitive Pathways. Plant physiology 123,297-306.
    Santa-Maria, G.E., Rubio, F., Dubcovsky, J., and Rodriguez-Navarro, A. (1997). The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. The Plant cell 9,2281-2289.
    SCHERER, H.W., MACKOWN, C.T., and LEGGETT, J.E. (1984). Potassium-Ammonium Uptake Interactions in Tobacco Seedlings. Journal of experimental botany 35,1060-1070.
    Sentcnac, H., Bonneaud, N., Minet, M., Lacroute, F., Salmon, J., Gaymard, F., and Grignon, C. (1992). Cloning and expression in yeast of a plant potassium ion transport system. Science 256,663-665.
    Shin, R., and Schachtman, D.P. (2004a). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proceedings of the National Academy of Sciences of the United States of America 101,8827-8832.
    Shin, R., and Schachtman, D.P. (2004b). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proceedings of the National Academy of Sciences of the United States of America 101,8827-8832.
    Shukla, J., Nobrc, C., and Sellers, P. (1990). Amazon deforestation and climate change. Science 247, 1322-1325.
    Spalding, E.P., Hirsch. R.E., Lewis, D.R., Qi, Z., Sussman, M.R., and Lewis, B.D. (1999). Potassium uptake supporting plant growth in the absence of AKT1 channel activity:Inhibition by ammonium and stimulation by sodium. The Journal of general physiology 113,909-918.
    Su, H., Golldack, D., Zhao, C., and Bohncrt, H.J. (2002). The expression of HAK-type K(+) transporters is regulated in response to salinity stress in common ice plant. Plant physiology 129, 1482-1493.
    Szczerba, M.W., Britto, D.T., and Kronzucker, H.J. (2006). Rapid, Futile K+ Cycling and Pool-Size Dynamics Define Low-Affinity Potassium Transport in Barley. Plant physiology 141,1494-1507.
    Sze, H., Padmanaban, S., Collier, F., Honys, D., Cheng, N.-H., Bock, K.W., Conejcro, G., Li, X., Twell, D., Ward, J.M., et al. (2004). Expression Patterns of a Novel AtCHX Gene Family Highlight Potential Roles in Osmotic Adjustment and K+ Homcostasis in Pollen Development. Plant physiology 136,2532-2547.
    Takahashi, R., Nishio, T., Ichizen, N., and Takano, T. (2007). Cloning and functional analysis of the K+ transporter, PhaHAK2, from salt-sensitive and salt-tolerant reed plants. Biotechnology letters 29, 501-506.
    Tang, R.J., Liu, H., Yang, Y., Yang, L., Gao, X.S., Garcia, V.J., Luan, S., and Zhang, H.X. (2012). Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell research 22,1650-1665.
    Vale, F.R., Jackson, W.A., and Volk, R.J. (1987). Potassium Influx into Maize Root Systems:Influence of Root Potassium Concentration and Ambient Ammonium. Plant physiology 84,1416-1420.
    Vallcjo, A.J., Peralta, M.L., and Santa-Maria, G.E. (2005). Expression of potassium-transporter coding genes, and kinetics of rubidium uptake, along a longitudinal root axis. Plant, cell & environment 28,850-862.
    Walker, D.J., Leigh, R.A., and Miller, A.J. (1996). Potassium homeostasis in vacuolate plant cells. Proceedings of the National Academy of Sciences of the United States of America 93, 10510-10514.
    Wang, M., Gu, D., Liu, T., Wang, Z., Guo, X., Hou, W., Bai, Y., Chen, X., and Wang, G. (2007a). Overexpression of a putative maize calcinourin B-like protein in Arabidopsis confers salt tolerance. Plant molecular biology 65,733-746.
    Wang, M.Y., Siddiqi, M.Y., and Glass, A.D.M. (1996). Interactions between K+ and NH4+:effects on ion uptake by rice roots. Plant, cell & environment 19,1037-1046.
    Wang, S.-M., Zhang, J.-L., and Flowers, T.J. (2007b). Low-Affinity Na+ Uptake in the Halophyte Suacda maritima. Plant physiology 145,559-571.
    Wanjogu, S.N., Muya, E.M., Gichcru, P.T., and Waruru, B.K. (2001). Soil degradation:Management and rehabilitation in Kenya. Proceedings of the FAO/ISCW expert consultation on Management of Degraded Soil in Southern and Eastcrn Africa (MADS-SEA) 2nd Networking meeting, Pretoria, South Africa PR 102-113
    White, P.J. (1996). The permeation of ammonium through a voltage-independent K+ chaunel in the plasma membrane of rye roots. The Journal of membrane biology 152,89-99.
    White, P.J., and Lemtiri-Chlich, F. (1995). Potassium currents across the plasma membrane of protoplasts derived from rye roots:a patch-clamp study. Journal of experimental botany 46, 497-511.
    Xiang. Y., Huang, Y., and Xiong, L. (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant physiology 144,1416-1428.
    Yadav, S., Irfan, M.. Ahmad, A., and Hayat, S. (2011). Causes of salinity and plant manifestations to salt stress:a review. Journal of environmental biology/Academy of Environmental Biology, India 32,667-685.
    Yang, Q., Chen, Z.-Z., Zhou, X.-F., Yin. H.-B., Li, X., Xin, X.-F., Hong, X.-H., Zhu, J.-K., and Gong,Z. (2009). Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Molecular plant 2,22-31.
    Yang, W., Kong, Z., Omo-Ikcrodah, K., Xu, W., Li, Q., and Xue, Y. (2008). Calcincurin B-like interacting protein kinasc OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). Journal of genetics and genomics-Yi chuan xuc bao 35,531-543, S531-532.
    Yang, Y., Qin, Y., Xie, C., Zhao, F., Zhao, J., Liu, D., Chen, S., Fuglsang, A.T., Palmgren, M.G., Schumaker, K.S., el al. (2010). The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase. The Plant cell 22,1313-1332.
    Ye, J., Zhang, W., and Guo, Y. (2013). Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization. Plant cell reports 32,139-148.
    Zhang, H.-X., and Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotech 19,765-768.
    Zhao, Y., Wang, T., Zhang, W., and Li, X. (2011). SOS3 mediates lateral root development under low sait stress through regulation of auxin redistribution and maxima in Arabidopsis. The New phytologist 189,1122-1134.
    Zimmermann, S., and Sentenac, H. (1999). Plant ion channels:from molecular structures to physiological functions. Current opinion in plant biology 2,477-482.
    姜红,田丽萍.(2007).作物的耐盐生理生化特性.山西农业科学 35,3.
    毛秀红,刘翠兰,燕丽萍,李双云,李丽,王守国,杨青山,夏阳(2010).植物盐害机理及其应对盐胁迫的策略.山东林业科技 4.
    王宝山,赵可夫,邹琦(1997).作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报14.25-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700