虚拟海洋与三维可视化仿真引擎的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋是一个巨大复杂、各种因素相互影响,多类过程彼此作用的时变系统。中国是一个海洋大国,社会和经济发展必然越来越多地依赖海洋。数字海洋是由海量、多分辨率、多时相、多类型海洋监测监视数据及其分析算法构建而成的海洋信息系统。从国家发展战略的高度出发,我国将数字海洋列入国家海洋科学技术发展计划。随着这一发展目标的确定和实施,运用数字化手段统一处理和表现海洋数据和现象已成为迫切需要解决的重大课题。
     本文设计了面向数字海洋应用的虚拟海洋三维可视化仿真引擎(Virtual-Reality and Visualization Engine of Ocean)—i4Ocean,其中“i4”代表虚拟海洋可视化仿真的浸没感(Immersion)、交互性(Interactivity)、构想性(Imagination)和智慧性(Intelligence)。引擎不借助其它地理信息系统软件的二次开发功能,全部基于底层开发,具有自主知识产权。另外,引擎除了界面交互部分的实现借助于MFC类库之外,其他全部功能都不依赖MFC开发环境,便于引擎的跨平台和跨系统交互。i4Ocean为海洋数据的管理提供了一种海洋时空数据模型支持,该模型能很好的描述和存储海洋时空数据和特征数据。引擎使用可编程特效文件来管理和实现海洋中复杂的光影效果和可视化效果。i4Ocean包含资源管理、场景管理、渲染管理和交互管理四大功能模块,为用户和开发者提供实时交互的三维海洋虚拟环境搭建,海洋数据可视化等基本功能。用户和开发者可以基于引擎快速方便的搭建海洋平台,并扩展和增加自己的功能。最后基于引擎模拟了海上溢油现象,实现在海面风场和水下流场的影响下,油粒子扩散、漂移全过程;并搭建了海洋水文环境要素可视化系统,实现了中国东海水文环境数据球面三维体绘制和三维矢量场可视化。
     本文的主要贡献有:
     (1)设计和实现了虚拟海洋与三维可视化仿真引擎—i4Ocean。本文采用模型-视图-适配器-特效(Model-View-Adapter-Effect)框架模式搭建引擎底层架构,进行界面、交互、功能和特效的封装。上述四个部分之间的联系弱化,实现了弱耦合的关系,视图层和功能层分离,允许更改视图层代码而不用重新编译模型和适配器代码。同时引擎为开发者提供了数据、交互、功能和特效的扩展接口,以便增加新的数据、功能和特效。i4Ocean封装和实现了海洋可视化仿真功能模块,用户和开发者可以基于引擎快速搭建三维海洋可视化仿真平台。
     (2)提出了适合海洋数据的球面体绘制方法。传统的光线投射体绘制算法在长方体中实现,对于虚拟球体场景中的海洋体数据可视化,长方体渲染结果不能精确定位在地球表面位置;由于地球曲率的影响,对于大范围海洋数据,该方法的绘制结果的误差也是非常大的。本文提出了一种GPU加速的球面体绘制方法,在坐标系转换过程中采用了球体坐标系,海洋数据在球壳体中绘制能够更好体现表达海洋数据的形态和变化。
     (3)提出了自适应噪声采样的三维矢量场体绘制方法。传统的线积分卷积(LIC)选择噪声纹理作为输入,通过线积分卷积矢量数据得到输出流线纹理的每个像素值,这种方法使用固定空间分辨率的噪声纹理,采样频率不随视点距离远近发生改变。本文提出一种根据视点距离,自适应设置采样分辨率,实时生成新的噪声纹理送入GPU中进行流线卷积生成,实现一种随视点距离远近变化,绘制流线也随之减增的多层次细节(LOD)的效果。
Ocean is a complicated dynamic time-varying system with many factors andprocesses interacting. China is a large maritime country and increasinglydependents on the ocean because of the development of society and economy."Digital Ocean" is an ocean information system consisting of vast,multi-resolution, multi-time phase, multi-type data and its correspondingalgorithm. China has already put “Digital Ocean” into the developmentprogramme of marine science and technology as a long-term strategy. As theproceeding of this programme, the task of digitalized management, analysis andexpression of marine data has become increasingly pressing.
     In this paper, a virtual-reality and3D-visualization engine of ocean, i4Ocean,is designed for the applications oriented to “Digital Ocean”. The word i4means4Is:“Immersion”,”Interactivity”,”Imagination” and”Intelligence”. i4Oceanprovides a marine space-time data model for marine data management. Thismodel can well express marine space-time data and somecharacteristic patterns.The engine of this model employs the programmable effect files to manage andrealize the complicated visualization effects such as shadows. i4Ocean contains4main modules, which correspond4different functions of management. They areresource management module, scene management module, renderingmanagement module and interactivity management module. They can help usersand developers to build a real-time interactive3D environment of virtual oceanand realize the basic functions of marine data visualization. Based on this engine,users and developers can also build an ocean digital platform efficiently andextend their functions for some special use. In the last, two application cases arerealized based on this engine. The first case is the simulation of oil spilling in theocean. In this case, the whole diffusing and drifting process of the oil particlesunder the influences of wind and flow field is emulated and visualized. The other case is constructing a visualization system of hydrologic environment. And in thiscase, this system realizes the spherical3D visualization of scalar and vector datalocated at Chinese East Sea.
     The main contributions of this paper are:
     1. Design and realization of a virtual-reality and3D-visualization engine ofocean, i4Ocean. In this paper, an improved Model-View-Adapter-Effect frame isemployed to build the underlying architecture of the engine so that the integrationof interface, interactivity, function and effect is realized. The connections amongthese4parts are reduced, which realizes the weak coupling. The layers of viewand operation are isolated, so the codes in view layer can be edited withoutre-compiling codes of model and adapter. Meanwhile, the engine providesexpanded ports of data, interactivity, function and effect for developers. i4Oceanpackages and realizes the visualization and emulation of the ocean. Base on thisengine, users and developers can also build digital ocean platforms of differenttypes efficiently.
     2. A sphere-based volume rendering method, which is suitable for theexpression of ocean data, is proposed. The traditional ray-casting method ofvolume rendering is realized in a cube. However, for topographic data of largespatial scale, cube-based volume rendering cannot precisely reveal the geographicposition on the earth because of the influence of the earth’s curvature. So it willcause a lot error when displaying large-scale oceanic data. In GPU-acceleratingsphere-based volume rendering method, spheroidal coordinates are employed inthe process of coordinate transformation. Volume rendering in a sphere can betterexpress patterns and variations of marine data.
     3. A self-adapting noise-sampling volume rendering method of vector data isput forward. The traditional Line Integral Convolution (LIC) method selects thenoise texture as the input, and uses line integral to convolute the output data.Then every value of pixel of the output texture can be obtained. This method usesthe noise texture with a fixed spatial resolution and the sampling frequency of thismethod is also fixed regardless of the distance of the view point. In this paper, a self-adapting method of setting sampling resolution considering the distance ofthe view point is used. The new real-time noise texture is sent to GPU forgenerating the convolution of flow line. Using this method, a Level-Of-Detail(LOD) effect, the amount of the flow line vitiating with the distance of the viewpoint, is realized.
引文
[1]秦勃.海洋环境信息可视化网格平台关键技术研究:[博士学位论文].青岛:中国海洋大学,2008
    [2]石绥祥,雷波.中国数字海洋:理论与实践.北京:海洋出版社,2011
    [3]倪晨华,韩冰.908专项海洋能源调查的质量管理.海洋技术,2010,29(4):127-129
    [4] Dabrowsli J, Kulawiak M, Moszynsli M, Bruniecli K, Kaminsli L, Chybicli A, etal. Real-time Web-based GIS for Analysis, Visualization andIntegration of Marine Environment Data. In: Popovich VV,Schrenk M,Claramunt C,Kyrill V Korolenko PE, editors. Information Fusion and GeographicInformation Systems. Berlin: Springer-Verlag Berlin Heidelberg,2009.277-288
    [5]赵新华,孙尧,卢志忠.虚拟海洋环境中潜艇六自由度运动的视景仿真.系统仿真学报,2006,18:226-229
    [6]李苏军,吴玲达,胡世才,宋汉辰.数字化海战场态势表现系统研究.系统仿真学报,2009,21:6144-6147
    [7]张淑军.虚拟海洋环境中人工鱼的认知模型和行为控制研究:[博士学位论文].青岛:中国海洋大学,2007
    [8]杨峰,杜云艳,苏奋振,肖如林.基于Web服务的海洋矢量场远程可视化研究.地球信息科学,2008,10:749-756
    [9] Poulter B, Halpin PN. Raster modelling of coastal flooding from sea-level rise.InternationalJournal of Geographical Information Science,2008,22:167-182
    [10] Zhang H, Shi Y, Yuen DA, Yan Z, Yuan X, Zhang C. Modeling andvisualization of tsunamis. Pure and Applied Geophysics,2008,165:475-496
    [11] Dave Shreiner著,李军,徐波译. OpenGL编程指南(原书第七版).北京:机械工业出版社,2007
    [12] http://forums.3drealms.com/vb/index.php
    [13] Marc Herrlich, Ronald Meyer, Rainer Malaka and Helmut Heck. Developmentof a Virtual Electric Wheelchair–Simulation and Assessment of Physical FidelityUsing the Unreal Engine. Lecture Notes in Computer Science,2010,6243:286-293
    [14] Nina Aschenbrenner, Leif Geiger. Transforming Scene Graphs Using TripleGraph Grammars–A Practice Report. Lecture Notes in Computer Science,2008,5088:32-43
    [15] JoséMiguel Salles Dias, Pedro Nande, Nuno Barata, AndréCorreia. OGRE–Open Gestures Recognition Engine, a Platform for Gesture-BasedCommunication and Interaction. Lecture Notes in Computer Science,2006,3881:129-132
    [16] Mage小组,OGRE(O-O Graphics Rendering Engine)V0.01a使用指南[M],2003
    [17]王锐,钱学雷. OpenSceneGraph三维渲染引擎设计与实践.北京:清华大学出版社,2009
    [18] Fenglin Tian, Wei Hua, Zilong Dong, Hujun Bao. Adaptive voxels, InteractiveRendering of Massive3D Models. The Visual Computer,2010,26(6-8):409-419
    [19]陈曦,王章野,何戬,延诃,彭群生.利用GPU的大规模流体场景实时模拟算法.计算机辅助设计与图形学学报,2010,22(3):396-405,
    [20]刘峰,华炜,鲍虎军.基于深度网格的大规模森林场景的动态模拟.计算机辅助设计与图形学学报,2010,22(10):1701-1708
    [21] Chunyong Ma, Ge Chen, Yong Han, Yongyang Qi, Yong Chen. An integratedVR–GIS navigation platform for city/region simulation. Computer Animation andVirtual Worlds.2010,21:499–507
    [22] Wenqing Li, Ge Chen, Qianqian Kong, Zhenzhen Wang, Chengcheng Qian. AVR-Ocean system for interactive geospatial analysis and4D visualization of themarine environment around Antarctica. Computers&Geosciences,2011,37(11):1743-1751
    [23] Chengyu Guo, Xiaohui Liang, Jie Liu. Continuous Full-body Motion Control ofVirtual Human Using Sparse Wiimotes. International Journal Of AdvancedRobotic Systems,2012,9
    [24] Hou, Fei; Qi, Yue; Qin, Hong. Drawing-Based Procedural Modeling of ChineseArchitectures. IEEE TRANSACTIONS ON VISUALIZATION ANDCOMPUTER GRAPHICS,2012,18(1):30-42
    [25] Haoda Huang, KangKang Yin, Ling Zhao, Yue Qi. Detail-PreservingControllable Deformation from Sparse Examples. IEEE TRANSACTIONS ONVISUALIZATION AND COMPUTER GRAPHICS,2012,18(8):1215-1227
    [26] Zhao, Qinping.10Scientific Problems in Virtual Reality.COMMUNICATIONS OF THE ACM,2011,54(2):116-118
    [27]赵沁平.虚拟现实综述.中国科学F辑:信息科学,2009,39(1):2-46
    [28] Shandong Wang, Kangying Cai, Jian Lu, Xuehui Liu, Enhua Wu, Real-timeCoherent Stylization for Augmented Reality, Visual Computer,2010,26:445-455
    [29] Kai Bao, Xiaolong Wu, Hui Zhang, Enhua Wu, Volume Fraction BasedMiscible and Immiscible Fluid Animation, Computer Animation And VirtualWorlds,2011,21:401-410
    [30] Sheng Li, Guoping Wang, Enhua Wu. A new approach for construction andrendering of dynamic light shaft. Computers&Graphics-CG,2008,32(6):660-668
    [31] http://earth.google.com/ocean
    [32] http://worldwind.arc.nasa.gov/features.html
    [33] Chen, Ge; Li, Wenqing; Kong, Qianqian; Liu, Shouxin; Lv, Chongjing;Tian, Fenglin. Recent progress of marine geographic information system in China:A review for2006-2010. Journal of Ocean University of China,2012,11(1):18-24
    [34]张新,刘健,石绥祥,董文,池天河.中国数字海洋原型系统构建和运行的基础研究.海洋学报,2010,32(1):153-160
    [35] ZHANG Feng, LI Hao-qian, LIU Jin, LI Si-hai. Research and realization ofvisual digital ocean system. Marine Science Bulletin,2011,13(1):87-96
    [36]黄杰.海洋环境综合数据时空建模与可视化研究:[博士学位论文].杭州:浙江大学,2008
    [37]李四海,姜晓轶,张峰.我国数字海洋建设进展与展望.海洋开发与管理,2010,6:39-43
    [38]石教英,蔡文立编著.科学计算可视化算法与系统.北京:科学出版社,1996
    [39]唐泽圣等.三维数据场可视化.北京:清华大学出版社,1999
    [40] Alexandre Coelho, Marcio Nascimento, Cristiana Bentes, Maria Clicia Stellingde Castro, Ricardo C. Parallel Volume Rendering For Ocean Visualization In ACluster Of PCS. In proceeding of: VI Brazilian Symposium on Geoinformatics,2004,22-24
    [41] S. Williams, M. Hecht, M. Petersen, R. Strelitz and M. Maltrud. Visualizationand Analysis of Eddies in a Global Ocean Simulation. Computer Graphics Forum,2011,30(3):991-1000
    [42] Yinlong Sun, Erich Ess, David Sapirstein and Matthew Huber. VisualizingOceanic and Atmospheric Flows with Streamline Splatting. Proc. SPIE6060,Visualization and Data Analysis,2006
    [43]刘文全.基于GIS的海上石油平台溢油应急决策支持系统结构与应用研究:[博士学位论文].青岛:中国海洋大学,2010
    [44] M. Kulawiak, A. Prospathopoulos, L. Perivoliotis, M. luba. Interactivevisualization of marine pollution monitoring and forecasting data via aWeb-based GIS. Computers&Geosciences,2010,36(8):1069-1080
    [45] Djurcilov, S., Kim, K., Lermusiaux, P.F.J., and Pang, A. Visualizing scalarvolumetric data with uncertainty. Computers and Graphics,2002,2(26):239-248
    [46] Watson, Andrew I., Lerico, T. P., Fournier, J. D., and Szoke, E. J. The use ofd3d when examining tropical cyclones. In Interactive Symposium on AWIPS,2002,131-135
    [47] Bergner S, Moller T, Drew M, et al. Interactive spectral volume rendering.Proceedings of IEEE Visualization '02,2002:101-108
    [48] Totsuka T, Levov M. Frequency domain volume rendering. Proceedings ofACM SIGGRAPH '93,1993:271-278
    [49] Schneider J, Westermann R. Compression domain volume rendering. In:Proceedings of IEEE Visualization '03,2003:293-300
    [50] He T. Wavelet-assisted Volume Ray Casting. Proceedings of PacificSymposium on Biocomputing'98,1998:153-198
    [51] Horbelt S, Vetterli M, Unser M. High-quality wavelet splatting for volumerendering. Wavelets and Applications Workshop(WAW),1998
    [52] Neophytou N, Mueller K, McDonnell K, et al. GPU-accelerated volumesplatting with elliptical IRBFs. Joint Eurographics-IEEE TCVG Symposium onVisualization '06,2006:13-20
    [53] Roettger S, Guthe S, Weiskopf D, et al. Smart hardware-accelerated volumerendering. Proceedings of Symposium on Visualization '03,2003:231-238
    [54] Schulze J P, Kraus M, Lang U, et al. Integrating pre-integration into theshear-warp algorithm. Proceedings of Volume Graphics '03,2003:109-118
    [55] Sweeney J, Mueller K. Shear-warp deluxe: the shear-warp algorithm revisited.Proceedings of Joint Eurographics-IEEE VGTC Symposium on Visualization '02,2002:95-104
    [56] J. Kruger R. Westermann. Acceleration Techniques for GPU-based VolumeRendering. Proceedings of the14th IEEE Visualization,2003:38
    [57] Klaus Engel, Thomas Ertl. Interactive High-Quality Volume Rendering withFlexible Consumer Graphics Hardware. EUROGRAPHICS’02
    [58] Joe Kniss, Simon Premo, Charles Hansen, David Ebert. Interactive TranslucentVolume Rendering and Procedural Modeling. In Proceedings of IEEEVisualization2002
    [59]邹华.基于可编程GPU的体绘制关键技术研究:[博士学位论文].西安:西安电子科技大学,2009
    [60] Phong B. Illumination for computer generated pictures. Communications of theACM,1975,18(6):311-317
    [61] Krueger J, Westermann R. Acceleration techniques for GPU-basedvolume rendering. Proceeding of IEEE visualization'03,2003:287-292
    [62] Scharsach H. Advanced GPU raycasting. Proceedings of CESCG'O5,2005:69-76
    [63]肖永飞.医学数据三维交互可视化方法的研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2009
    [64]周迪斌.基于纹理的高质量矢量可视化研究:[博士学位论文].杭州:浙江大学,2008
    [65] Kenwright D.N, Mallinson GD. A3-D Srteamline Tracking Algorithm UsingDual Stream Functions. Proceedings of IEEE Visualization92,1992:62-68
    [66] TurkG., Banks D. Image-guided Streamline Placement. Proceedings of the23rdAnnual Conference on Computer Graphics and Interactive Techniques,1996:453-60
    [67] Jobard B, Lefer W. Creating Evenly-Spaced Streamlines of Arbitrary Density.Proc. Eurographics Workshop Visualization in ScientificComputing,1997:43-56
    [68] Verma V, Kao D.T, Pang A. A Flow-Guided Streamline Seeding Strategy Proc.IEEE Visualization,2000:163-170
    [69] Jarke J. Van Wijk, Spot Noise: Texture Synthesis For Data Visualization.Computer Graphics,1991,25(4):309-318
    [70] Brian Cabral, and Leith Leedom, Imaging Vector Fields Using Line IntegralConvolution. Computer Graphics,1993,27(4):263-270
    [71]刘占平,汪国平,董士海.一种新的VolumeLIC可视化方法.中国图像图形学报,2001,6(5):470-474
    [72] Victoria Interrante, Chester Grosch. Strategies for Effectively Visualizing a3DFlow Using Volume Line Integral Convolution. Proceedings of IEEEVisualization97,1997,421-424
    [73] Helman J.L, Hesselink L. Representation and Display of Vector Field Topologyin Fluid Flow Data Sets. IEEE Computer,1989,22(6):27-36
    [74] Helman J.L, Hesselink L. Surface Representations of Two-andThree-Dimensional Fluid Flow Topology. Proceedings IEEE Visualization '90,1990:6-13
    [75] Bjarne Stroustrup. The C++programming Language(Special Edition).北京:机械工业出版社,2002
    [76]陈戈,齐永阳,陈勇,马纯永.面向城市仿真的VRGIS平台设计与实现.系统仿真学报,2009,21(2):457-460
    [77] Erich Gamma, Richard Helm, Ralph E. Johnson, John M. Vlissides. DesignPatterns: Abstraction and Reuse of Object-Oriented Design. Proceedings of the7th European Conference on Object-Oriented Programming,1993,7:406-431
    [78] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design patterns:elements of reusable object-oriented software. Addison-Wesley LongmanPublishing Co., Inc., Boston, MA,1995
    [79]刘长东.海洋多源数据获取及基于多源数据的海域管理信息系统:[博士学位论文].青岛:中国海洋大学,2008
    [80] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides著,李英军,马晓星,蔡敏,刘建中译.设计模式.北京:机械工业出版社,2009
    [81] Emmanuel Agullo, Abdou Guermouche, Jean-Yves L’Excellent. A parallelout-of-core multifrontal method: Storage of factors on disk and analysis ofmodels for an out-of-core active memory. Parallel Computing,2008,34(6–8):296-317
    [82] Sanguthevar Rajasekaran. Out-of-core computing on mesh connectedcomputers. Journal of Parallel and Distributed Computing,2004,64(11):1311-1317
    [83] Benjamin Vrolijk, Frits H. Post. Interactive out-of-core isosurface visualisationin time-varying data sets. Computers&Graphics,2006,30(2):265-276
    [84] Jeffrey Richter. Programming applications for Microsoft windows. Washington:Microsoft Press,2000:156-186
    [85]陈述彭.地理信息系统导论.北京:科学出版社,1999
    [86] Yuan M. Modeling semantical, temporal, and spatial information in geographicinformation systems. Proc of Geographic Information Research: Bridging theAtlantic In: London1996:334-337
    [87] Worboys M F. Object-oriented Approaches to Geo-referenced Information. Int JGeographical Information Systems.1994b,8(4):225-245
    [88] Peuquet D J, Niu D. An Event-based Spatio-temporal Data Model(ESTDM) forTemporal Analysis of Geographical Information Systems. Int J GeographicalInformation Systems1995,9(1):7-24
    [89]李昭.虚拟海洋环境时空数据建模与可视化服务研究:[博士学位论文].杭州:浙江大学,2010
    [90]高锡章,冯杭建,李伟.基于GIS的海洋观测数据三维可视化仿真研究.系统仿真学报,2011,23(6):1186-1190
    [91]涂超.海洋温度场的三维可视化.武汉大学学报工学版,2007,40(6):126-128
    [92]李新,程国栋,卢玲.空间插值方法比较.地球科学进展,2000(6):260-265
    [93]杨冠杰,耿震,孙菁.散乱体数据可视化—海洋水团分析的新途径.海洋通报,2000,19(2):66-74
    [94] R.Franke, G.Nielson. Scattered Data Interpolation and Application: A Tutorialand Survey. Methods and Their Application, Springer, Heidelberg, Germany,1990
    [95] Nielson G M et al.1991.Visualizing and Modeling Scattered Multivariate Data.IEEE Computer Graphics and Applications,1991,11(3):47-55
    [96] Nielson G M, Tvedt J. Comparing Methods of Interpolation ScatteredVolumetric Data. IEEE Computer Graphics and Applications,1993
    [97] Levov M. Efficient ray tracing of volume data. ACM Transactions on Graphics,1990,9(3):245-261
    [98] Levoy M, Hanrahan P. Light field rendering. Proceedings of ACM SIGGRAPH'96,1996:31-42
    [99] Kaufman A. Volume visualization. ACM Computing Surveys,1996,28(1):165-167
    [100]唐泽圣.三维数据场可视化.北京:清华大学出版社,1999
    [101]秦绪佳,张勤锋,陈坚,郑红波,徐晓刚. GPU加速的台风可视化方法.中国图像图形学报2012,17(2):293-300
    [102] Lorensen W, Cline H. Marching Cubes: a high resolution3D surfaceconstruction algorithm. ACM SIGGRAPH Computer Graphics,1987,21(4):163-169
    [103] Lichtenbelt B, Crane R, Naqvi S. Introduction to Volume Rendering, Chapter4. New Jersey: Prentice-Hall,1998
    [104] Kindlmann G, Durhin J W. Semi-Automatic Generation of Transfer Functionsfor Direct Volume Rendering. IEEE Symposium on Volume Visualization,1998:79-86
    [105] Detlev. Stalling, Hans. Christian Hege. Fast and Resolution-Independent LineIntegral Convolution. Proceedings of SIGGRAPH'95,1995,249-256
    [106] Lisa K. Forssell. Visualizing Flow over Curvilinear Grid Surfaces Using LineIntegral Convolution. Proceedings of IEEE Visualization94,1994,240-247
    [107] Gerik Scheuermann, Holger Burbach. Visualizing Planar Vector Fields WithNormal Component Using LIC. Proceedings of IEEE Visualization99,1999,312-318
    [108] Hans-Christian Hege, Detlev Stalling. Fast LIC with Piecewise PolynomialFilter Kernels. Mathematical Visualization-Algorithms and Applications,1998,295-314
    [109] Han-Wei Shen, David L. Kao. UFLIC: A Line Integral Convolution AlgorithmFor Visualizing Unsteady Flows. Proceedings of IEEE Visualization97,1997,317-322
    [110] R.S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F.H. Post, D. Weiskopf. TheState of the Art in Flow Visualization: Dense and Texture-Based Techniques.Computer Graphics Forum,2004,23(2):143-161
    [111] G.-S. Li, X. Tricoche, C. Hansen. GPUFLIC: Interactive and Accurate DenseVisualization of Unsteady Flows. Proc. EG/IEEE VGTC Symp. Visualization(Eurovis’06),2006,29-34
    [112] D. Weiskopf, T. Ertl. A Hybrid Physical/Device-Space Approach forSpatio-Temporally Coherent Interactive Texture Advection on Curved Surfaces.Proc. Graphics Interface,2004,263-270
    [113] D. Weiskopf, M. Hopf, T. Ertl. Hardware-Accelerated Visualization ofTime-Varying2D and3D Vector Fields by Texture Advection via ProgrammablePer-Pixel Operations. Proc. Workshop Vision, Modeling, and Visualization(VMV’01),2001,439-446
    [114] D. Weiskopf, T. Schafhitzel, T. Ertl. Texture-Based Visualiza-tion of unsteady3D Flow by Real-Time Advection and Volumetric Illumination. IEEE Trans.Visualization and Computer Graphics,2007,13(3):569-582
    [115] D. Weiskopf. GPU-Based Interactive Visualization Techniques. Springer,2006
    [116] Martin Falk, Daniel Weiskopf. Output-Sensitive3D Line Integral Convolution.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2008,14(4):820-834
    [117] R. Cranley, T. Patterson. Randomization of Number Theoretic Methods forMultiple Integration. SIAM J. Numerical Analysis,1976,13,904-914
    [118] Kryachko Y. Using Vertex Texture Displacement for Realistic WaterRendering. In: Pharr M,Fernando R, editors. Programming Techniques forHigh-Performance Graphics and General-Purpose Computation (GPU Gems2).New Jersey: Addison-Wesley Professional2005
    [119]李文庆.VV-Ocean海洋环境仿真与海洋数据动态可视化系统的研究与实现:[博士学位论文].青岛:中国海洋大学,2011
    [120] Fay J A. The spread of oil slicks on a calm sea. Oil on the Sea NewYork: Ed.Plenum Press,1969
    [121] Chang, R., Ghoniem, M., Kosara, R., Ribarsky, W., Yang, J., Suma, E.,Ziemkiewicz, C., Kern, D., Sudjianto, A. WireVis: Visualization of categorical,time-varying data from financial transactions. In VAST’07: Proceedings of the2007IEEE Symposium on Visual Analytics Science and Technology
    [122] Mauricio Aristizabal, John Congotel; Alvaro Segura, Aitor Moreno, HarbilArregui and Oscar Ruiz. Hardware-Accelerated Web Visualization of VectorFields-Case Study In Oceanic Currents. Proceedings of GRAPP/IVAPP2012:759-763

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700