高阳铁矿水文地质条件与突水规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属矿产资源的短缺已经成为了国家经济发展的瓶颈,矿山的地下水问题是制约金属矿产能否安全开采的关键。本文以“十一五”国家科技支撑计划课题“复杂富水矿床开采关键技术开发与研究”为依托,以典型复杂富水矿床高阳铁矿为研究对象,对矿区水文地质条件、矿床突水风险及地下水对围岩稳定性的影响进行了从整体到局部的系统性分析和从定性化到定量化逐步深入的研究,为解放铁矿-285m水平矿体和地下水防治工作提供了理论性和实际性的指导作用。具体研究成果如下:
     1、矿区水文地质条件定性研究:运用系统论的观点分析了高阳铁矿所在淄博盆地的水文地质条件。在充分了解和分析矿区地质和水文地质的基础上,把淄博盆地按三个级别分为:淄博盆地一级水文地质单元、金岭矿区二级水文地质单元和高阳矿区三级水文地质单元。首先探讨各单元的边界条件、地下水的补给、径流、排泄等运移规律;然后从整体性、结构性、层级性和开放性四个系统观点分析了各单元和单元之间的联系和相互之间的关系;最后在系统论的指导下对高阳铁矿的地下水防治问题提出了几点建意,基本确定了矿坑涌水水源和地下水运移规律。
     2、矿床突水风险性半定量研究:以模糊数学为评判工具,对高阳铁矿矿体范围内地下水突水风险性进行模糊综合评价。首先选取了16个评价指标,通过专家打分法确定各指标的权重,并结合矿坑的实际情况确定分级标准;然后在分析矿坑巷道的打通情况和穿脉分布的基础上,把矿坑分为7个评价单元,并对各单元评价指标进行实际付值,获得各单元的评价矩阵;最后通过模糊综合评判的方法计算出各评价单元的隶属度,最终确定评价单元的突水风险性强弱,获得两个突水风险强区、两个突水风险较强区、两个突水风险弱区和一个突水风险中等区,并对评价结果进行分析,为高阳铁矿下一步地下水防治和采矿掘进提供指导性建议。
     3、巷道围岩稳定性定量研究:以有限元软件ANSYS为研究平台,对突水风险强区7号穿脉巷道围岩在地下水作用下对应力应变和稳定性的影响和变化规律,进行水-岩耦合三维数值模拟。首先深入分析7号穿脉的地质条件,建立地质模型;再通过抽象概化,建立计算模型;然后确定围岩参数和水-岩耦合下的软化区物理力学参数,通过ANSYS计算,得到模型结果;最后分析了考虑水-岩耦合和不考虑两种情况下,及在0m、12.5m、30.5m、75.5m、106.5m五种水压情况下的围岩位移、应力、应变、弹性应变和塑性应变的分布情况与变化规律,并评价了围岩稳定性,为高阳铁矿下一步注浆封堵和确定防水矿柱厚度提供数量化支持。
     除以上研究成果外,还取得了如下认识:
     1、通过对高阳铁矿半年多放水数据的处理,获得时间、涌水量和水压间的关系曲线,运用地下水动力学的基本理论对曲线的变化规律进行解析;选用合适的岩溶灰岩水的涌水量计算公式,通过最小二乘法求取相关参数,确定涌水量与地下水位之间的函数关系,并初步预测了不同地下水位时的单位涌水量。
     2、以前期抽水试验数据和放水试验数据为基础,通过比较矿区最大静水量和排水量之间的关系,探讨了高阳矿区三级水文地质单元内玉皇山断层的导通性,证明该断层在矿区范围内是导水的。
     3、以矿床充突水条件基本理论为指导,深入分析了高阳铁矿的突水条件,并确定了该铁矿的水文地质类型为矿体直接顶底板之一为层状岩溶含水层,另一为层状“隔”水层的岩溶水突水为主的水文地质复杂矿床。
With the shortage of Metallic mineral resources having become the bottleneck of nation's economic development, the ground-water problem of mine has turned into the crucial point of restricting the exploration of metal mineral resources security. Relying on the "the development and study on the crucial technology of exploring the complicated mine with large amount of water", one of the country's "eleventh five years" supporting scientific and technological items, the thesis has researched on the typical complicated iron mine of Gaoyang with affluent ground water. The content of the paper has involved the hydrological geology condition of mine area, the water inrush risk of iron mine and the groundwater's influence on the stability of wall rock. All these jobs have been analyzed from the whole to the part with systemic point and studied from the qualitative aspect to quantitative aspect gradually. The above research can provide the theoretical and practical help for liberating the iron mine of -285m water level and prevention and control ground water of Gaoyang iron mine. The detail as follows:
     1、The qualitative research on the hydrological geology condition of mine area: The hydrological geology condition of Zibo basin, where the Gaoyang iron mine lies in, has been analyzed by the systemic theory. Based on the geology and hydrology of mine area having been sufficiently understood and analyzed, the Zibo basin is divided into three grades: the first grade of hydrological geology unit of Zibo basin, the second grade of hydrological geology unit of Jinling iron mine and the third grade of hydrological geology unit of Gaoyang iron mine. At the beginning, the boundary condition and the movement laws of groundwater's supply, run-off and discharge of every unit have been probed. Additionally, the relationship of every unit and the connection among them, have been analyzed with the systemic theory, such as unity, structural character, hierarchy nature and openness character. At last, some suggestions about the problem of groundwater prevention and control have been proposed, also led by the systemic theory, and the groundwater' resource and movement laws of Gaoyang iron mine have been mainly found out.
     2、The half quantitative research on inrush risk of iron mine ground water:The ground water inrush risk of Gaoyang iron mine in the ore body area has been comprehensively evaluated by the mathematic tool of fuzzy. First, sixteen evaluation indexes have been chosen and given the weight by the experts on ground water aspect. Combined by the actual situation of iron mine, the clarified norm has been defined. Second, the region of iron mine has been divided into seven units, based on having been analyzed the practical condition of laneway and the distribution of them. The evaluation matrix has been obtained through all the units given the actual value. Last, the membership of every unit has been calculated by the fuzzy comprehensive evaluation, determining the risk degree of groundwater in the evaluation unit. Through all the above work, two units with high risk of ground water inrush, two units with moderate high risk of groundwater inrush, one unit with medium risk of groundwater inrush and two units with weak risk of groundwater inrush have been confirmed and these results have also been analyzed, providing instructive advice for the following prevention and control of ground water, iron ore mining and tunneling in Gaoyang iron mine.
     3、The quantitative research on the stability of laneway wall rock: The finite element software ANSYS has been applied to simulate three dimension modal of affection between groundwater and rock numerically. The simulation lies in the influence and changeable discipline of the stress, strain and stability, which the groundwater has acted on the wall rock in the number seven laneway, one of high inrush risk regions. In the first place, the geological modal has been built through having thoroughly analyzed the geological situation of number seven laneway, and the numerical modal has been constructed by means of abstraction and generalization of former one. Afterwards, the results of the modal have been calculated by the software of ANSYS, on the base of the defined parameters of wall rock and soften areas affected by the groundwater on the rock. At last, the distribution and changeable discipline of wall rock's displacement, stress, strain, elastic strain and plastic strain have been analyzed on the situation of consideration and un-consideration of coupling between groundwater and rock, and on the circumstance of influence by the groundwater in five hydraulic pressures, including 0 meter, 12.5 meters, 30.5e meters, 75.5 meters and 106.5 meters. In the end, the stability of wall rock has been evaluated. All these study can provide numerical support for the grunting mortar and formulating thickness of jamb for preventing ground water breakthrough in the Gaoyang iron mine's next project.
     Besides the above research and study, some cognitions have been gained, as follows:
     1、The relation curves among time, water inflow and pressure have been gotten through dealing with the water drainage experiment data of Gaoyang iron mine in nearly one half year. The changeable discipline of relation curve has been analyzed by the basic theory of groundwater dynamics. The calculation formula of water inflow has been chosen appropriately, aiming at tangling the problem of karst limestone water. The function relationship between water inflow and water level has been confirmed, in the premise that the parameters of the formula had been counted by the method of Minimum Square. The value of water inflow, along with different water levels has been forecasted preliminarily.
     2、In the basis of understanding the data of former water pump test and water drainage experiment, the relationship between maximum value of slack water and the displacement of groundwater, has been compared to analyze the continuity of Yuhangshan fault in the third grade hydrological geology unit of Gaoyang iron mine area. The fault has been proved to be a continuity one in the iron mine region.
     3、Led by the basic theory of inrush condition of mine area, the inrush situation of Gaoyang iron mine has been deeply analyzed. The type of Gaoyang iron mine has been defined to be a hydrological geology complicated one, with the one of wall rock being bedded karst water carrier, the other karst confining bed.
引文
[1]科学技术部.“十一五”国家科技攻关计划项目可行性研究报告[R].中国钢铁工业协会.2006
    [2]邯邢冶金矿山管理局,淄博市临淄高阳铁矿.国家科技攻关计划科目课题可行性研究报告[R].河北省邯郸市.2005
    [3]陈梦熊.中国水文地质工程地质事业的发展与成就[M].北京:地震出版社,2003:74
    [4]陈梦熊.中国水文地质工程地质事业的发展与成就[M].北京:地震出版社,2003:66
    [5]高阳铁矿.山东高阳铁矿复杂水体开采技术研究报告[R].高阳铁矿,2004:2
    [6]山东省地质环境与效应工程技术研究中心.高阳铁矿(-285m水平巷道)突水防治方案研究计划书[R].2007
    [7]程炳德.以系统论的基本观点论语文教育整合[D].江西师范大学.2001
    [8]郭宝柱.系统观点和系统工程方法[J].航天工业管理.2007(2)
    [9]张道军.复杂水环境资源系统智能管理、预测和决策的研究[D].大连理工大学.2002
    [10]侯光才.鄂尔多斯白垩系盆地地下水系统研究[J].吉林大学学报(地球科学版).2006(3)
    [11]姜长友.矿井水源判别的模糊数学方法[J].煤田地质与勘探.1995,23(3)
    [12]邵爱军.煤矿地下水[M].北京:地质出版社,2005:28-29
    [13]容跃.用模糊集理论计算水环境综合评价指数[J].环境科学,1982,2
    [14]王家兵.模糊综合评判方法在水文地质分区中的应用[J].煤田地质与勘探.1996.24(4)
    [15]邵爱军.煤矿地下水[M].北京:地质出版社,2005:50-51
    [16]任理.地下水溶质运移计算方法及土壤水热动态数值模拟的研究[D].武汉水利电力大学博士学位论文.1994)
    [17]王文科.地下水流数值模拟的有限分析法[D].西安地质学院博士学位论文.1994
    [18]薛禹群,吴吉春.地下水数值模拟在我国--回顾与展望[J].1997,4
    [19]高阳铁矿.高阳铁矿矿产资源开发利用年度报告[R].山东省临淄区高阳铁矿.2006
    [20]文瑞中.占用矿产资源储量登记书[Z].淄博市临淄高阳铁矿.2005
    [21]邯邢矿山局地岩公司.高阳铁矿坑下开采及选矿工艺可行性研究报告[R].1997
    [22]冶金工业部山东地质勘查局一队.山东省淄博市金岭铁矿区王旺庄西矿床17-22线普查地质报告[R].山东省临淄区高阳铁矿.1993
    [23]赵证友.高阳铁矿涌水机理专题研究[R].山东省地质矿产局第一地质大队.2004
    [24]山东省冶金地质勘探公司水文地质队.山东省淄博金岭矿区王旺庄矿床水文地质勘探总结报告[R].山东省临淄区高阳铁矿.1981,18-27
    [25]杨国林.把握系统观全局在心中[J].共产党人.2006
    [26]林益.一般系统论研究的过去、现在和未来(下)[J].空军工程大学(自然科学版).2002(1)
    [27]张文军.论邓小平的系统观[J].毛泽东思想研究.2007
    [28]侯光才.鄂尔多斯白垩系盆地地下水系统研究[J].吉林大学学报(地球科学版).2006(3)
    [29]国家技术监督局.GB/T14159-93水文地质术语[S].北京:中国标注出版社,1993:8.
    [30]陈梦熊,马凤山.中国地下水资源与环境[M].北京:地震出版社,2002:385-417
    [31]山东省冶金地质勘探公司水文地质队.山东省淄博金岭矿区王旺庄矿床水文地质勘探总结报告[R].山东省临淄区高阳铁矿.1981,5
    [32]李晓光.山东金岭铁矿区基岩水文地质图[Z].山东省冶金地质勘探公司水文地质队.1984
    [33]生产技术科.高阳铁矿放水情况小结[Z].山东省临淄区高阳铁矿.2007
    [34]谢志峰.2007年探水工程统计表[Z].山东省临淄区高阳铁矿.2007
    [35]谢志峰.高阳铁矿井下水位观测记录[Z].山东省临淄区高阳铁矿.2007
    [36]谢志峰.高阳铁矿泵房排水记录[Z].山东省临淄区高阳铁矿.2007
    [37]杨丙先.四月份探水工程量统计表[Z].山东省鲁地矿业公司高阳铁矿项目部.2007
    [38]杨成田.专门水文地质学[M].北京:地质出版社,1981:309-315
    [39]邰淑彩,孙韫玉.应用数理统计[M].武汉:武汉大学出版社,2005,139-144
    [40]贾俊杰.山东省水环境监测中心淄博中心水质检测报告[R].山东淄博水环境监测中心.2007
    [41]游晓梅.水质分析报告表[R].山东省地质环境监测总站实验室.2000
    [42]贾俊杰.水质检测报告[R].山东省水环境监测中心淄博中心.2002
    [43]山东冶金地质工程勘察公司.王旺庄-朱台地段抽水试验成果综合图表[Z].1990
    [44]杨成田.专门水文地质学[M].北京:地质出版社,1981:278-315
    [45]王启胜.青岛生态地质环境质量评价[D].青岛理工大学,2007,(6):60-61
    [46]杨成田.专门水文地质[M].地质出版社,1981,(7):278-294.
    [47]邵爱军,张发旺.煤矿地下水[M].地质出版社,2005,(10).28-33
    [48]冯宝成,汪培庄.模糊数学实用集粹[M].北京:中国建筑工业出版社,1991
    [49]邯邢矿山局临淄高阳铁矿.高阳铁矿-285m水平平面图(采准方案)[Z].2007
    [50]阮沈勇,王永利等.MATLAB程序设计[M].电子工业出版社,2003,(6),36-39
    [51]沈照理,刘光亚等.水文地质学[M].科学出版社,1985,(1)136-159
    [52]山东省新特工程物探勘察院.山东省高阳铁矿副井-245米巷道γ能谱测量工作小结[R].2004
    [53]杨成田.专门水文地质学[M].北京:地质出版社,1981:295-308
    [54]文瑞中.高阳铁矿22'勘探线地质剖面图[Z].山东省淄博市临淄区高阳铁矿.2003
    [55]陈丽威.王旺庄矿产基岩水文地质图[Z].山东省冶金地质勘探公司水文地质队.1981
    [56]孟召平.沉积岩体力学理论与方法[M].北京:科学出版社,2006:79
    [57]孟召平.沉积岩体力学理论与方法[M].北京:科学出版社,2006:80
    [58]孟召平.沉积岩体力学理论与方法[M].北京:科学出版社,2006:81
    [59]王先伟.高阳铁矿突水成因探析及开采方案数值模拟研究[D].青岛.青岛理工大学.2005
    [60]王先伟.有限元强度折减法在矿山开采中的应用[J].青岛理工大学,2006,27(3)
    [61]林宗元.岩土工程试验监测手册[M].沈阳:辽宁科学技术出版社,1994
    [62]张后全,杨天鸿.煤矿顶板突水事故数值模拟分析[J].煤炭学报,2004,29
    [63]姚建伟.小浪底水库对新安矿水害威胁的影响分析[J].煤矿开采,2006,11(1)
    [64]刘梅,曾勇.煤炭地下水开采引发的地质灾害及其防治措施[J].能源技术与管理,2005
    [65]田立新,李松营.石壕煤矿12051工作面下巷突水原因分析[J].矿业安全与环保,2005,32(3)
    [66]康福昔.海孜矿7煤工作面的防治[J].煤矿开采,2005,10(6)
    [67]张庆功,冯超.矿井突水综合治理技术的研究与应用[J].山东煤炭科技,2005
    [68]张顶立,李治国.高压富水区隧道帷幕注浆止浆系统分析[J].岩土力学,2004,25 (7)
    [69]孙波.济南张马屯铁矿帷幕注浆堵水工程简介[J].山东国土资源,2005,21(6-7)
    [70]马致远.环境同位素方法在平凉市岩溶地下水研究中的应用[J].地质评论,2004,50(4)
    [71]贺跃光,王汪.岩溶地貌矿山地质灾害的特征及防治对策[J].工业安全与环保,2007,33(3)
    [72]罗立平,彭苏萍.承压水体上开采底板突水灾害机理的研究[J].煤炭学报.2005,30(4)
    [73]李睿,韩金旺.白庙矿二_1煤层充水因素分析及矿井水害防治[J].煤炭技术.2006,25(4)
    [74]朱同祥,曹思云.龙口矿区砂岩水突水机理分析及治理[J].江苏煤炭,2004
    [75]于辉光,郭德勇.超化煤矿突水灾害地质条件分析及防治措施[J].煤矿安全,2006
    [76]张长文,付斌.矿井突水问题的研究[J].煤炭技术,2004,23(5)
    [77]李小青,刘其暄.复杂水文地质条件下矿井的综合治理[J].2005
    [78]魏国孝,王刚.秦王川盆地南部地下水流场数值模拟[J].2006.42(6)
    [79]武汉地质学院,岩石教研室.岩浆岩岩石学[M].北京:地质出版社,1981
    [80]胡受奚,周顺之.矿床学[M].北京:地质出版社,1982
    [81]龙荣生.矿井地质学[M].煤炭工业出版社,1991
    [82]于国芳,郭英海.山西省柳林西部峰峰组含水特征及其矿井防治水的意义[J].中国煤田地质,2005,17(4)
    [83]韩子夜.西宁盆地储水构造及其地下淡水赋存规律研究[J].
    [84]沈照理,朱宛华.水文地球化学基础[M].北京:地质出版社,1999
    [85]薛禹群.地下水动力学[M].北京:地质出版社,2005
    [86]龚曙光.ANSYS基础应用及范例解析[M].北京:机械出版社,2003
    [87]段进,倪栋.ANSYS10.0结构分析从入门到精通[M].北京:兵器工业出版社,2006
    [88]李燕,杨林德.岩体渗流应力耦合作用研究综述[J].红水河,2005,24(2)
    [89]李连崇,杨天鸿.岩石水压致裂过程的耦合分析[J].岩石力学与工程学报,2003,22(7)
    [90]王艳丽.裂隙岩体渗流场与应力场耦合的研究进展[J].国外建材科技,2007,28(3)
    [91]邵庆云.清江隔河岩工程石龙洞灰岩力学模型分析[J].长江科学院院报,1989
    [92]杨天鸿,唐春安.岩石破裂过程的渗流特性--理论、模型与应用[M].北京:科学出版社,2004
    [93]凌贤长.岩体力学[M].哈尔滨:哈尔滨工业大学出版社,2002
    [94]谢和平,陈忠辉.岩石力学[M].北京:科学出版社,2004
    [95]刘汉东.岩体力学参数优选理论及应用[M].郑州:黄河水力出版社,2006
    [96]朱维申,李术才.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002
    [97]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005
    [98]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,2004
    [99]邹德山,朱同祥.洼里煤矿综合防治水技术研究[J].山东科技大学(自然科学版),2007,23(3)
    [100]郑刚.模糊聚类分析法预测顶板砂岩含水层突水和突水量[J].煤矿安全,2004,35(1)
    [101]James C.Bezdek.Pattern Recognition with Fuzzy Objective Function Algorithms.Plenum Press.1978
    [102]M.Sugeno.Theory of Fuzzy Integrals and its Application,Ph.D.Dissetation:Tokyo Institute of Technology.1974
    [103]R.Engelking.General Topology(Panstowe Wydawnietwo Naukowe,Warszawa).1975
    [104]邵爱军,彭建萍.矿坑底板突水的突变模型研究[J].岩土工程学报,2001,23(1)
    [105]何宇彬.中国喀斯特水研究[M].上海:同济大学出版社,1997
    [106]中国科学院地质研究所岩溶研究组.中国岩溶研究[M].北京:科学出版社,1979
    [107]韩行瑞.岩溶水系统--山西岩溶大泉研究[M].北京:地质出版社,1993
    [108]曹玉清.岩溶化学环境水文地质[M].长春:吉林大学出版社,1994
    [109]唐卫,陈锁忠.带岛屿约束的三角行空间剖分算法的改进方法[J].水文地质工程地质,2006,33(5)
    [110]李满洲,王继华.河南夹沟铝土矿床突水机理与防治方法研究[J].水文地质工程地质,2006,33(5)
    [111]谢春庆,邱延峻.冰碛层水文地质特征及其对工程影响研究[J].水文地质工程地质,2006,33(5)
    [112]夏文哲.26081工作面突水原因分析及防治[J].煤炭科技,2003,22(5)
    [113]马瑞花,龚惠民.TEM法在寻找煤矿突水巷道中的应用[J].中国煤田地质,2003,15(3)
    [114]于喜东.地质构造与煤层底板突水[J].煤炭工程,2004,12
    [115]栾经辉.鲍店煤矿突水条件分析[J].中国煤田地质,2005,17(B06)
    [116]张少春,张西民.采煤功过面底板突水判据的建立及应用[J].陕西煤炭,2004,2
    [117]段田丰.采煤工作面底板突水原因及防治[J].煤炭科技,2005,24(10)
    [118]李兆祥.采煤工作面特大型突水水源及突水因素分析[J].煤矿安全,2004,35(1)
    [119]代长青,何廷峻.承压水体上采煤底板断层突水规律的研究[J].安徽理工大学学报(自然科学版),2003,23(4)
    [120]王荣生.高阳煤矿7204工作面初采垮落顶板突水因素浅析[J].中国煤炭,2004,30(5)
    [121]姜华.10层煤工作面掘进期间顶板淋水的防治[J].山东煤炭科技,2005,4
    [122]邹灿.程潮铁矿矿山水防治现状分析及对策[J].资源环境与工程,2005,19(1)
    [123]王成考.底板奥灰水的防治方法[J].煤矿开采,2005,10(2)
    [124]韩程辉,刘文生.地下水模拟系统(GMS)与矿井防治水[J].矿业安全与环保,2005
    [125]刘宽停,贺景昌.整合后乡镇煤矿老空水防治措施[J].中川煤炭,2005
    [126]苏萍.张双楼煤矿矿井涌水量预计及防治水建议[J].能源科技与管理,2005
    [127]孙玉霞,赵治霞.新安煤矿防治水注浆技术[J].西部探矿工程,2005
    [128]卢兰萍,白峰青.小煤矿矿井充水因素分析和防治水措施探讨[J].2005
    [129]刘蕴祥.永城矿区煤层底板裂隙灰岩突水特殊防治技术[J].煤田地质与勘探,2002,30(3)
    [130]贺可强,王滨.中国北方岩溶塌陷[M].北京:地质出版社,2005
    [131]卢耀如.岩溶水文地质环境演化与工程效用研究[M].北京:科学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700