基于渗流—应力耦合作用的裂隙型底板突水机理及危险性预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对保德煤矿13#煤奥陶纪灰岩(奥灰)承压含水层上安全开采,分析了研究区所在天桥泉域岩溶水补、径、排条件,总体水化学特征及强径流带特征;在此基础上,结合研究区水位资料、钻探资料及抽水试验资料,以水化学分析和GMS数值模拟为手段,详细研究了井田奥灰含水层富水特征、岩溶水径流条件变化规律、水位动态及渗流场特征。建立了底板裂隙岩体断裂破坏的压剪模型,结合库伦-摩尔破裂准则和有效应力原理,对底板裂隙岩体在渗流-应力耦合作用下的断裂损伤机制进行了探讨,并经理论推导,获得了单裂隙岩体断裂强度计算公式及多裂隙岩体断裂强度计算公式,为底板导水破坏带深度及承压水导升带高度计算奠定了理论基础。分析了底板突水的影响因素;在下三带理论指导下,基于底板多裂隙岩体断裂强度公式及I型应力强度因子公式,推导出渗流-应力耦合作用下底板导水破坏带深度及承压水导升带高度的计算公式;从底板隔水层厚度和岩性组合形式两方面着手,结合研究区沉积特征,对底板隔水层阻水性能作了综合评价;基于岩体极限平衡理论,综合考虑工作面斜长、隔水层厚度及岩性组合,推导出隔水层突水极限水压值计算公式;阐述了裂隙型底板突水动态机理,认为裂隙型底板突水是渗流-应力耦合作用不断强化的过程,矿山压力向底板深部传播,使底板岩体内应力状态不断变化,渗透压力也随之变化,促使底板隔水层上部和下部裂隙的扩展和贯通,最终整个隔水层贯通,造成突水。运用突水系数法和工作面斜长L=200m时底板突水极限水压值分别对保德煤矿13#煤底板突水危险性进行了预测,划分了突水危险性分区。通过两种方法对比分析,当L=50-70m时,底板隔水层突水极限水压值与隔水层厚度拟合线(Pz-M)和突水系数Ts=0.1MPa/m时工作面安全水头压力与隔水层厚度关系线(Ps(0.1)-M)符合程度较好;当L=100-150m时,Pz-M和Ps(0.06)-M符合程度较好;而当L进一步增大时,Pz-M逐渐偏离Ps(0.06)-M,且随L不断增大,隔水层厚度对底板突水的影响因子逐渐减小。
The safety mining of the 13th coal seam in Baode coal mine on the Ordovician limestone confined aquifer was researched in this paper. The recharge, run off and discharge conditions of Tianqiao spring basin in our studying area, general hydrochemical characteristics and intensive runoff zones characteristics were firstly analyzed. The water yield property, karst water runoff condition evolution, water level variations and seepage field characteristics of Ordovician limestone in our studying area were detailed researched. The adopted methods were hydrochemical analysis and GSM numerical simulation combining with area water level data, drilling data and water pumping data. The fracture destruction compression-shear model of fractured floor rockmass was established. And the fractured floor rockmass' rupture and damage mechanism under seepage and stress coupling was discussed on the basis of Mohr-Coulomb fracturing criterion and effective stress principle. The fracture strength computing formulas of rockmass with a single fracture and fractured rockmass were obtained after the theoretical derivation. That layed theoretical foundations for the calculation of floor failure depth and damage zone height. The affecting factors of floor water-inrush were analyzed. The computing formulas of floor failure depth and damage zone height arised when theory solutions for fracture strength of fractured floor and the mode I stress intensity factor were referenced based on the "down three zone" theory. From the perspective of water-resisting layer'thickness and lithological association, the separating water ability of water-resisting layer was evaluated comprehensively and the sedimentary characteristics were researched. The computing formulas of water-resisting layer'ultimate water-inrush pressure were derived with the comprehensive consideration of working face width, water-resisting layer'thickness and lithological association on the basis of rock mass limiting equilibrium theory. The fractured floor water-inrush dynamic mechanism was presented, and it was thought that the water inrush from fractured floor was by the strengthening of seepage and stress coupling. The underground pressure propagation to the floor led to the ever-changing of stress state in the floor rock mass, and also the seepage pressure,which promoted cracks' extension and coalescence, even the whole water-resisting layer, the water inrush happened at last. The water inrush coefficient method and ultimate water-inrush pressure of water-resisting layer with L=200m were applied to predict the water inrush danger of 13# coal seam in Baode coal mine and divided the water inrush danger areas respectively. With the comparison it was found that Pz-M and Ps(0.1)-M matched well when L=50-70m.And Pz-M was the fit line of ultimate water-inrush pressure and thickness of water-resisting layer, Ps(o.i)-M was the relation line of security pressure and water-resisting layer thickness when Ts=0.1MPa/m. Pz-M and Ps(0.06)-M matched well when L=100-150m. While L increased a bit, Pz-M deviated from Ps-M gradually, and the increase of L decreased the effect of water-resisting layer's thickness on floor water inrush.
引文
1.宋景义.华北型煤田奥灰岩溶水综合防治工业性试验[R].北京:中国统配煤矿总公司技术发展局,1989:
    2.宋景义.华北型煤田奥灰岩溶水综合防治工业性试验渭北矿区试验点研究报告[R].北京:中国统配煤矿总公司技术发展局,1991:
    3.李白英.改革采煤方法和开采工艺预防突水灾害的研究[R].泰安:山东矿业学院,1991:
    4. Show D.T.A parallel plates model of fractured permeable media[D]. Berkeley:University of California,1996:
    5. Snow D.Rock,fracture spacing,openingsand porosities[J].Soil Mech Founda,1968, 94(2):73-91
    6. Louis C.Rock Hydraulics in Rock mechanics[M].NewYork:Verlay wien,1974:32
    7.张征,刘淑春.岩溶含水介质渗透性参数空间最优估计的原理与方法[J].水文地质工程地质,1995,22(6):27-30
    8. Oda M.An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J].Water Resources Research,1986,16(13):1854-865
    9. Derek Elsworth, Mao Bai.Flow-deformation of dual-porosity media[J].Journal of Geotechnical Engineering,1992,18(1):23
    10.靳德武,王延福,马培智.煤层底板突水的动力学分析[J].西安矿业学院学报,1997,17(4):354-356
    11.高延法,施龙青,娄华君.底板突水规律与突水优势面[M].徐州:中国矿业大学出版社,1999:10-12
    12.施龙青.薄隔水层底板突水机理及预测预报研究[D].泰安:山东科技大学,1999:
    13.魏久传.煤层底板岩体断裂损伤与地板突水机理研究[D].泰安:山东科技大学,2000:
    14.李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学报,1995,17(2):13-19
    15.彭苏萍,屈洪亮,罗立平.沉积岩石全应力应变过程的渗透性试验研究[J].煤炭学报,2000,25(2):113-116
    16.姜振泉,季梁军.岩石全应力-应变过程渗透性试验研究[J].岩土工程学报,2001,23(2):153-156
    17.杨天鸿,徐涛,冯启言等.脆性岩石破裂过程渗透性演化试验[J].东北大学学 报,2003,24(10):974-977
    18.夏筱红,杨伟峰,崔道伟等.采场底板岩石渗透性试验研究[J].矿压安全与环保,2006,33(3):20-22
    19.王连国,宋扬.煤层底板突水突变模型[J].工程地质学报,2000,8(2):160-163
    20.中国生,江文武,徐国元.底板突水的突变理论预测[J].辽宁工程技术大学学报,2007,26(2):216-218
    21.白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(4):149-154
    22.杨善安.采场底板断层突水及其防治方法[J].煤炭学报,1994,19(6):620-625
    23.黎良杰.采场底板突水机制的研究[D].徐州:中国矿业大学,1995:
    24.施龙青,曲有刚,徐望国.采场底板断层突水判别方法[J].矿山压力与顶板管理,2000,17(2):49-51
    25.李青锋,王卫军,朱川曲.基于隔水关键层原理的断层突水机理分析[J].采矿与安全工程学报,2009,26(1):87-90
    26.卜万奎,茅献彪.断层倾角对断层活化及底板突水的影响研究[J].岩石力学与工程学报,2009,28(2):386-393
    27.尹尚先,王尚旭.陷落柱影响采场围岩破坏和底板突水的数值模拟分析[J].煤炭学报,2003,28(3):264-269
    28.刘志军,熊崇山.陷落柱突水机制的数值模拟研究[J].岩石力学与工程学报,2007,26(增2):4013-4017
    29.高航,孙振鹏.煤层底板采动影响的研究[J].山东矿业学院学报,1987,6(2):12-17
    30.肖洪天,荆自刚,李白英.周期来压的不同工作面长度对底板影响的电算模拟研究[J1.山东矿业学院学报,1989,8(2):9-13
    31.张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997:56-75
    32.张金才,刘天泉,张玉卓.裂隙岩体渗透特征的研究[J].煤炭学报,1997,22(5):481-485
    33.刘红元,唐春安.承压水底板失稳过程的数值模拟[J].煤矿开采,2001,6(1):50-51
    34.吕春峰,王芝银,李云鹏.含裂隙煤层底板突水规律的数值模拟与工程应用[J].岩土力学,2003,24(3):112-116
    35.冯启言,杨天鸿,于庆磊等.基于渗流损伤耦合分析的煤层底板突水过程的数值模拟[J].安全与环境学报,2006,6(3):1-4
    36.张文泉,刘伟韬,张红日.煤层底板岩层阻水能力及其影响因素的研究[J].岩土力学,1998,19(4):31-35
    37.刘汉湖,裴宗平,郑世书,等.带压开采时隔水层的隔水能力研究[J].中国煤田地质,1998,10(2):40-43
    38.李家祥.原岩应力与煤层底板隔水层阻水能力的关系[J].煤田地质与勘探,2000,28(4):47-49
    39.尹尚先,虎维岳,刘其声.承压含水层上采煤突水危险性评估研究[J].中国矿业大学学报,2008,37(3):311-315
    40.秦生,蔡云龙.用模式识别方法预测煤矿突水[J].煤炭学报,1990,15(4):63-68
    41.王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1993:12
    42.李富平.煤矿回采工作面突水预测的方法探讨[J].河北煤炭,1997,20(2):8-10
    43.靳德武,陈健鹏,王延福.煤层底板突水预报人工神经网络系统的研究[J].西安科技学院学报,2000,20(3):214-217
    44.江东,王建华,陈佩佩等.基于神经网络的煤矿底板突水预测[J].灾害学,1999,3(1):28-32
    45.王连国,宋扬.煤层底板突水组合人工神经网络预测[J].岩土工程学报,2001,7(4):502-505
    46.邱秀梅,王连国.煤层底板突水人工神经网络预测[J].山东农业大学学报,2002,33(1):62-65
    47.姜成志,张绍兵.建立在神经网络基础上的煤矿突水预测模型[J].黑龙江科技学院学报,2006,16(1):8-11
    48.高延法,章延平,张慧敏.底板突水危险性评价专家系统及应用研究[J].岩石力学与工程力学,2009,28(2):253-258
    49.李加祥.用模糊数学预测煤层底板的突水[J].山东矿业学院学报,1990,9(1):5-10
    50.靳德武,王延福,马培智.煤层底板突水的动力学分析[J].西安矿业学院学报,1997,17(4):354-356
    51.王延福,靳德武,增艳京.矿井煤层底板突水预测新方法研究[J].水文地质工程地质,1999,45(4):33-37
    52.曹忠初,孙苏南,郑世书等.GIS在煤矿底板突水危险性预测中的应用[J].水文地质工程地质,1996,42(1):45-48
    53.管恩太,武强,冀焕军等.煤矿底板突水的多源地学信息复合模型研究[J].工程勘察,2001,29(4):17-20
    54.尹会永,魏久传,刘同斌等.基于多源信息复合的煤层底板突水评价[J].山东科技大学学报,2008,27(2):6-9
    55.姜谙男,梁冰.基于最小二乘支持向量机的煤层底板突水量预测[J].煤炭学报,2005,30(5):613-617
    56.陈红江,李夕兵,刘爱华等.煤层底板突水量的距离判别分析预测方法[J].煤炭学报,2009,34(4):487-491
    57.韩行瑞,鲁荣安,李庆松等.岩溶水系统-山西岩溶大泉研究[M].北京:地质出版社,1993:306-313
    58.牛威.天桥泉域岩溶水水资源评价[J].山西水利科技,2007,37(2):58-60
    59.裴捍华,杨亲民,郭振中等.山西岩溶水强径流带的成因类型及其水文地质特[J].中国岩溶,2003,22(3):219-224
    60.曹金亮,韩颖,袁新华等.天桥泉域岩溶水系统水动力场、水化学场特征分析[J].中国岩溶,2005,24(4):312-317
    61.于浩然.中国北方岩溶基本特征及主要规律[A].见:中国北方岩溶和岩溶水研究[C].广西桂林:广西师范大学出版社,1993:1-8
    62.李向全,张莉,于开宁.西北干旱区深层岩溶地下水系统的水化学-同位素研究-以宁南“南北古脊梁”岩溶水系统为例[J].吉林大学学报,2003,33(4):524-529
    63. Brian G.katz,Angela R.Chelette,Thomas R. Pratt. Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age[J].Journal of Hydrology,2004,289(6):36-61
    64.徐慧珍,段秀铭,高赞东.济南泉域排泄区岩溶地下水水化学特征[J].水文地质工程地质,2007,51(3):15-19
    65.宋振骐等.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988:100-102
    66.康红普.水对岩石的损伤[J].水文地质工程地质,1994,38(3):39-40
    67.范景伟,何江达.含定向闭合断续节理岩体的强度特征[J].岩石力学与工程学报,1992,11(2):190-199
    68.王桂尧,孙宗颀,徐纪成.岩石压剪断裂机理及强度准则的探讨[J].岩石力学与工程学报,1992,11(2):190-199
    69.朱珍德,郭海庆.裂隙岩体水力学基础[M].北京:科学出版社,2007:52-64.
    70.库贵华,张少雄.断裂力学教程[M].西安:西北工业大学出版社,1994:51-57.
    71.周群力.从断裂力学的观点对新丰江水库地震机理的探讨[J].地震研究,1979,2(3):28-38
    72.祝云华,刘新荣,梁宁慧等.裂隙岩体渗流模型研究现状与展望[J].工程地质学报,2008,16(2):178-183
    73.王启智.计算裂隙张开面积和张开体积的几个公式[J].机械强度,2000,22(1):78-81
    74.汤连生,张鹏程,王洋.水作用下岩体断裂强度探讨[J].岩石力学与工程学报,2004,23(19):3337=3341
    75. Chugh Y P.Effects of moisture on strata control in coal mines[J].Engineering Geology, 1981,17(3):241-255
    76. Ojo O.The effect of moisture on some mechanical properties of rock[J].Mining Science and Technology,1990,15(10):140-156
    77.黄克智,余寿文,程莉.大变形与损伤力学[J].力学与实践,1989,11(2):1-6
    78.张文志,李兴高.底板破坏型突水的力学模型[J].矿山压力与顶板管理,2001,18(4):100-101
    79.陈卫忠.节理岩体损伤断裂时效机理及其工程应用[D].武汉:中国科学院武汉岩土力学研究所,1997:
    80.尹双增.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2006:125-150
    81.徐靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学特性-断裂损伤演化方程及试验验证[J].岩土力学,1994,15(2):1-12
    82. Farmer I W.Engineering Properties of Rocks[M].London:Chapman&Hall,1983:184-189
    83. Bobet A.The initiation of secondary cracks in compression[J].Engineering Fracture Mechanics,2000,66(3):187-219
    84.易顺民,朱珍德.裂隙岩体损伤力学导论[J].北京:科学出版社,2005:56-100
    85.周小平,张永兴,哈秋聆.裂隙岩体加载和卸荷条件下应力强度因子[J].地下空间,2003,23(3):277-280
    86.张强勇.多裂隙岩体三维加锚损伤断裂模型及其数值模拟与工程应用研究[D].武汉:中科院武汉岩土力学研究所,1998:
    87.李白英,饵尚振.采矿工程水文地质学(上册)[M].泰安:山东矿业学院教材,1988:63-65.
    88.彭苏萍,王金安.承压水体上安全采煤[M].北京:煤炭工业出版社,2001:9-10.
    89.沈光寒,李白英,吴戈.矿井特殊开采的理论与实践[M].北京:煤炭工业出版社,1992:58.
    90.张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报,1990,15(2):46-55
    91.钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003:165-168.
    92.谢兴华,速宝玉.裂隙岩体水力劈裂研究综述[J].岩土力学,2004,25(2):330-336
    93.马启超等.龙羊峡水电站坝区断裂带地应力特征分析[A].见:岩石力学在工程中的应用[C].北京:知识出版社,1989:67-72
    94.李家祥,李大普,张文泉等.原始地应力与煤层底板突水的关系[J].岩石力学与工程学报,1999,18(4):419-423
    95.陈治喜,陈勉,黄荣撙.层状介质中水力裂缝的垂向扩展[J]中国石油大学学报,1997,21(8):23-26
    96.郭英海,刘焕杰,权彪.鄂尔多斯地区晚古生代沉积体系及古地理演化[J].沉积学报,1998,16(3):44-51
    97.国家安全生产监督管理总局,国家煤矿安全监察局.煤矿防治水规定[M].北京:煤炭工业出版社,2009:52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700