底框砌体房屋抗震性能分析及抗侧刚度比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
底框砌体房屋是指底部为框架或者框架一剪力墙结构形式,上部各层为砌体结构形式的混合结构体系房屋。该类房屋底部房间布置灵活多变,可以营造大空间,主要用于商店、营业厅、餐馆、汽车库等;上部砌体结构由于横墙较多,房屋空间较小,一般用于办公室、住宅、小型旅馆等。
     由于具有良好的使用功能、造价低、施工方便等优点,其在我国大城市都市村庄、中小城镇临街建筑中得到广泛应用。作为适应我国经济发展水平的一种结构形式,该类建筑在今后相当长一段时期内,还将作为主要的结构形式被使用。然而,底框砌体房屋属于不同结构形式的竖向组合,上部砌体部分纵横墙较多,抗侧刚度大,下部比较空旷,最终形成了典型的“鸡腿”建筑。
     这种软首层结构在多次地震中表现不佳,底层和过渡层出现了较大的地震损坏或者倒塌,造成了严重的人员伤亡和财产损失。因此,进一步研究底框砌体房屋在大震中的地震反应规律,分析其抗震性能,并在此基础上揭示薄弱层转移机理,提出合适的抗侧刚度比值限值是十分必要和迫切的,同时相应研究也可为同类房屋的建造、加固及抗震性能评价提供技术参考。
     本文在郑州市“科技领军人才”项目(课题编号:10LJRC186)的支持下,主要进行了如下研究工作:
     (1)通过梳理底框砌体房屋在汶川、玉树地震中的震害特点,得到了房屋抗震薄弱环节和震害规律。基于震害规律分析,总结出过渡层与底层抗侧刚度比值不合理是震害发生的主要原因,并针对相应震害提出了抗震对策。
     (2)依据实例房屋基本尺寸,建立三维整体有限元模型,并采用Block Lanczos法进行模态分析,得到了结构动力参数和振型特征。分析结果表明,沿主轴方向结构纵向刚度弱于横向;沿楼层方向底层振动强烈,表现出“上刚下柔”的不利特性。
     (3)为评价该类房屋的抗震性能,本文沿结构纵横两向分别进行了大震作用下的动力弹塑性分析。提取结构的位移反应和裂缝开裂趋势,得出结构底层出现了严重弹塑性变形集中,是结构的薄弱层;上部过渡层砌体窗间墙、窗下墙和横墙下部出现较多开裂,是上部砌体的薄弱环节。
     (4)为探究过渡层破坏原因,寻求薄弱层转移机理,本文在房屋底层添加抗震墙,建立具有4种不同抗侧刚度比值的底框砌体房屋。通过各模型的模态分析和动力弹塑性分析,得到了添加抗震墙对结构动力参数及地震反应的影响。分析结果表明,添加抗震墙后过渡层破坏加重,因此需要对抗侧刚度比值进行相应的限制,防止薄弱层转移至材料强度低、变形能力弱的过渡层。
     (5)通过不同抗侧刚度比值房屋在大震作用下的弹塑性时程分析,依据过渡层与底层层间位移角相对比值等因素,本文对过渡层与底层抗侧刚度下限值做出了建议,该下限值处于我国抗震规范限值之内,具有比较理想的抗震安全性能和实际应用性能。
     (6)基于各模型的地震反应规律,本文总结了混凝土抗震墙和砖砌体进入非线性阶段时抗侧刚度退化不同步是薄弱层转移的主要原因。同时依据该主要因素和底层实际存在的填充墙,本文提出了弹塑性阶段有效抗侧刚度计算公式,该公式可为进一步深入研究抗侧刚度比限值等问题提供参考。
Bottom frame masonry structure refers to hybrid structure system housing whose layers at bottom are the frame structure or frame-shear wall structure and the upper layers are the masonry structure. The bottom of such a house is flexible room layout which can create a large space and mainly used for shops, business offices, restaurants, garages, etc; because of more cross walls and smaller housing space, the upper masonry structure is usually used for office, residential, small hostel, etc.
     Due to good use function, low cost and convenient construction, bottom frame masonry structure is widely used in urban villages in major cities, small towns'street construction. Because this structure is adapted to China's economic development level, in the future for quite a long time, it will also serve as the main structure form. However, because of many cross walls, the upper masonry structure's lateral stiffness is big, and the bottom is open, which finally form the typical chicken leg building.
     This soft first layer structure has poor performance in earthquakes, whose bottom layer and transition layer appeared large earthquake damage or collapse, and caused serious casualties and property losses.Therefore, it is necessary and urgent to furtherly study on the seismic response of the bottom frame masonry structure in the large earthquake, analyse the seismic performance, reveal the weak layer transfer mechanism and recommend appropriate lateral stiffness ratio limit value. Meanwhile corresponding research can provide technical references for the construction and retrofit of such buildings and evaluation of seismic performance.
     Supported by "Scientific and Technological Leading Talent Project"(project number:10LJRC186), this thesis mainly has done the following works:
     (1)By combing the bottom frame masonry buildings'damage characteristics in Wenchuan and Yushu earthquake, housing seismic weaknesses and damage law are obtained. Based on analysis of the earthquake damage law, this thesis has summed up that the lateral stiffness ratio of the transition layer and the underlying is not reasonable is the main cause of damage, and seismic countermeasures have been proposed.
     (2)According to basic dimensions of the intance building, establish three-dimensional finite element model, and through modal analysis by using Block Lanczos method, get the structural dynamic parameters and the mode characteristics.Analysises show that along the major axis, the longitudinal lateral stiffness is weaker than the transverse; along the floors'direction, the bottom floor vibrates strongly, which shows "large rigidity of the upper and weak of the lower part".
     (3)In order to evaluate the seismic performance of such a house, along both transverse and longitudinal directions, undertake a structural elastic-plastic time history analysis under a great earthquake and extract the structural displacement response and development trend of cracks. The results show that the underlying appears serious elastic-plastic deformation which is the weak layer of the structure; the wall between windows, the wall under windows and the lower part of the cross wall in the transition layer occur more cracks, which are the weak links of the upper masonry.
     (4)In order to explore the reasons of transition layer destruction and seek weak layer transfer mechanism, four kinds of finite element models with different lateral stiffness ratios are established by adding different size shear walls in the bottom. Through modal anlysis and structural elastic-plastic time history analysis under the great earthquake, the impact on dynamic parameters and seismic response has been obtained after adding shear wall.Analysis results show that the transition layer destruction increases after adding the shear wall, and there is need to limit the lateral stiffness ratio to prevent weak layer from transferring to transition layer of which has low material strength and deformation capacity.
     (5)Through elastic-plastic time history analysis of buildings with different lateral stiffness ratios under the great earthquake, based on the relative ratio between the bottom layer and the transition layer displacement angle, suggestions of lower limit value of lateral stiffness ratio have been put forward.The limit value which is within the limits of our seismic code has ideal seismic safety performance and actual application performance.
     (6)Based on the seismic response law of the models, this thesis summarized that the lateral stiffness degradation of concere shear wall and brick masonry in nonlinear stage is the main reason of the weak layer transfer. At the same time, according to this main factors and the practical application of infill walls in bottom suggestion of effective lateral stiffness ratio formula at elastic-plastic stage has been put forward which can provide a reference for further study on the lateral stiffness ratio limit.
引文
[1]李志伟.底框一抗震墙结构墙体侧向刚度计算方法的研究[D].北京:北京交通大学,2007
    [2]李碧雄,邓建辉,王哲.5·12汶川地震底框砖房震害启示[J].西安建筑科技大学学报(自然科学版),2010,42(3):342~347
    [3]清华大学土木工程结构专家组,西南交通大学土木工程结构专家组,北京交通大学土木工程结构专家组.汶川地震建筑震害分析[J].建筑结构学报,2008,29(4):1-9
    [4]谭皓,李杰,张电吉,张泽强,章国成.玉树大地震砌体结构房屋震害特征[J].工程抗震与加固改造,2011,33(5):133~139
    [5][苏]M.图尔苏穆拉托夫.柔性底层房屋的抗震性能,刘世富译[M].北京:中国最优设计管理研究会,1978,28~34
    [6]Biot.M.A. Analytical and Experiment Methods in Engineering Seismology. In:Proc. ASCE, 1943,108-112
    [7]S.V.Polyakov. Design of earthquake resistant structures. Mir Publishers, Moscow,1985, 225-233
    [8]刘大海,杨翠如,钟锡根.高层建筑抗震设计[M].北京:中国建筑工业出版社,1993
    [9]Anil K. Chopra.结构动力学理论及其在地震工程中的应用(第二版),谢礼立等译[M].北京:高等教育出版社,2005.537-539
    [10]高小旺,孟俊义,廖兴祥等.七层底层框架抗震墙砖房1/2比例模型抗震试验研究[J].建筑科学,1995(4):18~23
    [11]解明雨,黄维平,陈熙之等.底层框剪组合墙八层房屋抗震能力分析[J].工程抗震,1995(2):20~23
    [12]夏静莲.底部框剪砌体房屋抗震性能的研究[J].建筑科学,1995(3):19~27
    [13]郑山锁,张兴虎,沈朝勇.底层框架砖房模型的振动台试验[J].西安建筑科技大学学报,1998,30(3):280~283
    [14]刘雁,邹莜静,周开富等.底部柔性砌体结构房屋抗震性能试验研究[J].扬州大学学报(自然科学版),2001,4(1):74~78
    [15]李樾,李鸿晶,施溪溪.填充墙对底框结构地震反应的影响[J].防灾减灾工程学报,2011,31(4):423~429
    [16]李清洋,刘昱,王世敏,高小旺.底部框架—抗震墙砌体房屋震害调查分析[J].建筑结构,2011,41(增刊):291~293
    [17]熊立红,杜修力,陆鸣等.5.12汶川地震中多层房屋典型震害规律研究[J].北京工业大学学报,2008,34(11):1166~1172
    [18]冯远,周劲炜,刘宜丰等.汶川地震建筑物震害[J].四川建筑科学研究,2009,35(6):139~156
    [19]谭皓,李杰,张电吉等.玉树地震灾区底框砖混结构建筑的震害调查[J].浙江建筑,2011,28(1):20~23
    [20]陈俊.底部框架-抗震墙房屋的抗震性能及层刚度比的影响规律分析[D].重庆:重庆大 学,2010
    [21]张海峰.振动台试验模型尺寸误差分析与研究[D].上海:同济大学,2006
    [22]高小旺,王菁,肖伟等.底层框架抗震墙砖房第二层与底层侧移刚度比的合理取值[J].工程抗震,1998(3):18~22
    [23]郑山锁,王建平.底层框架砖房抗震性能分析[J].西安建筑科技大学学报,1999,31(3):304~306
    [24]史庆轩,翟雷.底层框架抗震墙上部砖混结构合宜刚度比的确定[J].西安建筑科技大学学报,2000,32(3):230~233
    [25]张培震.中国地震灾害与防震减灾[J].地震地质,2008,30(3):577~583
    [26]李宏男,肖诗云,霍林生.汶川地震震害调查与启示[J].建筑结构学报,2008,29(4):10-19
    [27]中华人民共和国住房和城乡建设部.GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010
    [28]应义淼,章雪峰,王灵文等.汶川地震中青川县城底框—抗震墙结构房屋震害调查和分析[J].浙江建筑,2009,26(5):58-60
    [29]刘航,蓝宗建,庞同和等.劲性钢筋混凝土低剪力墙抗震性能试验研究[J].工业建筑,1997,27(5):32~36
    [30]杨组泉,万胜武.混凝土本构模型的研究现状与展望[J].工程建设与设计,20060):79-80
    [31]过镇海.混凝土的强度和本构关系—原理与应用[M].北京:中国建筑工业出版社,2004
    [32]Krishna Naraine, Sachchidand Sinha. Stress-strain curves for brick masonry in biaxial compression[J]. Journal of Structural Engineering,ASCE,118(6):1451-1461
    [33]Lidia La Mendola. Influence of nonlinear constitutive law on masonry pier stability [J]. Struct.Engrg, ASCE,1997,123(10)
    [34]Krishna Naraine,Sachchidand Sinha. Behavior of brick masonry under eyclic compressive loading [J]. Journal of Construction Engineering and Management,1989,115(2):1432-1444
    [35]梁城宇.多层砌体结构非线性分析及抗震性能研究[D].大连:大连理工大学,201 0
    [36]杨卫忠,樊潜.砌体受压应力—应变关系[J].郑州大学学报(工学版),2007,28(1):47~50
    [37]朱炳寅.(GB50011-2010)建筑抗震设计规范应用与分析[M].北京:中国建筑工业出版社,2011
    [38]何本国.ANSYS土木工程应用实例(第三版)[M].北京:中国水利水电出版社,2011
    [39]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007
    [40]司炳君,孙治国,艾庆华.Solid65单元在混凝土结构有限元分析中的应用[J].工业建筑,2007,37(1):87-91
    [41]李英民,韩军,刘立平.ANSYS在砌体结构非线性有限元分析中的应用研究[J].重庆建筑大学学报,2006,28(5):90-96
    [42]王世敏.底部框架—抗震墙砖房抗震性能研究[D].北京:北京工业大学,2010
    [43]范雪梅.底部框架结构被动控制及时程分析[D].长春:吉林建筑工程学院,2010
    [44]中华人民共和国住房和城乡建设部.GB50010-2010,混凝土结构设计规范[S].北京: 中国建筑工业出版社,2010
    [45]肖承波.某非完整的底部两层框架—抗震墙砖房结构的地震响应分析[D].成都:四川大学,2006
    [46]中华人民共和国住房和城乡建设部.GB50003-2011,砌体结构设计规范[S].北京:中国建筑工业出版社,2011
    [47]施楚贤.砌体结构[M].北京:中国建筑工业出版社,2003
    [48]中华人民共和国建设部.GB50017-2003,钢结构设计规范[S].北京:中国计划出版社,2003
    [49]陈磊.基于ANSYS的钢筋混凝土结构试验有限元分析[D].西安:西安理工大学,2004
    [50]Page A. Finite element model for masonry[J]. Struc. DIV. ASCE,1978,104:1267-1285
    [51]Lourenco P. B, Rots J. G. Implementation of an interface cap model for the analysis for masonry Structures[J]. Computational Modelling of Conerete Structures, Mang. H, Bicanic N. and D. Borst.R,1994,123-134
    [52]朱伯龙,金国芳.“混用体系“中型砌块墙片有限元弹塑性分析[J].同济大学学报,1994,22(1):1-6
    [53]Cerrolaza, M.Sulem, J.Elbied. A cosserat non-linear finite element analysis software for blocky structure[J]. Int. J. of Ady. in Eng. soft,1998,30(1):69-83
    [54]Anthoine A. Derivation of the In-plane Elastic Characteristics of Masonry through Homogenization Theory [J]. International Journal of Solids and Structures,1995, (32):137-163
    [55]Anthoine A. Homogenisation of periodic masonry:plane stress,generalized plane strain or 3D modeling[J]. Communications in Numerical Methods in Engineering,1997,(13):319-326
    [56]Zucchini A, Lourenco P.B. A micro-mechanical model for the homogenisation of masonry[J].International Journal of Solids and Structures,2002,39(12):3233-3255
    [57]刘扬,翟新芳.郑州大学东校区场地地震地质条件及抗震设防应对措施[J].河南地质,2001,19(4):289~294
    [58]金灿国.底层薄弱层框架—填充墙抗震性能研究[D].长沙:长沙理工大学,2009
    [59]白峻昶,靳金平.时程分析用地震波选取的探讨[J].山西建筑,2007,33(3):62~63
    [60]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994
    [61]韩军,李英民,刘立平,郑妮娜,王丽萍,刘建伟.5·12汶川地震绵阳市区房屋震害统计与分析[J].重庆建筑大学学报,2008,30(5):21~27
    [62]沈蒲生.混凝土结构设计[M].北京:高等教育出版社,2007
    [63]苑振芳.砌体结构设计规范算例[M].北京:中国建筑工业出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700