酵母谷胱甘肽转移酶Gtt2和甲硫氨酸亚砜还原酶Mxr1的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(Ⅰ)自然界中有一类能够损伤细胞或者破坏遗传物质的有毒物质,叫异生质(xenobiotics)。它们或者自生物体外进入,或者由体内代谢产生。为了消除这些有毒的异生质,生物体在漫长的进化过程中产生了一系列成熟有效的解毒机制。总的来说,这些解毒过程可以分为三个流程:一,通过引入活性功能基团激活化学性质相对稳定的异生质;二,将异生质上的活性功能基团与其他物质偶联,生成新的无毒或弱毒物质;三,偶联后的异生质溶解度大幅上升,可以通过膜表面的通道排出细胞,或者被下游反应最终降解。
     谷胱甘肽转移酶(glutathione S-transferase,GST,EC 2.5.1.18)就是在解毒第二阶段中发挥重要作用的一种酶。该家族的酶能够催化异生质与谷胱甘肽(glutathione,GSH)巯基的偶联,进而消除异生质的亲电基团,降低毒性,提高溶解度。真核生物通常含有多个直系同源的谷胱甘肽转移酶,参与不同的反应流程。在哺乳动物中,胞质内的谷胱甘肽转移酶全都是以二体形式存在,并根据一级序列被划分为八个主要亚家族:Alpha、Kappa、Pi、Mu、Theta、Zeta、Sigma和Omega。在对非哺乳动物的研究中,一些新的谷胱甘肽转移酶亚家族被报道,如细菌内的Beta亚家族,高等植物中的Phi和Tau亚家族,昆虫中的Delta亚家族。真菌也含有多种谷胱甘肽转移酶,但是一级序列变化较大,目前无法归入依照序列划分的分类体系。除了这种分类体系,还有一种根据谷胱甘肽转移酶催化残基的分类方法。谷胱甘肽转移酶在催化过程中,将依靠某一特定催化残基去降低谷胱甘肽的pKa值,通过氢键稳定巯基负离子,从而加速异生质的亲电攻击。该分类方法依照反应过程中催化残基的类型,将所有的胞内谷胱甘肽转移酶分为三大类:酪氨酸催化(Tyr-),丝氨酸催化(Ser-),半胱氨酸催化(Cys-)。目前所有的胞内谷胱甘肽转移酶都可以归入上述三个大类。据报道,催化残基的突变可以显著降低,甚至完全消除谷胱甘肽转移酶的活性。
     在酿酒酵母(Saccharomyces cerevisiae)中,目前发现七种蛋白具有谷胱甘肽转移酶活性,分别是Gtt1、Gtt2、Gto1、Gto2、Gto3、Grx1和Grx2。从已知的结构看,Grx1和Grx2并不属于谷胱甘肽转移酶家族,因为它们没有谷胱甘肽转移酶的C端结构域,而只具有N端结构域。在剩下的五个蛋白均属于谷胱甘肽转移酶家族,其中Gto1/2/3被归入谷胱甘肽转移酶Omega亚家族,Gtt1和Gtt2因序列同源度过低而无法归入现有的亚家族。虽然这五个谷胱甘肽转移酶的生理和生化功能都被广泛研究,但是到目前为止它们的三维结构还没有被报道。因此,我们展开了一项关于酿酒酵母谷胱甘肽转移酶三维结构的研究。我们解析了酿酒酵母中谷胱甘肽转移酶Gtt2的结构(2.23 (A|°)),以及Gtt2分别与底物谷胱甘肽GSH(2.10 (A|°))和底物类似物磺化谷胱甘肽GTS(2.20 (A|°))的复合物结构。从整体结构上看,Gtt2与常见的谷胱甘肽转移酶没有太大区别。但是通过对催化位点的结构分析、定点突变、光谱学分析和酶活测定,我们发现Gtt2与前人报道的三种催化类型(Tyr-、Ser-、Cys-)显著不同。Gtt2是通过C端结构域上的一个丝氨酸和一个组氨酸共同稳定的水分子来发挥催化功能的,而不是通过某个催化残基上的极性原子。另外,同源序列比对、定点突变与酶活测定证明,伸向催化位点的α1螺旋的N端,由于空间位阻的原因,只能是甘氨酸或者丙氨酸这两种侧链较小的残基。最终,我们定义了一类新的谷胱甘肽转移酶催化类型:非典型性(Atypical-type)谷胱甘肽转移酶。
    
     (Ⅱ)硫氧还蛋白(thioredoxin,Trx)是一类广泛存在于自然界中的“巯基—二硫键”交换蛋白。它参与了很多重要的胞内反应,比如还原甲硫氨酸亚砜、核糖核苷酸、过氧化物等等。硫氧还蛋白家族都具有一个高度保守的CXXC活性相关结构域。反应过程中,第一个半胱氨酸会攻击底物蛋白的分子内二硫键,将分子内二硫键转化成分子间二硫键,形成反应中间态。此时硫氧还蛋白和底物蛋白会形成一个极不稳定的二硫键连接的复合物。之后,该分子间二硫键会被硫氧还蛋白CXXC中的第二个Cys攻击,中间态复合物解体,释放出被还原了的底物蛋白和被氧化了的硫氧还蛋白。
     甲硫氨酸是一种对氧化非常敏感的氨基酸。在活性氧簇或活性氮簇存在时,甲硫氨酸很容易被氧化成甲硫氨酸亚砜(Met-SO)。由于是手性分子,所以氧化产物是以镜像对映体的形式(Met-S-SO and Met-R-SO)混合存在。蛋白表面的甲硫氨酸被氧化后会对细胞造成一系列损伤并最终加速衰老过程。然而,细胞内有一种称为甲硫氨酸亚砜还原酶(methionine-S-sulfoxide reductase,Msr)的蛋白,能够用硫氧还蛋白Trx提供的电子,去还原被氧化生成的甲硫氨酸亚砜,重新变成甲硫氨酸。最近,法国一科研小组报道,不光是硫氧还蛋白可以给甲硫氨酸亚砜还原酶提供电子,谷氧还蛋白/谷胱甘肽系统同样可以作为还原力的提供者。不论其还原力来源于哪里,甲硫氨酸亚砜还原酶都被证明在酿酒酵母、昆虫、哺乳动物体内,有延长寿命的作用。
     到目前为止,一共有三个甲硫氨酸亚砜还原酶家族被报道(MsrA、MsrB、fRMsr)。MsrA和MsrB是最先被发现的两个家族,对底物有手性要求,分别能还原Met-S-SO和Met-R-SO。他们不但能够还原游离状态的甲硫氨酸亚砜,还能够还原蛋白表面的甲硫氨酸亚砜。据报道,一系列与人类疾病相关的蛋白都被证明是MsrA和MsrB的底物,比如钙调蛋白、HIV-2蛋白酶、Alpha-1蛋白酶抑制剂等等。fRMsr家族直到最近才被发现,它的特点是只能够还原游离状态的Met-R-SO,对蛋白表面的Met-R-SO则无能为力。尽管这三个家族有不同的起源、结构、底物特异性和物种分布,但它们所涉及的催化机理却是基本一致的。都是甲硫氨酸亚砜被还原并释放,催化半胱氨酸的巯基氧化成次磺酸,转化为分子内二硫键,最后由硫氧还蛋白或者其他电子供体还原Msr的分子内二硫键。
     现在已经有七个不同物种的MsrA结构被报道。不论是X射线晶体衍射方法解析的还是核磁共振波谱法解析的,它们的核心结构域基本一致,可以很好的叠合。各结构之间的区别主要集中在活性位点周围的柔性区,尤其是C末端的柔性区,这恰恰是参与催化的一个半胱氨酸所在的位置,暗示这些柔性区的构象变化很可能会促进分子内二硫键的形成,并与硫氧还蛋白相互作用有关。
     酿酒酵母(Saccharomyces cerevisiae)中存在三个甲硫氨酸亚砜还原酶,分别是Mxr1/MsrA、Mxr2/MsrB和Ykg9/fRMsr。尽管这三个甲硫氨酸亚砜还原酶的机制已经被广泛研究,但是它们为什么能够与多种的底物蛋白或者硫氧还蛋白相互作用,仍然还不清楚。为此,我们解析了Mxr1还原态(2.04 (A|°)),二体氧化态(1.90 (A|°))以及与硫氧还蛋白Trx2结合的复合物(2.70 (A|°))的晶体结构。通过结构叠合分析,我们发现活性位点周围的三段柔性区构象变化很大,可以根据底物蛋白的表面而改变构象,这很有可能就是甲硫氨酸亚砜还原酶底物多样性的原因。另外,该区域与Trx2相互作用时所显示的柔性,提供了Trx能用单一活性位点识别不同底物蛋白的结构基础。该发现将为Trx底物蛋白的预测提供新的重要思路。
(Ⅰ) Many xenobiotics have cytotoxic and/or genotoxic properties, and can damage cells in various ways. To eliminate toxic xenobiotics, living organisms have evolved a series of sophisticated detoxification strategies. In general, the detoxification process can be described as a three-phase reaction. In phase I, xenobiotics are activated by introduction of reactive functional groups. In phase II, they are neutralized by conjugation to chemical constituents through the reactive groups. In phase III, the conjugated xenobiotics are pumped out from cells after being metabolized via downstream pathways and eventually eliminated.
     The glutathione S-transferases (GSTs) (EC 2.5.1.18) play a key role in phase II of enzymatic detoxification. These enzymes catalyze the reaction of xenobiotics with the thiolate group of glutathione (GSH), thereby neutralizing their electrophilic sites and raising the water-solubility of the products. Eukaryotes usually contain multiple GST paralogs with different catalytic activities, and a wide range of cellular functions. In mammals, cytosolic GSTs are dimeric proteins that are grouped into eight main-strain classes, primarily by sequence alignment: Alpha, Kappa, Pi, Mu, Theta, Zeta, Sigma and Omega. In addition, studies in non-mammalian species have revealed several new classes such as theΒeta class of bacteria, the Phi and Tau classes in plants, and the Delta class in insects. Fungi also possess several GSTs, but most cannot be grouped into the pre-existing classes. In addition to the sequence-based classification, the nomenclature of cytosolic GSTs can refer to the essential catalytic residue. All cytosolic GSTs of known structure are classified into one of three catalytic types, either Tyr-, Ser- or Cys-type, depending on the residue that drives the conjugation of GSH to a xenobiotic through lowering the pKa of GSH, and stabilizing the thiolate anion via a hydrogen bond. Mutations of the essential residue usually results in a substantial, if not complete, inactivation of the GST.
     In the yeast Saccharomyces cerevisiae, seven proteins possess GST activity (Gtt1 and 2, Gto1, 2 and 3 and Grx1, 2). However, the structures of Grx1 and Grx2 reveal that they are not bona fide GSTs, but only correspond to the GST N-terminal domain. Of the five other homologous proteins, Gto1, 2 and 3 are classified into the Omega GST class, while Gtt1 and 2 are not categorized into any existing classes. Although the physiological and biochemical functions of these five yeast GSTs have been extensively studied, no three-dimensional (3-D) structures have been reported. We began a systematic characterization of the yeast GSTs by determining the crystal structures of Gtt2 in apo form at 2.23 (A|°), and in two ligand-bound forms at 2.20 and 2.10 (A|°). Gtt2 is distinct from the three classic catalytic types, because a water molecule fixed by two residues in the C-terminal domain is responsible for the activity. Moreover, only glycine and alanine are favored at the N-terminus of helixα1 because of the stereo-hindrance. These results enabled us to define a novel catalytic cytosolic GST type, which is called the atypical-type.
    
     (Ⅱ) Thioredoxins (Trxs) are ubiquitous small thiol-disulfide exchange proteins which are involved in many important cellular processes such as reduction of methionine sulfoxide, ribonucleotide, and peroxide. These proteins have a highly conserved active site of CXXC motif. During reaction, the first Cys attacks the intramolecular disulfide bond in the substrate protein, accompanying with the formation of an intermolecular disulfide intermediate. This mixed disulfide is subsequently attacked by the second Cys, resulting in the release of reduced substrate protein and the oxidized Trx.
     Methionine is one of the most sensitive amino acid residues subject to oxidation. It can be readily oxidized to methionine sulfoxide (Met-SO) as a mixture of two enantiomers at the sulfoxide moiety (Met-S-SO and Met-R-SO), by various reactive oxygen or nitrogen species. Oxidation of the methionines on protein surfaces would cause some lethal effects to the cells and accelerate the aging process. However, both in vitro and in vivo, a group of enzymes called methionine sulfoxide reductases (Msrs, EC 1.8.4.6) can use thioredoxin (Trx) as the electron donor to regenerate the oxidized proteins, by reducing Met-SO to methionine. Recently, the glutathione/glutaredoxin system has been discovered that it also could act as the electron donor for Met-SO reduction. This protective mechanism has been shown to play a significant role in elongating the lifespan of yeast, insects and mammals.
     To date, three Msr families have been reported. MsrA and MsrB are classic Msrs that regenerate the proteinous Met-S-SO and Met-R-SO, respectively. They also could regenerate the corresponding free Met-SO. A series of human disease-related proteins have been identified as substrates of MsrA and MsrB, such as calmodulin, HIV-2 protease and alpha-1-proteinase inhibitor. However, fRMsr is a recently discovered Msr which is exclusively responsible for the reduction of free Met-R-SO, but not the proteinous ones. Despite that the three families have distinct differences in origin, structure, substrate specificity and species distribution, they basically share a similar catalytic mechanism. The mechanism involves the oxidation of the catalytic cysteine to a sulfenic acid intermediate, followed by the formation of an intramolecular disulfide bond, and the final regeneration process driven by Trx or other reductants.
     Structures of MsrA from seven different species are currently reported. The core structures of these MsrA are very similar and could be well superimposed. This is regardless of the method of structure determination, either crystallography or NMR spectroscopy. The major differences are involved in the loops around the active site, especially the C-terminal loop, which is supported by the electrostatic analysis and distance measurements between the two catalytic cysteines. It is also suggested that these conformational changes would facilitate the formation of an intramolecular disulfide bond and the exposure of a hydrophobic patch for Trx interaction.
     The yeast Saccharomyces cerevisiae encodes three Msrs (Mxr1/MsrA, Mxr2/MsrB and Ykg9/fRMsr). Although the mechanism of the Msrs has been extensively studied, their interactions with diverse substrate proteins and a universal Trx remain unknown. Therefore, we have systematically characterized the yeast Msr-Trx complexes by determining the crystal structures of Mxr1 in its reduced form at 2.04 (A|°), in a dimeric oxidized form at 1.90 (A|°), and in a Trx2-complexed form at 2.70 (A|°). Superposition of these structures have revealed three highly flexible loops. These loops undergo drastic conformational changes and may be responsible for the enzyme’s substrate diversity. Additionally, interface analysis of Mxr1-Trx2 along with data from previously reported Trx-protein complexes, we have found a new mode for Trx-involved complexes which undergo drastic conformational changes. These findings would be helpful for the prediction of potential interfaces on the Trx substrate proteins.
引文
Adang AE, Brussee J, Meyer DJ, Coles B, Ketterer B, van der Gen A, Mulder GJ (1988) Substrate specificity of rat liver glutathione S-transferase isoenzymes for a series of glutathione analogues, modified at the gamma-glutamyl moiety. Biochem J 255(2): 721-724
    Adang AE, Brussee J, van der Gen A, Mulder GJ (1990) The glutathione-binding site in glutathione S-transferases. Investigation of the cysteinyl, glycyl and gamma-glutamyl domains. Biochem J 269(1): 47-54
    Adang AE, Meyer DJ, Brussee J, Van der Gen A, Ketterer B, Mulder GJ (1989) Interaction of rat glutathione S-transferases 7-7 and 8-8 with gamma-glutamyl- or glycyl-modified glutathione analogues. Biochem J 264(3): 759-764
    Allocati N, Casalone E, Masulli M, Ceccarelli I, Carletti E, Parker MW, Di Ilio C (1999) Functional analysis of the evolutionarily conserved proline 53 residue in Proteus mirabilis glutathione transferase B1-1. FEBS Lett 445(2-3): 347-350
    Allocati N, Federici L, Masulli M, Di Ilio C (2009) Glutathione transferases in bacteria. FEBS J 276(1): 58-75
    Armstrong RN (1994) Glutathione S-transferases: structure and mechanism of an archetypical detoxication enzyme. Adv Enzymol Relat Areas Mol Biol 69: 1-44
    Caccuri AM, Antonini G, Board PG, Flanagan J, Parker MW, Paolesse R, Turella P, Federici G, Lo Bello M, Ricci G (2001) Human glutathione transferase T2-2 discloses some evolutionary strategies for optimization of substrate binding to the active site of glutathione transferases. J Biol Chem 276(8): 5427-5431
    CCP4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50(Pt 5): 760-763
    Chen WJ, Graminski GF, Armstrong RN (1988) Dissection of the catalytic mechanism of isozyme 4-4 of glutathione S-transferase with alternative substrates. Biochemistry 27(2): 647-654
    Choi JH, Lou W, Vancura A (1998) A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem 273(45): 29915-29922
    Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16(22): 10881-10890
    Danielson UH, Mannervik B (1985) Kinetic independence of the subunits of cytosolic glutathione transferase from the rat. Biochem J 231(2): 263-267
    Dirr H, Reinemer P, Huber R (1994) X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function. Eur J Biochem 220(3): 645-661
    Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3(3): REVIEWS3004
    Dourado DF, Fernandes PA, Mannervik B, Ramos MJ (2008) Glutathione transferase: new model for glutathione activation. Chemistry 14(31): 9591-9598
    Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1): 2126-2132
    Frova C (2006) Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng 23(4): 149-169
    Garcera A, Barreto L, Piedrafita L, Tamarit J, Herrero E (2006) Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases. Biochem J 398(2): 187-196
    Gouet P, Robert X, Courcelle E (2003) ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31(13): 3320-3323
    Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45: 51-88
    Hol WG (1985a) Effects of the alpha-helix dipole upon the functioning and structure of proteins and peptides. Adv Biophys 19: 133-165
    Hol WG (1985b) The role of the alpha-helix dipole in protein function and structure. Prog Biophys Mol Biol 45(3): 149-195
    Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J Mol Biol 233(1): 123-138
    Liu S, Zhang P, Ji X, Johnson WW, Gilliland GL, Armstrong RN (1992) Contribution of tyrosine 6 to the catalytic mechanism of isoenzyme 3-3 of glutathione S-transferase. J Biol Chem 267(7): 4296-4299
    Mannervik B, Danielson UH (1988) Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem 23(3): 283-337
    McCoy AJ (2007) Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D Biol Crystallogr 63(Pt 1): 32-41
    McGoldrick S, O'Sullivan SM, Sheehan D (2005) Glutathione transferase-like proteins encoded in genomes of yeasts and fungi: insights into evolution of a multifunctional protein superfamily. FEMS Microbiol Lett 242(1): 1-12
    Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53(Pt 3): 240-255
    Neuefeind T, Huber R, Dasenbrock H, Prade L, Bieseler B (1997) Crystal structure of herbicide-detoxifying maize glutathione S-transferase-I in complex with lactoylglutathione: evidence for an induced-fit mechanism. J Mol Biol 274(4): 446-453
    Oakley AJ, Harnnoi T, Udomsinprasert R, Jirajaroenrat K, Ketterman AJ, Wilce MC (2001) The crystal structures of glutathione S-transferases isozymes 1-3 and 1-4 from Anopheles dirus species B. Protein Sci 10(11): 2176-2185
    Perbandt M, Hoppner J, Betzel C, Walter RD, Liebau E (2005) Structure of the major cytosolic glutathione S-transferase from the parasitic nematode Onchocerca volvulus. J Biol Chem 280(13): 12630-12636
    Porter MA, Hall JR, Locke JC, Jensen JH, Molina PA (2006) Hydrogen bonding is the prime determinant of carboxyl pKa values at the N-termini of alpha-helices. Proteins 63(3): 621-635
    Ricci G, Caccuri AM, Lo Bello M, Pastore A, Piemonte F, Federici G (1994) Colorimetric and fluorometric assays of glutathione transferase based on 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Anal Biochem 218(2): 463-465
    Sesay MA, Ammon HL, Armstrong RN (1987) Crystallization and a preliminary X-ray diffraction study of isozyme 3-3 of glutathione S-transferase from rat liver. J Mol Biol 197(2): 377-378
    Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360(Pt 1): 1-16
    Wilce MC, Parker MW (1994) Structure and function of glutathione S-transferases. Biochim Biophys Acta 1205(1): 1-18
    Xiao G, Liu S, Ji X, Johnson WW, Chen J, Parsons JF, Stevens WJ, Gilliland GL, Armstrong RN (1996) First-sphere and second-sphere electrostatic effects in the active site of a class mu gluthathione transferase. Biochemistry 35(15): 4753-4765
    Yu J, Zhang NN, Yin PD, Cui PX, Zhou CZ (2008) Glutathionylation-triggered conformational changes of glutaredoxin Grx1 from the yeast Saccharomyces cerevisiae. Proteins 72(3): 1077-1083
    Antoine M, Boschi-Muller S, Branlant G (2003) Kinetic characterization of the chemical steps involved in the catalytic mechanism of methionine sulfoxide reductase A from Neisseria meningitidis. J Biol Chem 278(46): 45352-45357
    Bao R, Chen Y, Tang YJ, Janin J, Zhou CZ (2007) Crystal structure of the yeast cytoplasmic thioredoxin Trx2. Proteins 66(1): 246-249
    Boschi-Muller S, Azza S, Sanglier-Cianferani S, Talfournier F, Van Dorsselear A, Branlant G (2000) A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli. J Biol Chem 275(46): 35908-35913
    Boschi-Muller S, Gand A, Branlant G (2008) The methionine sulfoxide reductases: Catalysis and substrate specificities. Arch Biochem Biophys 474(2): 266-273
    Brot N, Weissbach H (2000) Peptide methionine sulfoxide reductase: biochemistry and physiological role. Biopolymers 55(4): 288-296
    Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3(1): 3-8
    CCP4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50(Pt 5): 760-763
    Chartron J, Shiau C, Stout CD, Carroll KS (2007) 3'-Phosphoadenosine-5'-phosphosulfate reductase in complex with thioredoxin: a structural snapshot in the catalytic cycle. Biochemistry 46(13): 3942-3951
    Coudevylle N, Antoine M, Bouguet-Bonnet S, Mutzenhardt P, Boschi-Muller S, Branlant G, Cung MT (2007) Solution structure and backbone dynamics of the reduced form and an oxidized form of E. coli methionine sulfoxide reductase A (MsrA): structural insight of the MsrA catalytic cycle. J Mol Biol 366(1): 193-206
    Dai S, Friemann R, Glauser DA, Bourquin F, Manieri W, Schurmann P, Eklund H (2007) Structural snapshots along the reaction pathway of ferredoxin-thioredoxin reductase. Nature 448(7149): 92-96
    Ejiri SI, Weissbach H, Brot N (1979) Reduction of methionine sulfoxide to methionine by Escherichia coli. J Bacteriol 139(1): 161-164
    Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1): 2126-2132
    Ezraty B, Aussel L, Barras F (2005) Methionine sulfoxide reductases in prokaryotes. Biochim Biophys Acta 1703(2): 221-229
    Friguet B (2006) Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett 580(12): 2910-2916
    Grimaud R, Ezraty B, Mitchell JK, Lafitte D, Briand C, Derrick PJ, Barras F (2001) Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J Biol Chem 276(52): 48915-48920
    Haebel PW, Goldstone D, Katzen F, Beckwith J, Metcalf P (2002) The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-DsbDalpha complex. EMBO J 21(18): 4774-4784
    Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3): 298-300
    Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57: 395-418
    Janin J, Bahadur RP, Chakrabarti P (2008) Protein-protein interaction and quaternary structure. Q Rev Biophys 41(2): 133-180
    Kim YK, Shin YJ, Lee WH, Kim HY, Hwang KY (2009) Structural and kinetic analysis of an MsrA-MsrB fusion protein from Streptococcus pneumoniae. Mol Microbiol 72(3): 699-709
    Li Y, Hu Y, Zhang X, Xu H, Lescop E, Xia B, Jin C (2007) Conformational fluctuations coupled to the thiol-disulfide transfer between thioredoxin and arsenate reductase in Bacillus subtilis. J Biol Chem 282(15): 11078-11083
    Lin Z, Johnson LC, Weissbach H, Brot N, Lively MO, Lowther WT (2007) Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc Natl Acad Sci U S A 104(23): 9597-9602
    Lowther WT, Brot N, Weissbach H, Honek JF, Matthews BW (2000a) Thiol-disulfide exchange is involved in the catalytic mechanism of peptide methionine sulfoxide reductase. Proc Natl Acad Sci U S A 97(12): 6463-6468
    Lowther WT, Brot N, Weissbach H, Matthews BW (2000b) Structure and mechanism of peptide methionine sulfoxide reductase, an "anti-oxidation" enzyme. Biochemistry 39(44): 13307-13312
    Maeda K, Hagglund P, Finnie C, Svensson B, Henriksen A (2006) Structural basis for target protein recognition by the protein disulfide reductase thioredoxin. Structure 14(11): 1701-1710
    McCoy AJ (2007) Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D Biol Crystallogr 63(Pt 1): 32-41
    Moskovitz J (2005) Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim Biophys Acta 1703(2): 213-219
    Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53(Pt 3): 240-255
    Neiers F, Kriznik A, Boschi-Muller S, Branlant G (2004) Evidence for a new sub-class of methionine sulfoxide reductases B with an alternative thioredoxin recognition signature. J Biol Chem 279(41): 42462-42468
    Olry A, Boschi-Muller S, Branlant G (2004) Kinetic characterization of the catalytic mechanism of methionine sulfoxide reductase B from Neisseria meningitidis. Biochemistry 43(36): 11616-11622
    Olry A, Boschi-Muller S, Marraud M, Sanglier-Cianferani S, Van Dorsselear A, Branlant G (2002) Characterization of the methionine sulfoxide reductase activities of PILB, a probable virulence factor from Neisseria meningitidis. J Biol Chem 277(14): 12016-12022
    Quinternet M, Tsan P, Selme-Roussel L, Jacob C, Boschi-Muller S, Branlant G, Cung MT (2009) Formation of the complex between DsbD and PilB N-terminal domains from Neisseria meningitidis necessitates an adaptability of nDsbD. Structure 17(7): 1024-1033
    Quinternet M, Tsan P, Selme L, Beaufils C, Jacob C, Boschi-Muller S, Averlant-Petit MC, Branlant G, Cung MT (2008) Solution structure and backbone dynamics of the cysteine 103 to serine mutant of the N-terminal domain of DsbD from Neisseria meningitidis. Biochemistry 47(48): 12710-12720
    Ranaivoson FM, Antoine M, Kauffmann B, Boschi-Muller S, Aubry A, Branlant G, Favier F (2008) A structural analysis of the catalytic mechanism of methionine sulfoxide reductase A from Neisseria meningitidis. J Mol Biol 377(1): 268-280
    Ranaivoson FM, Neiers F, Kauffmann B, Boschi-Muller S, Branlant G, Favier F (2009) Methionine sulfoxide reductase B displays a high level of flexibility. J Mol Biol 394(1): 83-93
    Rouhier N, Kauffmann B, Tete-Favier F, Palladino P, Gans P, Branlant G, Jacquot JP, Boschi-Muller S (2007) Functional and structural aspects of poplar cytosolic and plastidial type a methionine sulfoxide reductases. J Biol Chem 282(5): 3367-3378
    Savage H, Montoya G, Svensson C, Schwenn JD, Sinning I (1997) Crystal structure of phosphoadenylyl sulphate (PAPS) reductase: a new family of adenine nucleotide alpha hydrolases. Structure 5(7): 895-906
    Schoneich C (2005) Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer's disease. Biochim Biophys Acta 1703(2): 111-119
    Stadtman ER, Van Remmen H, Richardson A, Wehr NB, Levine RL (2005) Methionine oxidation and aging. Biochim Biophys Acta 1703(2): 135-140
    Stirnimann CU, Rozhkova A, Grauschopf U, Grutter MG, Glockshuber R, Capitani G (2005) Structural basis and kinetics of DsbD-dependent cytochrome c maturation. Structure 13(7): 985-993
    Taylor AB, Benglis DM, Jr., Dhandayuthapani S, Hart PJ (2003) Structure of Mycobacterium tuberculosis methionine sulfoxide reductase A in complex with protein-bound methionine. J Bacteriol 185(14): 4119-4126
    Tete-Favier F, Cobessi D, Boschi-Muller S, Azza S, Branlant G, Aubry A (2000) Crystal structure of the Escherichia coli peptide methionine sulphoxide reductase at 1.9 A resolution. Structure 8(11): 1167-1178
    Vallee F, Kadziola A, Bourne Y, Juy M, Rodenburg KW, Svensson B, Haser R (1998) Barley alpha-amylase bound to its endogenous protein inhibitor BASI: crystal structure of the complex at 1.9 A resolution. Structure 6(5): 649-659
    Wang PF, Veine DM, Ahn SH, Williams CH, Jr. (1996) A stable mixed disulfide between thioredoxin reductase and its substrate, thioredoxin: preparation and characterization. Biochemistry 35(15): 4812-4819
    Weissbach H, Resnick L, Brot N (2005) Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta 1703(2): 203-212
    Chartron J, Shiau C, Stout CD, Carroll KS (2007) 3'-Phosphoadenosine-5'-phosphosulfate reductase in complex with thioredoxin: a structural snapshot in the catalytic cycle. Biochemistry 46: 3942-3951
    Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB (2002) A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111: 471-481
    Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW, Choi YO, Kim WY, Kang JS, Cheong GW, Yun DJ, Rhee SG, Cho MJ, Lee SY (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117: 625-635
    Kho CW, Lee PY, Bae KH, Cho S, Lee ZW, Park BC, Kang S, Lee do H, Park SG (2006) Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochem Biophys Res Commun 348: 25-35
    Kuras L, Cherest H, Surdin-Kerjan Y, Thomas D (1996) A heteromeric complex containing the centromere binding factor 1 and two basic leucine zipper factors, Met4 and Met28, mediates the transcription activation of yeast sulfur metabolism. EMBO J 15: 2519-2529
    Lillig CH, Holmgren A (2007) Thioredoxin and related molecules--from biology to health and disease. Antioxid Redox Signal 9: 25-47
    Muller EG (1991) Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J Biol Chem 266: 9194-9202
    Park SG, Cha MK, Jeong W, Kim IH (2000) Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem 275: 5723-5732
    Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38: 1543-1552
    Thomas D, Barbey R, Surdin-Kerjan Y (1990) Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3'-phosphoadenylylsulfate reductase structural gene. J Biol Chem 265: 15518-15524
    Toledano MB, Kumar C, Le Moan N, Spector D, Tacnet F (2007) The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett 581: 3598-3607
    Wong CM, Zhou Y, Ng RW, Kung Hf HF, Jin DY (2002) Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. J Biol Chem 277: 5385-5394
    Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28: 32-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700