不同环境中木聚糖酶基因多样性分析及宏基因组来源的新基因克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木聚糖是植物细胞壁的主要组成成分,也是自然界中除纤维素之外第二丰富的再生资源。木聚糖的结构复杂,其完全降解需要多种酶的共同作用。木聚糖酶能够有效地降解木聚糖主链的β-1,4-糖苷键,是木聚糖降解中的关键酶。木聚糖酶广泛分布在微生物中,后者通过对木聚糖的降解利用而在自然界中的碳循环中起到很重要的作用。木聚糖酶在饲料、食品、造纸和生物能源等多个工业领域中也有着重要的应用价值而被广泛研究。现在获得的绝大部分的木聚糖酶都是来自分离纯化的微生物,而越来越多的实验表明环境微生物中绝大多数是未培养的。怎样发掘未培养微生物的基因资源,找到具有应用价值的木聚糖酶成为新的研究热点。
     木聚糖酶主要划分在糖苷水解酶的第10和11家族。本研究通过对这两个家族的木聚糖酶蛋白序列的比对,确定了四个靠近活性中心或底物结合位点的保守区。基于一致-简并杂交寡核苷酸引物(CODEHOP)的3'简并5'保守的原理,设计了两套简并引物,X10-F/X10-R和X11-F/X11-R。该引物可从具有木聚糖降解能力的细菌和真菌代表菌株中高效扩增到目的基因片段,因此用于环境中木聚糖酶基因多样性的研究。
     以雪莲根际土壤、冰川土壤、温泉高温土壤、菜园土、池塘底泥、和红树林土壤的宏基因组DNA为模板,以X10-F/X10-R或X11-F/X11-R为引物,分别从6个不同性质的土壤环境中扩增木聚糖酶基因片段。除温泉高温土壤中只能扩增到第10家族的木聚糖酶基因片段外,从其他土壤环境中都能扩增得到相应大小的两个家族木聚糖酶的基因片段(第10家族大约260 bp,第11家族210 bp左右)。将PCR产物纯化后连接载体转化构建了11个片段文库。从各个文库中随机挑选了共2115个阳性克隆,经测序及序列分析表明1075个序列是第10家族的木聚糖酶基因片段,684个序列是第11家族的木聚糖酶基因片段。经去冗余分析后,得到了490个相似性低于95%的特异基因片段,其中368个为第10家族的序列,122个第11家族的序列。序列比对分析表明75%的基因片段与已知序列相似性在80%以下,54%的序列与已知基因的相似性低于65%。该结果说明土壤环境中存在大量的木聚糖酶基因,且大部分具有很高的序列新颖性。通过进化,多样性和丰度的分析发现,6个环境中的木聚糖酶基因的分布和多样性都有很大的差别,而且各个环境中丰度较高的基因也不一样,说明不同环境中降解木聚糖的优势菌群存在显著差异。表明土壤环境中的木聚糖酶基因的分布和环境有很大的关系,而土壤环境因子(pH、含氧量、温度、有机质的含量等)可能是造成木聚糖酶基因的分布和多样性差异的主要原因。土壤环境来源的第10家族木聚糖酶绝大多数来源于细菌,而第11家族木聚糖酶序列中真菌来源的比细菌来源的要多。此外,土壤环境中第11家族的木聚糖酶的基因的多样性要远低于第10家族的。这种分布和多样性的不同暗示这两个糖苷水解酶家族在木聚糖的降解过程中可能发挥着不同的作用。
     瘤胃内存在大量的微生物,是一个植物细胞壁多糖高效降解的环境。通过使用上述方法,从山羊瘤胃和绵羊瘤胃中一共获得了173个特异的木聚糖酶基因片段,其中107个片段为第10家族的木聚糖酶基因片段,其他属于第11家族。序列比对分析表明这些片段与已知木聚糖酶的相似性整体上要比土壤环境来源的相似性要低,说明瘤胃环境中存在大量的更为新颖的木聚糖酶。进一步的基因多样性,丰度和进化分析指出两大家族的木聚糖酶基因来源于不同的微生物,第10家族的木聚糖酶基因主要集中在非纤维素降解微生物,而第11家族的基因主要来源于纤维素降解微生物。该结果表明两个家族的木聚糖酶在瘤胃环境内木质纤维素降解过程中发挥的作用是不一样的。此外,不同瘤胃来源的木聚糖酶基因比较分析发现瘤胃中木聚糖降解微生物的分布是类似的,但也存在一定的差异。每个瘤胃环境中发挥主要木聚糖降解作用的菌物不同,且都存在特有的木聚糖降解微生物。而这种差异可能与宿主对微生物的选择有一定的关系。
     基于10个山羊瘤胃环境来源的木聚糖酶基因片段序列,采用改进的TAIL-PCR方法,以山羊瘤胃宏基因组DNA为模板,最终获得了7个全长基因。其中,xynGR40,xynGR67,xynGR77,xynGR112和xynGR117编码的木聚糖酶属于第10家族,xynR8和xynR127编码第11家族的木聚糖酶。序列比对分析发现这些基因与已知基因的相似性为45–75%,表明这些基因都具有很高的新颖性。除XynR8无信号肽外,其它的蛋白都含有信号肽,可以分泌表达。通过结构域分析,发现XynGR40,XynGR77,XynGR117和XynR127是多结构域蛋白,而且其中的XynGR77和XynR127具有特殊的结构,这为以后的木聚糖酶的结构与功能研究提供了很好的实验材料。
     其中的四个木聚糖酶基因xynGR40,xynGR67,xynR8和xynR127经原核表达后,重组酶进行了纯化和酶学性质分析。这四个酶的比活相对于大多数的木聚糖酶都高,这与瘤胃来源的酶具有相对较高的催化活性是一致的。它们的最适pH在5.5到6.5之间,与瘤胃液的pH(5.8)接近。最适温度差异很大,低至30°C (XynGR40),高至55°C (XynR8)。XynGR40有低温活性,在0°C还剩余10%的酶活。氨基酸的组成、盐桥和氢键的分析以及与嗜热酶在三维结构上的比较说明XynGR40是一个低温木聚糖酶。XynGR40是第一个从瘤胃环境中报道的低温木聚糖酶,它的特殊性质和结构为研究木聚糖酶的结构与功能的关系提供了很好的材料。同时,XynGR40在中温下的热稳定性、高比活、较好的抗离子能力以及产物简单等特性表明XynGR40在工业上有良好的应用前景。
     总而言之,本研究建立了一个快速、有效的不需要微生物培养的分子生物学方法用于分析复杂环境中的木聚糖酶基因多样性。从特殊环境中获得了大量的新颖的木聚糖酶基因片段。结果表明这些木聚糖酶基因的分布和环境有很大的关系。基于部分片段序列,通过TAIL-PCR的改进方法,可以直接从环境宏基因组DNA中获得了木聚糖酶全长基因。本研究为环境中木聚糖酶的基因多样性和分布提供了一个新的视点,对理解它们在木聚糖自然降解很有意义,也为未培养微生物木聚糖酶基因资源的发掘提供了一个新的途径。
Xylan is one of the major components of plant cell wall, and is the second most abundant renewable material after celluose in nature. A large variety of cooperatively acting enzymes are required for complete hydrolysis of xylan because of its complex structure. Among them, endo-1,4-?-D-xylanase (EC 3.2.1.8) is a crucial enzyme that cleaves the ?-1,4 backbone of xylan. Xylanases are widely distributed in microorganisms, thus the latter can degrade xylan, utilize it as energy source and consequently play an important role in carbon cycle on earth. Xylanases have been extensively studied because of their great applications in animal feed, baking, pulp and paper, biofuel, and other industries. So far most xylanases are from cultured microorganisms, which is limited since vast majority of microorganisms are uncultivable. How to retrieve novel xylanases from those uncultured microbes is a hot point in the xylanase study.
     Xylanases are mainly confined into glycoside hydrolase (GH) family 10 and 11. Based on the sequence alignments of GH 10 and 11 xylanases, two conserved regions in close proximity to active sites or substrate binding sites were identified, respectively. According to the principles of COnsensus-DEgenerate Hybrid Oligonucleotide Primers (CODEHOP), two sets of primers, X10-F/X10-R and X11-F/X11-R, were designed. The primer sets were verified to be specific and efficient by successful amplification of objective gene fragments from xylan-degrading bacteria and fungi of various taxa, and used to study the diversity of xylanases in environments.
     By using the metagenomic DNA of rhizosphere soil of snow lotus, glacier soil, hot spring soil, farmland soil, pond sediment, and Mangrove soil as templates, X10-F/X10-R or X11-F/X11-R were used to amplify objective gene fragments. Except for the hot spring soil that had only GH 10 xylanase gene fragments, gene fragments of both GH 10 and 11 were amplified from other soils (about 260 bp for GH 10 and about 210 bp for GH 11). PCR products were purified and used to construct 11 clone libraries. A total of 2115 positive clones were randomly picked up from 11 libraries and sequenced. Of them, 1075 sequences were confirmed to be GH 10 xylanase gene fragments, and 684 belong to GH 11. After removing the redundant sequences, 490 distinct xylanase gene fragments (368 GH 10 and 122 GH 11) shared similarities of below 95%. Based on BLASTx analysis, 75% of the distinct fragments had similarities of below 80% with known xylanases and 54% shared similarities of below 65% with known ones. This result suggested that there are abundant xylanases in environments and most of them are novel. Based on phylogenesis, diversity and abundance analysis, these xylanase gene fragments are different in distribution and diversity, and vary in predominance. Thus the predominant xylan-degrading microorganisms in each soil environment are assumed to be different. This variance might be related to the soil factors, such as pH, oxygen content, temperature, organic matter content and so on. The vast majority of GH 10 xylanase gene fragments are from bacteria, and more GH 11 sequences are related to fungi. Moreover, the diversity of GH 11 xylanase in these soil environments is much lower than that of GH 10. The variance of diversity and distribution of GH 10 and 11 xylanases may imply their different roles in the xylan degradation in nature.
     Rumen harbors immensely diverse microorganisms and is a special environment in which the microbial-mediated hydrolysis of plant cell wall polysaccharides is highly efficient. By using the same method described above, a total of 173 distinct xylanase gene fragments, 107 GH 10 and 66 GH 11, were obtained from the metagenomic DNA of goat and sheep rumen. Sequence analysis showed that the similarities of these fragments with known sequences are much lower than those of soil environments with known sequences, which suggested that numerous novel xylanases exist in the rumen microenvironment. Further gene diversity, abundance and phylogenetic analysis indicated that xylanase genes of different GH families are from different taxa. GH 10 rumen xylanases are mostly distributed in noncellulolytic microorganisms, and GH 11 xylanase genes in cellulolytic microorganisms, implying their different roles in xylan degradation. Both rumens harbored similar xylan-degrading microbial communities based on the sequence comparison analysis. Each rumen has different predominant xylan-degrading microorganisms and harbors unique xylanase producers however, implying that some xylan-degrading microorganisms might be host specific.
     Based on the sequences of 10 xylanase gene fragments obtained from goat rumen, 7 full-length xylanase genes were cloned directly from the metagenomic DNA using a modified TAIL-PCR method. Of them, xynGR40,xynGR67,xynGR77,xynGR112 and xynGR117 encode GH 10 xylanases, and xynR8 and xynR127 are GH 11 xylanase-encoding genes. Sequence analysis showed that these genes have low identities (45–75%) with known xylanases, suggesting their novelty. Except for XynR8 that has no putative signal peptide, all other xylanases were predicted to have signal peptides and can secrete into the environment surroundings. Domain analysis indicated that XynGR40,XynGR77,XynGR117 and XynR127 are multi-domain proteins, and XynGR77 and XynR127have special structures. Thus this study provides valuable materials to study the relationships of xylanase structure and function.
     Four xylanase genes,xynGR40,xynGR67, xynR8 and xynR127 were expressed in Escherichia coli BL21 (DE3), the recombinant proteins were purified and characterized. Like those xylanases from rumen microenvironments that have high catalytic activities, these four recombinant xylanases had higher specific activity towards xylan than most xylanases. The pH optima ranged from 5.5 to 6.5, which are close to the pH of rumen fluid (5.8). The temperature optima varied from 30°C (XynGR40) to 55°C (XynR8). XynGR40 had low temperature activity, retaining about 10% of the activity even at 0°C. Analysis of the amino acid composition, hydrogen bonds, and salt bridges and structure comparison with thermophilic xylanases indicated that XynGR40 is a cold active xylanase. XynGR40 is the first cold active xylanase from rumen microenvironments. Its special characteristics and structures make XynGR40 a good material to study the relationship of xylanase structure and function of. Moreover, XynGR40 is thermostable at mesophilic temperatures, has high catalytic efficiency at low temperatures, is resistant to most ions, and produces simple hydrolysis products, thus has great potential for industrial applications.
     In summary, this study developed a rapid and efficient culture-independent molecular method to explore the diversity and distribution of xylanase genes in complex environments. By using this method, a large number of novel xylanase gene fragments were obtained from special microenvironments. The distribution of these genes is environment specific. Full-length xylanase genes can be obtained directly from metagenomic DNA using a modified TAIL-PCR method based on the sequences of some fragments. Our study draws an insight into the diversity and distribution of xylanases in various environments, which is very meaningful to understand their roles in xylan degradation in nature. Moreover, this study also provides a new way to obtain novel xylanase genes from uncultivated microorganisms.
引文
1.李宁链霉菌来源的木聚糖降解酶相关基因的克隆及酶学性质研究[博士学位论文].北京:中国农业科学院研究生院,2009.
    2.王境岩,朱圣庚,徐长法,生物化学(第三版),高等教育出版社.2002.
    3.王修启,李春喜,林东康,常绢,秦磊,小麦戊聚糖含量及添加木聚糖酶对鸡表观代谢能值和养分消化率的影响.华北农学报,2002, l7 (4): 104–107.
    4.汪儆, Juok T.,木聚糖酶制剂对生长肥育猪次粉日粮饲养效果的影响.中国饲料,1997,3: 17–19.
    5. Arnold K., Bordoli L., Kopp J., Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006, 22: 195-201.
    6. Aspinall G.O., Structural chemistry of the hemicelluloses. Adv Carbohydr Chem 1959,14: 429-468.
    7. Bastawde, K.B., Xylan structure, microbial xylanases, and their mode of action. World J. Microbiol. Biotechnol. 1992, 8: 353-368.
    8. Bayer, E.A., Morag, E., Lamed, R., The cellulosome-a treasure-trove for biotechnology. Trends Biotechnol 1994, 12: 379-386.
    9. Beg QK, Bhushan B, Kapoor M, et al. Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb Technol 2000, 27: 459-466.
    10. Beg QK, Kapoor M, Mahajan L, Hoondal GS, Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 2001, 56: 326-338.
    11. Berg Miller ME, Antonopoulos DA, Rincon MT, Band M, Bari A, et al., Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1. PLoS ONE 2009, 4: e6650.
    12. Biely P, Microbial xylanolytic systems. Trends Biotechnol 1985, 11:286-290.
    13. Biely P., Diversity of microbial endo-?-1, 4-xylanases In: Applications of Enzymes to Lignocellulosics Mansfield, S.D. and Saddler, J.N., Eds. 2003, pp. 361-380. American chemical Society, Washington.
    14. Biely P., Kluepfel D., Morosoli R. and Shareck F., Mode of action of three endo-?-1,4-xylanases of Streptomyces lividans. Biochim. Biophys. Acta 1993, 1162: 246-254.
    15. Biely P., Vrsanska M., Tenkanen M. and Kluepfel D., Endo-?-1,4-xylanase families: differences in catalytic properties. J. Biotechnol., 1997 57: 151-166.
    16. Black GW, Hazlewood GP, Xue GP, et al. Xylanase B from Neocallimastix patriciarum contains a non-catalytic 455-residue linker sequence comprised of 57 repeats of an octapeptide. Biochem J 1994, 299: 381-387.
    17. Blanco A., Diaz P., Martinez J., Lopez O., Soler C., Pastor F.I., Cloning of a Bacillus sp. BP-23 gene encoding a xylanase with high activity against aryl xylosides. FEMS Microbiol. Lett. 1996,137: 285-290.
    18. Boer W., Folman L.B., Summerbell R.C., Boddy L., Living in a fungal world impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 2005, 29: 795-811.
    19. Boraston AB, McLean BW, Kormos JM, et al. Carbohydrate-binding modules: diversity of structure and function. In: Gilbert HJ, Davies GJ, Henrissat B, Svensson B eds., Recent Advances in Carbohydrate Bioengineering, Cambridge: Royal Society of Chemistry 1999, 202-211.
    20. Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72: 248-254.
    21. Brady SF, Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat Protoc 2007, 2:1297-1305.
    22. Brennan Y, Callen WN, Christoffersen L, Dupree P, Goubet F, Healey S, Hernández M, Keller M, Li K, Palackal N, Sittenfeld A, Tamayo G, Wells S, Hazlewood GP, Mathur EJ, Short JM, Robertson DE, Steer BA, Unusual Microbial Xylanases from Insect Guts. Appl Environ Microbiol 2004, 70: 3609-3617.
    23. Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, et al., Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 2009, 106: 1948-1953.
    24. Camacho N.A., Aguilar O.G., Production, Purification, and characterization of a low-molecular-mass xylanase from Aspergillus sp. and its application in baking. Appl Biochem Biotechnol 2003, 104: 159-72.
    25. Chanda S.K., Hirst E.L., Jones J.K.N. and Percival E.G.V., The constitution of xylan from esparto grass. J. Chem.Soc. 1950, 12889-12897.
    26. Chandrakant P., Bisaria V.S., Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 1998, 18: 295-331.
    27. Chung EJ, Lim HK, Kim JC, Choi GJ, Park EJ, Lee MH, Chung YR, Lee SW: Forest soil metagenome gene cluster involved in antifungal activity expression in E. coli. Appl Environ Microbiol 2008, 74:723-730.
    28. Ciro M., Bunge M., Duc L., Edwards I., Bürgmann H., Zeyer J., Effects of pioneering plants on microbial structures and functions in a glacier forefield. Biol Fertil Soils 2007, 44: 289-297.
    29. Claeyssens M. and Henrissat B. Specificity mapping of cellulolytic enzymes: classification into families of structurally related proteins confirmed by biochemical analysis. Protein Sci. 1, 1992 1293-1297.
    30. Collins T, Gerday C, Feller G, Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 2005, 29:3-23.
    31. Collins T., Meuwis M.A., Stals I., Claeyssens M., Feller, G. Gerday, C., A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 2002, 277: 35133-35139.
    32. Cowan D., Meyer Q., Stafford W., Muyanga S., Cameron R., Wittwer P., Metagenomic gene discovery past, present and future. Trends Biotechnol 2005, 23: 321-329.
    33. Dalrymple BP, Swadling Y, Layton I, Gobius KS, Xue GP, Distribution and evolution of the xylanase genes xynA and xynB and their homologues in strains of Butyrivibrio fibrisolvens. Appl Environ Microbiol 1999, 65: 3660-3667.
    34. Daniel R, The metagenomics of soil. Nat Rev Micro 2005, 3:470-478.
    35. Daniel R., The soil metagenome--a rich resource for the discovery of novel natural products. Curr Opin Biotechnol 2004, 15: 199-204.
    36. Dehority BA, Tirabasso PA, Antibiosis between ruminal bacteria and ruminal fungi. Appl Environ Microbiol 2000, 66: 2921-2927.
    37. Dick LK, Bernhard AE, Brodeur TJ, Santo Domingo JW, Simpson JM, et al., Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl Environ Microbiol 2005, 71: 3184-3191.
    38. Dodd D, Kocherginskaya SA, Spies MA, Beery KE, Abbas CA, et al., Biochemical analysis of aβ-d-xylosidase and a bifunctional xylanase-ferulic acid esterase from a xylanolytic gene cluster in Prevotella ruminicola 23. J Bacteriol 2009, 191: 3328-3338.
    39. Don R.H., Cox P.T., Wainwright B.J., Baker K., Mattick J.S., 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991, 19: 4008-4008.
    40. Durrand R, Rascle C, Fèvre M., Molecular characterization of xyn3, a member of the endoxylanase multigene family of the rumen anaerobic fungus Neocallimastix frontalis. Curr Genet 1996, 30: 531-540.
    41. Eda S., Ohnishi A. and Kato K., Xylan isolated from the stalk of Nicotiana tabacum. Agric. Biol. Chem. 1976, 40: 359-364.
    42. Edwards JE, McEwan NR, Travis AJ, John Wallace R, 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie Van Leeuwenhoek 2004, 86: 263-281.
    43. Elifantz H, Waidner LA, Michelou VK, Cottrell MT, Kirchman DL 2008 Diversity and abundance of glycosyl hydrolase family 5 in the North Atlantic Ocean. FEMS Microbiol Ecol 63:316-327
    44. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Santos VA, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN, Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 2005, 7:1996-2010.
    45. Fisch KM, Gurgui C, Heycke N, van der Sar SA, Anderson SA, Webb VL, Taudien S, Platzer M, Rubio BK, Robinson SJ et al., Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting. Nat Chem Biol 2009, 5:494-501.
    46. Flint HJ, Bayer EA Plant cell wall breakdown by anaerobic microorganisms from the Mammalian digestive tract. Ann NY Acad Sci 2008, 1125: 280-288.
    47. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA, Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Micro 2008, 6: 121-131.
    48. Flint HJ, Whitehead TR, Martin JC, Gasparic A Interrupted catalytic domain structures inxylanases from two distantly related strains of Prevotella ruminicola. Biochim Biophys Acta 1997, 1337: 161-165.
    49. Flint HJ, Zhang JX, Martin J Multiplicity and expression of xylanases in the rumen cellulolytic bacterium Ruminococcus flavefaciens. Curr Microbiol 1994, 29: 139-143.
    50. Fontes CM, Ali S, Gilbert H.J.,et al., Bacterial xylanase expression in mammalian cells and transgenic mice [J]. J Bioteehnol 1999,72: 95-101.
    51. Gasparic A, Martin J, Daniel A, and Flint HJ A xylan hydrolase gene cluster in Prevotella ruminicola B 1 4: sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase andβ- 1,4 -xylosidase activities. Appl Environ Microbiol 1995, 61: 2958-2964.
    52. Gebler J., Gilkes N.R., Claeyssens M., Wilson D.B., Beguin P., Wakarchuk W.W., Kilburn D.G., Miller Jr., R.C., Warren R.A. and Withers S.G., Stereoselective hydrolysis catalyzed by related beta-1,4-glucanases and beta-1,4-xylanases. J. Biol. Chem. 1992, 267: 12559-12561.
    53. Gessesse A., Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl.Environ. Microbiol. 1998, 64: 3533-3535.
    54. Goda SK, Sharman AF, Yates M, Mann N, Carr N, Minton NP & Brehm JK., Recombinant expression analysis of natural and synthetic bovine alpha-casein in Escherichia coli. Appl Microbiol Biotechnol 2000, 54: 671-676.
    55. Golan G, Shallom D, Teplitsky A, et al., Crystal structures of Geobacillus stearothermophilus alpha-glucuronidase complexed with its substrate and products: mechanistic implications. J Biol Chem 2004, 279: 3014-3024.
    56. Gomez de Segura B, Durand R, Fevre M., Multiplicity and expression of xylanases in the rumen fungus Neocallimastix frontalis. FEMS Microbiol Lett 1998, 164: 47-53.
    57. Green B.D., Keller M., Capturing the uncultivated majority. Curr Opin Biotechnol 2006, 17: 236-240.
    58. Guo B., Chen X.L., Sun C.Y., Zhou B.C., Zhang Y.Z., Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl. Microbiol. Biotechnol. 2009, 84: 1107-1115.
    59. Haegeman A., Vanholme B., Gheysen G., Characterization of a putative endoxylanase in the migratory plant-parasitic nematode Radopholus similis. Mol. Plant Pathol. 2009, 10: 389-401.
    60. Handelsman J., Rondon M.R., Brady S.F., Clardy J., Goodman R.M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998, 5: 245-249.
    61. Hayashi H, Abe T, Sakamoto M, Ohara H, Ikemura T, Sakka K, Benno Y, Direct cloning of genes encoding novel xylanases from the human gut. Can J Microbiol 2005, 51:251-259.
    62. Henrissat, B. and Coutinho, P.M., Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods Enzymol. 2001, 330, 183-201.
    63. Henrissat B., Claeyssens M., Tomme P., Lemesle L. and Mornon J.P., Cellulase families revealedby hydrophobic cluster analysis. Gene 1989, 81:83-95.
    64. Hopkins MJ, Harp RS, Macfarlane GT, Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 2001, 48: 198-205.
    65. Hou Y.H., Wang T.H., Long H., Zhu H.Y., Novel cold-adaptive Penicillium strain FS010 secreting thermo-labile xylanase isolated from Yellow Sea. Acta Biochim. Biophys. Sin Shanghai. 2006, 38, 142-149.
    66. H?vel K, Shallom D, Niefind K, et al. Crystal structure and snapshots along the reaction pathway of a family 51 alpha-L-arabinofuranosidase. EMBO J 2003, 22: 4922-4932.
    67. Hu Y, Zhang G, Li A, Chen J, Ma L Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach. Appl Microbiol Biotechnol 2008, 80:823-830.
    68. Huang H, Wang G, Zhao Y, Shi P, Luo H, et al Direct and efficient cloning of full-length genes from environmental DNA by RT-qPCR and modified TAIL-PCR. Appl Microbiol Biotechnol 2010, 87: 1141-1149.
    69. Hugenholtz P., Goebel B.M., Pace N.R., Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 1998, 180: 4765-4774.
    70. Ihsanawati Kumasaka T., Kaneko T., Morokuma C., Yatsunami R., Sato T., Nakamura S., Tanaka N., Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8. Proteins 2005. 61: 999-1009.
    71. Jeffries TW, Biochemistry and genetics of microbial xylanases. Curr Opin Biotechnol 1996, 7: 337-342
    72. Kandeler E., Deiglmayr K., Tscherko D., Bru D., Philippot L., Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl Environ Microbiol 2006, 72: 5957-5962.
    73. Kimura T, Mizutani T., Molecular breeding of transgentic rice expressing a xylanase domain of the xynA gene from Clostridium thermocellum [J]. Appl Microbiol Biotechnol 2003, 62: 374-379
    74. Kimura T., Ito J., Kawano A., Makino T., Kondo H., Karita S., Sakka K. and Ohmiya K., Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp.40. Biosci. Biotechnol. Biochem. 2000, 64: 1230-1237.
    75. Kirby J., Martin J.C., Daniel A.S., Flint H.J., Dockerin-like sequences in cellulases and xylanases from the rumen cellulolytic bacterium Ruminococcus flavefaciens. FEMS Microbiol Lett 1997, 149: 213-219.
    76. Kleine J & Liebl W., Comparative characterization of deletion derivatives of the modular xylanase XynA of Thermotoga maritima. Extremophiles 2006, 10: 373-381.
    77. Krause D.O., Denman S.E., Mackie R.I., Morrison M., Rae A.L., Attwood G.T. and McSweeney C.S., Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMSMicrobiol. Rev. 2003, 27: 663-693.
    78. Krengel U. and Dijkstra B.W., Three-dimensional structure of Endo-1,4-?-xylanase I from Aspergillus niger, molecular basis for its low pH optimum. J. Mol. Biol. 1996, 263: 70-78.
    79. Kulkarni N, Shendye A, Rao M, Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 1999, 23:411-456.
    80. Laemmli UK., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685
    81. Larue R., Yu Z., Parisi V.A., Egan A.R., Morrison M., Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ Microbiol 2005, 7: 530-543.
    82. LeCleir GR, Buchan A, Hollibaugh JT., Chitinase gene sequences retrieved from diverse aquatic habitats reveal environment-specific distributions. Appl Environ Microbiol 2004, 70:6977-6983.
    83. Lee CC, Kibblewhite-Accinelli RE, Wagschal K, Robertson GH, Wong DWS., Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 2006a 10:295-300.
    84. Lee C.C., Smith M., Kibblewhite-Accinelli R.E., Williams T.G., Wagschal K., Robertson G.H., Wong D.W., Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr. Microbiol. 2006b, 52: 112-116.
    85. Lejon D.P., Nowak V., Bouko S., Pascault N., Mougel C., Martins J.M., Ranjard L., Fingerprinting and diversity of bacterial copA genes in response to soil types, soil organic status and copper contamination. FEMS Microbiol Ecol 2007, 61: 424-437.
    86. Leschine S.B., Cellulose degradation in anaerobic environments. Annu Rev Microbiol 1995, 49: 399-426.
    87. Leser TD, Lindecrona RH, Jensen TK, Jensen BB, Moller K., Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae. Appl Environ Microbiol 2000, 66: 3290-3296.
    88. Li N, Meng K, Wang Y, et al., Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl Microbiol Biotechnol 2008, 80: 231-240.
    89. Li W., Godzik A., Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006, 22 13:1658-1659.
    90. Lian M, Lin S, Zeng R., Chitinase gene diversity at a deep sea station of the east Pacific nodule province. Extremophiles 2007, 11:463-467
    91. Littlechild J.A., Thermophilic archaeal enzymes and applications in biocatalysis. Biochem Soc Trans 2011, 39: 155-158.
    92. Liu Y.G., Whittier R.F., Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking, Genomics. 1995, 25: 674-681.
    93. Liu J.R., Yu B., Lin S.H., Cheng K.J., Chen Y.C., Direct cloning of a xylanase gene from the mixedgenomic DNA of rumen fungi and its expression in intestinal Lactobacillus reuteri. FEMS Microbiol. Lett. 2005, 251, 233-241.
    94. Lo Leggio, L., Kalogiannis, S., Bhat, M.K. and Pickersgill, R.W., High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with beta alpha-barrel architecture. Proteins 1999, 36: 295-306.
    95. Lorenz P., Schleper C., Metagenome-a challenging source of enzyme discovery. J. Mol. Catal. B: Enzym. 2002, 19-20, 13-19.
    96. Lozupone C, Knight R., UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005, 71: 8228-8235.
    97. Luo H., Yang J., Li J., Shi P., Huang H., Bai Y., Fan Y., Yao B., Molecular cloning and characterization of the novel acidic xylanase XYLD from Bispora sp. MEY-1 that is homologous to family 30 glycosyl hydrolases. Appl. Microbiol. Biotechnol. 2010. 86: 1829-1839.
    98. Mamo G, Hatti-Kaul R & Mattiasson B., Fusion of carbohydrate binding modules from Thermotoga neapolitana with a family 10 xylanase from Bacillus halodurans S7. Extremophiles 2007, 11: 169-177.
    99. Mardis E.R., Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 2008, 9: 387-402.
    100. Matsumoto T, Katsura D, Kondo A & Fukuda H., Efficient secretory overexpression of Bacillus subtilis pectate lyase in Escherichia coli and single-step purification. Biochemical Engineering Journal 2002, 12: 175-179.
    101. McCarter J.D. and Withers S.G., Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struct. Biol. 1994, 4: 885-892.
    102. Meron D., Atias, E., Iasur Kruh, L., Elifantz, H., Minz, D., Fine, M., Banin, E., The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J 2011, 5: 51-60.
    103. Messner K., and Serbotnik E., BioPulPing: An overview of developments in an environmentally safe paper making technology. FEMS Microbiol Rev 1994, 13: 351-364.
    104. Meyer V., Genetic engineering of filamentous fungi--progress, obstacles and future trends. Biotechnol Adv 2008, 26: 177-185.
    105. Mielenz J.R., Ethanol production from biomass: technology and commercialization status. Curr. Opin. Microbiol. 2001, 4: 324-329.
    106. Miller GL, Blum R, Glennon WE, Burton AL Measurement of carboxymethylcellulase activity. Anal Biochem 1960, 1: 127-132.
    107. Morris D.D., Gibbs, M.D., Chin, C.W., Koh, M.H., Wong, K.K., Allison, R.W., Nelson, P.J., Bergquist, P.L., Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl Environ Microbiol 1998, 64, 1759-1765.
    108. Moure A, Gullón P, Domínguez H, et al. Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem 2006, 41: 1913-1923.
    109. Niehaus F., Bertoldo, C., Kahler, M., Antranikian, G., Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 1999, 51: 711-729.
    110. Nunn J.R., Parolis, H. and Russel, I., Polysaccharides of the red algae Chaetangium erinaceum. Part I: Isolation and characterization of the water-soluble xylan. Carbohydr. Res. 1973, 26: 169-180.
    111. Ohgren K, Bura R, Saddler J, Zacchi G., Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 2007, 98: 2503-2510.
    112. Ossola M, Galante YM. Scouring of flax rove with the aid of enzymes. Enzyme Microb Technol 2004, 34: 177-186.
    113. Petrescu I., Lamotte-Brasseur, J., Chessa, J.P., Ntarima, P., Claeyssens, M., Devreese, B., Marino, G., Gerday, C., Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles. 2000, 4: 137-144.
    114. Polizeli ML, Rizzatti AC, Monti R, et al., Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 2005, 67: 577-591.
    115. Prade RA., Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 1996, 13: 101-131.
    116. Prates JA, Tarbouriech N, Charnock SJ. The structure of the feruloyl esterase module of xylanase
    10B from Clostridium thermocellum provides insights into substrate recognition. Structure 2001, 9: 1183-1190.
    117. Qi M, Nelson KE, Daugherty SC, Nelson WC, Hance IR, et al., Genomic differences between Fibrobacter succinogenes S85 and Fibrobacter intestinalis DR7, identified by suppression subtractive hybridization. Appl Environ Microbiol 2008, 74: 987-993.
    118. Raymond J.A., Christner B.C., Schuster S.C., A bacterial ice-binding protein from the Vostok ice core. Extremophiles 2008, 12: 713-717.
    119. Rincon M.T., Ding S.Y., McCrae S.I., Martin J.C., Aurilia V., Lamed R., Shoham Y., Bayer E.A., Flint H.J., Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. J Bacteriol 2003, 185: 703-713.
    120. Rizzatti AC, Sandrim VC, Jorge JA, et al., Influence of temperature on the properties of the xylanolytic enzymes of the thermotolerant fungus Aspergillus phoenicis. J Ind Microbiol Biotechnol 2004, 31: 88-93.
    121. Rose T., Henikoff M.J.G., Henikoff S., CODEHOP COnsensus-DEgenerate Hybrid Oligonucleotide Primer PCR primers design. Nucleic Acids Res. 2003, 31: 3763-3766.
    122. Rose T.M., Schultz E.R., Heinkoff J.G., Pietrokovski S., McCallum C.M., Heinkoff S., Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res. 1998, 26: 1628-1635.
    123. Rossello-Mora R., Amann R., The species concept for prokaryotes. FEMS Microbiol Rev 2001, 25, 39-67.
    124. Rousk J., Baath E., Brookes P.C., Lauber C.L., Lozupone C., Caporaso J.G., Knight R., Fierer N.,Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 2010, 4: 1340-1351.
    125. Russell N.J., Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 2000, 4: 83-90.
    126. Saitou N, Nei M., The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4: 406-425.
    127. Schloss PD, Handelsman J., Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 2005, 71: 1501-1506.
    128. Schulze E., Information regarding chemical composition of plant cell membrane. Ber Dtsch Chem Ges, 1891, 24: 2277-2287.
    129. Shi PJ, Meng K, Zhou ZG, Wang YR, Diao QY, Yao B., The host species affects the microbial community in the goat rumen. Lett Appl Microbiol 2008, 46: 132-135.
    130. Siddiqui K.S., Cavicchioli R., Cold-adapted enzymes. Annu. Rev. Biochem. 2006, 75: 403-433.
    131. Singh S, Madlala AM, Prior BA. Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 2003, 27: 3-16.
    132. Solomon V, Teplitsky A, Shulami S, Zolotnitsky G, Shoham Y, et al., Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus. Acta Crystallogr D Biol Crystallogr 2007, 63: 845-859.
    133. Sreekrishna K, Brankamp RG, Kropp KE, et al., Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene 1997, 190: 55-62.
    134. Staley J.T., Konopka A., Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 1985, 39: 321-346.
    135. Steele H.L., Jaeger K.E., Daniel R., Streit W.R., Advances in recovery of novel biocatalysts from metagenomes. J Mol Microbiol Biotechnol 2009, 16: 25-37.
    136. Subramaniyan S and Prema P., Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 2002, 22:33-64.
    137. Sundberg M and Poutanen K., Purification and properties of two acetyl xylan esterases of Trichoderma reesei. Biotechnol Appl Biochem 1991, 13: 1-11.
    138. Sunna A and Antranikian G., Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 1997, 17: 39-67.
    139. Sunna A and Bergquist P., A gene encoding a novel extremely thermostable 1,4-β-xylanase isolated directly from an environmental DNA sample. Extremophiles 2003, 7: 63-70.
    140. Suryani Kimura T, Sakka K, et al., Sequencing and expression of the gene encoding the Clostridium stercorarium ?-xylosidase Xyl43B in Escherichia coli. Biosci Biotechnol Biochem 2004, 68: 609-614.
    141. Tamura K., Dudley J., Nei M., Kumar S. MEGA4: Molecular evolutionary genetics analysis MEGA software version 4.0. Mol. Biol. Evol. 2007, 24: 1596-1599.
    142. Torsvik V., Ovreas L., Microbial diversity and function in soil from genes to ecosystems. CurrOpin Microbiol 2002, 5: 240-245.
    143. Turkiewicz M., Kalinowska H., Zielinska M., Bielecki S., Purification and characterization of two endo-1,4-β-xylanases from Antarctic krill, Euphausia superba Dana. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 2000, 127: 325-335.
    144. Uchiyama T, Abe T, Ikemura T, Watanabe K., Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 2005, 23: 88-93.
    145. Uchiyama T and Watanabe K: Improved inverse PCR scheme for metagenome walking. BioTechniques 2006, 41:183-188.
    146. Uchiyama T. and Miyazaki K., Functional metagenomics for enzyme discovery challenges to efficient screening. Curr Opin Biotechnol 2009, 20: 616-622.
    147. Uffen R.L., Xylan degradation: a glimpse at microbial diversity. Journal of Industrial Microbiology and Biotechnology 1997, 19: 1-6.
    148. van den Burg B., Extremophiles as a source for novel enzymes. Curr Opin Microbiol 2003, 6: 213-218.
    149. Van Tilbeurgh H, Tomme P, Claeyssens M, et al., Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett 1986, 204: 223-227.
    150. Venter J.C., Remington K., Heidelberg J.F., Halpern A.L., Rusch D., Eisen J.A., Wu D., Paulsen I., Nelson K.E., Nelson W., Fouts D.E., Levy S., Knap A.H., Lomas M.W., Nealson K., White O., Peterson J., Hoffman J., Parsons R., Baden-Tillson H., Pfannkoch C., Rogers Y.H., Smith H.O., Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004, 304: 66-74.
    151. Viikari l., Ranua M., Kantelinen A., Sundquist J. and Linko M., Bleaching with enzymes·Proc. 3rd Int. Conf. Bioteehnology Pul Pand Paper Industry, Stoekholm 1986, June16-19, PP.67-69.
    152. Wakarchuk W.W., Campbell R.L., Sung W.L., Davoodi J. and Yaguchi M., Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci. 1994 3: 467-475.
    153. Wang G, Wang Y, Yang P, Luo H, Huang H, et al., Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl Microbiol Biotechnol 2010, 87: 1383-1393.
    154. Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, et al., Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 2007: 450: 560-565.
    155. Weimer PJ, Stevenson DM, Mantovani HC, Man SL., Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents. J Dairy Sci 2010, 93: 5902-5912.
    156. Weintraub M.N., Scott-Denton L.E., Schmidt S.K., Monson R.K., The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 2007, 154: 327-338.
    157. Whitehead TR, Cotta MA. Identification of a broad-specificity xylosidase/arabinosidase importantfor xylooligosaccharide fermentation by the ruminal anaerobe Selenomonas ruminantium GA192. Curr Microbiol 2001, 43: 293-298.
    158. Whitman W. B., Coleman D. C., and Wiebe W. J., Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 1998, 95: 6578-6583.
    159. Whitman W.B., Coleman, D.C., Wiebe W.J., Prokaryotes the unseen majority. Proc Natl Acad Sci U S A 1998, 95: 6578-6583.
    160. Winterhalter C, Hinrich P, Candussio A et al., Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 1995, 15 3 : 431-444.
    161. Wong KK, Tan LU, Saddler JN. Multiplicity of ?-1,4-xylanases in microorganisms: functions and applications. Microbiol Rev 1988, 52: 305-317.
    162. Xiao X, Yin X, Lin J, Sun L, You Z, Wang P, Wang F., Chitinase genes in lake sediments of Ardley Island, Antarctica. Appl Environ Microbiol 2005, 71: 7904-7909.
    163. Yamada K, Terahara T, Kurata S, Yokomaku T, Tsuneda S, Harayama S: Retrieval of entire genes from environmental DNA by inverse PCR with pre-amplification of target genes using primers containing locked nucleic acids. Environ Microbiol 2008, 10:978-987.
    164. Yang B, Wyman CE., Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Bioresour Technol 2004, 86: 88-98.
    165. Yang JK, Yoon HJ, Ahn HJ, et al., Crystal structure of ?-D-xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase. J Mol Biol 2004, 335: 65-155.
    166. Yasir M., Aslam Z., Kim S.W., Lee S.W., Jeon C.O., Chung YR., Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. Bioresource Technol 2009, 100: 4396-4403
    167. Yoon SH, Kim SK & Kim JF., Secretory production of recombinant proteins in Escherichia coli. Recent Pat Biotechnol 2010, 4: 23-29.
    168. Yu W.H., Su, S.C., Lee, C.Y., A novel retrieval system for nearly complete microbial genomic fragments from soil samples. J Microbiol Methods 2008, 72: 197-205.
    169. Yuan QP, Zhang H, Qian ZM and Yang XJ., Pilot-plant production of xylo-oligosaccharides from corncob by steaming, enzymatic hydrolysis and nanofiltration. Journal of Chemical Technology & Biotechnology 2004, 79: 1073-1079.
    170. Yun J and Ryu S., Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb Cell Fact 2005, 4: 8.
    171. Zhang GH, Luo HY, Chen JC, Yao B., Pilot studies on enzyme-producing microflora in frozen soil at the root of Saussureae involucratae Kar. et Kir. et Maxim from Tianshan, Xinjiang Autonomous Region. J Agri Sci Technol 2008, l0:82–87.
    172. Zhang JX, Flint HJ., A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by anasparagine/glutamine-rich sequence. Mol Microbiol 1992, 6: 1013-1023.
    173. Zhang J.X., Martin, J., Flint, H.J., Identification of non-catalytic conserved regions in xylanases encoded by the xynB and xynD genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens. Mol Gen Genet 1994, 245: 260-264.
    174. Zhengqiang J., Kobayashi A., Ahsan M.M., Lite L., Kitaoka M., Hayashi K., Characterization of a thermostable family 10 endo-xylanase XynB from Thermotoga maritima that cleaves p-nitrophenyl-beta-D-xyloside. J Biosci Bioeng 2001, 92: 423-428.
    175. Zhou J, Bruns M, Tiedje J., DNA recovery from soils of diverse composition. Appl Environ Microbiol 1996, 62: 316-322.
    176. Zhou J., Huang H., Meng K., Shi P., Wang Y., Luo H., Yang P., Bai Y., Zhou Z., Yao B., Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp. TN19. Appl. Microbiol. Biotechnol. 2009, 85: 323-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700