转Bcl-2水稻抗氧化胁迫及水稻边缘细胞发育调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆境胁迫是影响植物生长发育的主要因素,严重影响着农作物的产量和品质。利用基因工程手段提高农作物的抗逆性已成为作物遗传改良的重要内容之一。本研究以水稻为材料,初步分析基于细胞程序性死亡(Programmed Cell Death,PCD)和根边缘细胞(RootBorder Cell,RBC)发育的抗逆机制。
     1.Bcl-2基因在水稻抗H_2O_2胁迫中的作用及其分子机制
     植物细胞程序性死亡是指在细胞生长发育或对外界刺激的反应过程中受自身基因编码、主动、有序的细胞死亡过程。研究显示,在植物中异源表达动物的抗凋亡基因能抑制PCD,从而提高植物对生物和非生物胁迫的抗性。但相关的分子调控机制还知之甚少。
     本研究通过农杆菌介导的转基因方法,将人类的抗凋亡基因Bcl-2导入水稻中花11(Oryza sativa L.subsp.Japonica),获得5个水稻35S::Bcl-2纯合转基因株系,Northern blot检测表明各株系中Bcl-2均有不同程度的表达。在H_2O_2胁迫下,转基因水稻的种子萌发率(Seeds germination)、叶片叶绿素保有率(Chlorophyll retention)、根伸长量(Rootelongation)和根尖活性(Root tip viability)比野生型显著提高,表明抗凋亡基因Bcl-2的异源表达能提高水稻抗氧化胁迫的能力。
     DNA laddering和TUNEL的检测结果显示,在20 mM H_2O_2胁迫下,野生型水稻出现明显的细胞程序性死亡,具有明显的DNA laddering和TUNEL荧光信号,相对于野生型,转Bcl-2基因水稻中的DNA laddering和TUNEL信号明显减弱。表明Bcl-2的异源表达能抑制H_2O_2诱导的PCD发生,从而提高水稻的抗氧化胁迫能力。
     为了进一步探索其分子机理是否与液泡途径有关,首先通过序列比对和功能结构域分析,预测了水稻中存在4个液泡加工酶(Vacuolar Processing Enzyme,VPE)同源基因,分别为Os01g37910(OsVPE-1)、Os02g43010(OsVPE-2)、Os04g45470(OsVPE-3)、Os05g51570(OsVPE-4);7个metacaspases同源基因,分别为Os01g58580(OsMC-1)、Os03g27170(OsMC-2)、Os03g27190(OsMC-3)、Os03g27210(OsMC-4)、Os05g41660(OsMC-5)、Os05g41670(OsMC-6)、Os11g04010(OsMC-7),它们的酶促反应底物结合位点保守残基与动物Caspase在结构上具有高度的同源性。然后用20 mM H_2O_2处理野生型水稻中花11,通过半定量RT-PCR检测不同处理时间后OsVPEs和OsMCs的表达量,观察到OsVPE-1的表达量在处理6、8、12和24 h时均显著上调,OsVPE-2的表达在处理2 h后被显著上调,并持续至12 h,到24 h后,其表达量又恢复到未处理对照组水平。而其他的OsVPEs和OsMCs的表达量没有显著变化。认为H_2O_2诱导的水稻PCD可能是通过液泡途径(主要是OsVPE-1和OsVPE-2)执行的。进一步比较实验表明,在20 mM H_2O_2胁迫处理条件下,35S::Bcl-2转基因水稻幼苗中的OsVPE-1和OsVPE-2表达量无显著变化,而野生型中的OsVPE-1和OsVPE-2表达被明显上调。推测Bcl-2的作用可能是通过调节VPE的表达来抑制H_2O_2胁迫诱导的PCD产生,从而提高水稻对氧化胁迫的耐受性。
     2.水稻根边缘细胞的发育调控
     植物根边缘细胞是由根冠细胞发育而来,具有活性的一群细胞,其发育受遗传调控,且在多种逆境中发挥生物学功能。对其发育调控和生物学功能的研究已倍受关注。但是对水稻根边缘细胞的数目、活性、发生规律以及根边缘细胞发育相关基因的研究尚少。
     本研究观察水稻根边缘细胞的发生,统计细胞数目和检测细胞活性,结果显示,在水稻根形成的同时就已有边缘细胞产生,每个水稻根尖的边缘细胞数目达到1500个左右时,边缘细胞停止产生,边缘细胞产生时其活性达到95%,在离体条件下培养能保持48 h。当移去边缘细胞后,在36 h内水稻根尖又能产生一套完整的1500个左右的边缘细胞。用不同浓度的BR(油菜素内酯)、GA_3(赤霉素)、IAA(吲哚乙酸)和KT(激动素)处理水稻种子,发现这些植物激素在某一特定浓度时能促使水稻根尖产生更多边缘细胞,最高可达到2100~2500个细胞/根,是正常水平的140%~167%。表明边缘细胞的产生和发育可能受到多个激素协同调控,和根冠的细胞分裂能力密切相关。
     同时,检测了水稻发芽过程不同时间的根尖果胶甲基酯酶(Pectin Methylesterase,PME)活性,结果表明,PME活性随根的伸长而增强。在根长5 mm时,活性达到最高值。随后,PME活性逐渐下降,最后维持在一个较低活性水平。但当水稻根尖的整套边缘细胞移去后,根冠PME活性又迅速上升,到12 h时达到最高值,之后下降,表明水稻根边缘细胞的发生和根尖果胶甲基酯酶的活性密切相关。因此,本研究克隆了水稻果胶甲基酯酶基因OsPME-1(Os04g0458900),序列分析表明,该基因编码568个氨基酸,含有两个保守的功能结构域PMEI domain和PME domain。并且,通过半定量RT-PCR分析,发现OsPME-1在边缘细胞产生和发育过程中的表达变化与PME活性的变化一致,说明克隆的水稻OsPME-1和边缘细胞的产生和发育可能存在密切的联系。
     为了进一步研究OsPME-1基因在根边缘细胞产生和发育过程中的作用,构建了4个含有OsPME-1不同结构域的植物表达载体pCAMBIA13011-OsPME-1(含OsPME-1全序列),pCAMBIA13011-OsPME-2(含OsPME-1反义序列),pCAMBIA13011-OsPME-3(含PMEIdomain)和pCAMBIA13011-OsPME-4(含PME domain)。并通过农杆菌介导法转入日本晴水稻,经潮霉素筛选和RT-PCR鉴定分别得到转基因株系,已获得T2代种子,为后续研究OsPME-1基因的功能以及边缘细胞在水稻抗逆中的作用提供了转基因材料。
Environmental stresses are the main factors limiting plant growth and development, which seriously constraint the yields and qualities of crops. It has been an important strategy to engineer agricultural crops to improve stress resistance. In this study, the molecular mechanism of resistance to oxidative stress in rice was investigated by focusing on programmed cell death (PCD) and root border cell ( RBC ) development.
     1. Functional analysis of Bcl-2 in transgenic rice in response to H_2O_2-induced PCD
     Programmed cell death (PCD) is a genetically controlled cell death processes during plant development or in response to environmental stresses. Previous studies have revealed that ectopic expressions of some animal anti-apoptosis genes can inhibit PCD and improve resistance to biotic and abiotic stresses in plant. However, very little is known about the underlying molecular mechanisms.
     Here, we transferred the human anti-apoptosis gene Bcl-2 into rice by Agrobacterium tumefaciens-mediated transformation, and obtained five lines of 35S::Bcl-2 homozygous transgenic rice. Northern blot confirmed the expression of Bcl-2 in transgenic lines. In contrast to wild type, H_2O_2-inhibition of seed germination, chlorophyll retention, root elongation and root tip viability was significantly alleviated in the transgenic rice, suggesting that over-expression of Bcl-2 could enhance the resistance to H_2O_2 toxicity.
     The results of DNA laddering and TUNEL test indicated that H_2O_2 induced cell death accompanied by typical hallmarks of PCD, while Bcl-2 could promote H_2O_2 tolerance in transgenic plants via inhibition of PCD.
     To investigate PCD associated genes in plant, we found 4 OsVPEs and 7 OsMCs in rice genome by sequence alignment and function domain analysis. The expressions of these two kinds of caspase-like genes were analyzed by semi-quantitative RT-PCR. The expression analysis showed that the expression of OsVPE-1 in root tips was significantly increased after 6, 8, 12 and 24h of H_2O_2 treatment. The level of OsVPE-2 transcript accumulated after 2h and lasted till 12h treatment, and decreased to the level of controls after 24h. The results suggested that H_2O_2-induced PCD might be regulated through vacuolar pathway. However, in Bcl-2 transgenic plants, the expression of VPE did not change after H_2O_2 treatment, implying that Bcl-2 might repress H_2O_2-induced PCD in rice by inhibiting expression of VPE.
     2. Development regulations of root border cells in rice.
     More and more evidences have revealed that root border cells, whose development is genetically regulated, are biologically viable (>90%) in the majority of higher plant species, and take multi-defense roles during root growth and development. Hence, studies on developmental regulation and biological functions of root border cells have attracted the attention of many researchers. However, the root border cells production, number and viability in rice are little known.
     During seed germination, the formation of the first root border cell was observed almost synchronously with root tip emergence. Our results indicated that each rice root tip owns about 1500 root border cells, and 95% of which was viable by cell counting and viability assay. Further observation showed that root tips could reproduce another set of root border cells in 36 hours after removal of existing border cells. Root tips could produce much more root border cells when stimulated by some phytohormones such as BR, GA_3, IAA and KT. It suggested that production and development of the root border cells was regulated by multiple phytohormones. The activity of PME in root caps was estimated on different developmental stages and various time points after removing root border cells in rice root. The results showed closely correlation between root border cell development and PME activity in root caps. The gene OsPME-1(Os04g0458900) was cloned from rice, which encodes 568 amino acids and contains two conserved functional domains (PMEI and PME domains). The result of semi-quantitative analysis showed that OsPME-1 expression pattern was consistent with the production of root border cells.
     Four plant expression vectors (pCAMBIA13011-Ospme, pCAMBIA13011-anti-Ospme, pCAMBIA13011- Ospmei-Domain and pCAMBIA13011-Ospme-Domain) were constructed and transformed into rice by Agrobacterium tumefaciens-mediated transformation. The transgenic rice plants were verified by using hygromycin selection and RT-PCR test. Until now, the T2 generation of transgenic rice has been obtained, and detailed study of the function of OsPME-1 in transgenic plants is now in progress.
引文
Adams, J.M., and Cory, S. (2002). Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 14,715-720.
    Adams, J.M., and Cory, S. (1998). The Bcl-2 Protein Family: Arbiters of Cell Survival. Science 281,1322-1326.
    Alkayed, N.J., Goto, S., Sugo, N., Joh, H.D., Klaus, J., Crain, B.J., Bernard, O.,Traystman, R.J., and Hum, P.D. (2001). Estrogen and Bcl-2: Gene Induction and Effect of Transgene in Experimental Stroke. J. Neurosci. 21,7543-7550.
    Almawi, W.Y., Melemedjian, O.K., and Jaoude, M.M. (2004). On the link between Bcl-2 family proteins and glucocorticoid-induced apoptosis. J. Leukoc. Biol. 76, 7-14.
    Aravind, L., and Koonin, E. V. (2002). Classification of the caspase-hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins. Proteins 46, 355-367.
    Ashkenazi, A., and Dixit, V.M. (1998). Death Receptors: Signaling and Modulation. Science 281, 1305-1308.
    Assuncao, G.C., and Linden, R. (2004). Programmed cell deaths. Apoptosis and alternative deathstyles. Eur J Biochem 271,1638-1650.
    Bakhshi, A., Jensen, J.P., Goldman, P., Wright, J.J., McBride, O.W., Epstein, A.L., and Korsmeyer, S.J. (1985). Cloning the chromosomal breakpoint of t( 14; 18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41, 899-906.
    Balk, J., Chew, S.K., Leaver, C.J., and McCabe, P.F. (2003). The intermembrane space of plant mitochondria contains a DNase activity that may be involved in programmed cell death. Plant J 34, 573-583.
    Balk, J., Leaver, C.J., and McCabe, P.F. (1999). Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett 463, 151-154.
    Beers, E.P. (1997). Programmed cell death during plant growth and development. Cell Death Differ 4,649-661.
    Belenghi, B., Romero-Puertas, M.C., Vercammen, D., Brackenier, A., Inze, D., Delledonne, M., and Van, B.F. (2007). Metacaspase Activity of Arabidopsis thaliana Is Regulated by S-Nitrosylation of a Critical Cysteine Residue. J. Biol. Chem. 282,1352-1358.
    Bhatt, K., Feng, L., Pabla, N., Liu, K., Smith, S., and Dong, Z. (2008). Effects of targeted Bcl-2 expression in mitochondria or endoplasmic reticulum on renal tubular cell apoptosis. Am J Physiol Renal Physiol 294,499-507.
    Bimstein, E., M. Wagner, et al. (1998). Root surface characteristics of primary teeth from children with prepubertal periodontitis. J Periodontal 69, 337-347.
    Bosch, M. and P. K. Hepler (2006). Silencing of the tobacco pollen Pectin methylesterase NtPPMEl results in retarded in vivo pollen tube growth. Planta 223,736-745.
    Bourquin, V., N. Nishikubo, et al. (2002). Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues. Plant Cell 14,3073-3088.
    Brigham, L. A., H. H. Woo, et al. (1995). Root border cells as tools in plant cell studies. Methods Cell Biol 49, 377-387.
    Brigham, L. A., H. H. Woo, et al. (1995). Differential Expression of Proteins and mRNAs from Border Cells and Root Tips of Pea. Plant Physiol 109,457-463.
    Brigham, L. A., H. H. Woo, et al. (1998). Meristem-specific suppression of mitosis and a global switch in gene expression in the root cap of pea by endogenous signals. Plant Physiol 118,1223-1231.
    Bolduc, N., and Brisson, L.F. (2002). Antisense down regulation of NtBI-1 in tobacco BY-2 cells induces accelerated cell death upon carbon starvation. FEBS Lett 532,111-114.
    Bolduc, N., Ouellet, M., Pitre, F., and Brisson, L.F. (2003). Molecular characterization of two plant BI-1 homologues which suppress Bax-induced apoptosis in human 293 cells. Planta 216, 377-386.
    
    Bolduc, N., Ouellet, M., Pitre, F., and Brisson, L.F. (2003). Molecular characterization of two plant BI-1 homologues which suppress Bax-induced apoptosis in human 293 cells. Planta 216,377-386.
    Bonneau, L., Ge, Y., Drury, G.E., and Gallois, P. (2008). What happened to plant caspases? J Exp Bot 59,491-499.
    Bouchier-Hayes, L., Lartigue, L., and Newmeyer, D.D. (2005). Mitochondria: pharmacological manipulation of cell death. J Clin Invest 115, 2640-2647.
    Bouillet, P., and Strasser, A. (2002). BH3-only proteins — evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J. Cell Sci. 115,1567-1574.
    Broker, L.E., Kruyt, F.A., and Giaccone, G. (2005). Cell Death Independent of Caspases: A Review. Clin. Cancer Res. 11, 3155-3162.
    Brunelle, J.K., and Letai, A. (2009). Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci. 122,437-441.
    Callard, D., Axelos, M., and Mazzolini, L. (1996). Novel Molecular Markers for Late Phases of the Growth Cycle of Arabidopsis thaliana Cell-Suspension Cultures Are Expressed during Organ Senescence. Plant Physiol 112,705-715.
    Casolo, V., Petrussa, E., Krajnakova, J., Macri, F., and Vianello, A. (2005). Involvement of the mitochondrial KATP+ channel in H2O2- or NO-induced programmed death of soybean suspension cell cultures. J. Exp. Bot. 56,997-1006.
    Chae, H.J., Ke, N., Kim, H.R., Chen, S., Godzik, A., Dickman, M., and Reed, J.C. (2003). Evolutionarily conserved cytoprotection provided by Bax Inhibitor-1 homologs from animals, plants, and yeast. Gene 323,101-113.
    Chae, H.J., Kim, H.R., Xu, C., Bailly-Maitre, B., Krajewska, M., Krajewski, S., Banares, S., Cui, J., Digicaylioglu, M., Ke, N., Kitada, S., Monosov, E., Thomas, M., Kress, C.L., Babendure, J.R., Tsien, R.Y., Lipton, S.A., and Reed, J.C. (2004). BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Mol Cell 15, 355-366.
    Chami, M., Prandini, A., Campanella, M., Pinton, P., Szabadkai, G., Reed, J.C., and Rizzuto, R. (2004). Bcl-2 and Bax Exert Opposing Effects on Ca2+ Signaling, Which Do Not Depend on Their Putative Pore-forming Region. J. Biol. Chem. 279, 54581-54589.
    Chen, S., and Dickman, M.B. (2004). Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J. Exp. Bot. 55,2617-2623.
    Chowdhury, I., Tharakan, B., and Bhat, G.K. (2008). Caspases - an update. Comp Biochem Physiol B Biochem Mol Biol 151,10-27.
    Ciardiello, F., and Tortora, G. (2002). Inhibition of bcl-2 as cancer therapy. Ann. Onc. 13,501-502.
    Cleary, M.L., and Sklar, J. (1985). Nucleotide Sequence of a t(14;18) Chromosomal Breakpoint in Follicular Lymphoma and Demonstration of a Breakpoint-Cluster Region near a Transcriptionally Active Locus on Chromosome 18. PNAS 82, 7439.7443.
    
    Crow, M.T., Mani, K., Nam, Y.J., and Kitsis, R.N. (2004). The Mitochondrial Death Pathway and Cardiac Myocyte Apoptosis. Circ. Res. 95, 957-970.
    Cuconati, A., and White, E. (2002). Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. Genes & Dev. 16,2465-2478.
    Clowes (1994). Origin of the epidermis in root meristem. . New Phytol 127:335-347.
    Campillo, E., A. Abdel-Aziz, et al. (2004). Root cap specific expression of an endo-beta-1,4-D-glucanase (cellulase): a new marker to study root development in Arabidopsis. Plant Mol Biol 56,309-323.
    Dorokhov, Y. L., O. Y. Frolova, et al. (2006). A novel function for a ubiquitous plant enzyme pectin methylesterase: the enhancer of RNA silencing. FEBS Lett 580, 3872-3878.
    Dorokhov, Y. L., E. V. Skurat, et al. (2006). Role of the leader sequence in tobacco pectin methylesterase secretion. FEBS Lett 580,3329-3334.
    Driouich, A., C. Durand, et al. (2007). Formation and separation of root border cells. Trends Plant Sci 12,14-19.
    Danon A, Delorme V, Mailhac N, G.P. (2000). Plant programmed cell death: A common way to die 38,647.
    
    Danon, A., Rotari, V.I., Gordon, A., Mailhac, N., and Gallois, P. (2004). Ultraviolet-C Overexposure Induces Programmed Cell Death in Arabidopsis, Which Is Mediated by Caspase-like Activities and Which Can Be Suppressed by Caspase Inhibitors, p35 and Defender against Apoptotic Death. J. Biol. Chem. 279, 779-787.
    de, J., Yakimova, E.T., Kapchina, V.M., and Woltering, E.J. (2002). A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta 214, 537-545.
    Delorme, V.G., McCabe, P.F., Kim, D.J., and Leaver, C.J. (2000). A Matrix Metalloproteinase Gene Is Expressed at the Boundary of Senescence and Programmed Cell Death in Cucumber. Plant Physiol 123, 917-928.
    Desikan, R., Reynolds, A., Hancock, J.T., and Neill, S.J. (1998). Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem J 330 (Pt 1), 115-120.
    Dickman, M.B., Park, Y.K., Oltersdorf, T., Li, W., Clemente, T., and French, R. (2001). Abrogation of disease development in plants expressing animal antiapoptotic genes. PNAS 98,6957-6962.
    Dickman, M.B., Park, Y.K., Oltersdorf, T., Li, W., Clemente, T., and French, R. (2001). Abrogation of disease development in plants expressing animal antiapoptotic genes. PNAS 98,6957-6962.
    Distelhorst, C.W., and Shore, G.C. (2004). Bcl-2 and calcium: controversy beneath the surface. Oncogene 23,2875-2880.
    Earnshaw, W.C., Martins, L.M., and Kaufmann, S.H. (1999). Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68, 383-424.
    Espachs-Barroso, A., A. Van Loey, et al. (2006). Inactivation of plant pectin methylesterase by thermal or high intensity pulsed electric field treatments. Innovative Food Science & Emerging Technologies 7,40-48.
    Ferrari, S., R. Galletti, et al. (2006). Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Mol Plant Microbe Interact 19, 931-936.
    Francis, K. E., S. Y. Lam, et al. (2006). Separation of Arabidopsis Pollen Tetrads Is Regulated by QRT1, a Pectin Methylesterase Gene. Plant Physiol.142, 1004-1013
    Foyouzi-Youssefi, R., Arnaudeau, S., Borner, C., Kelley, W.L., Tschopp, J., Lew, D.P., Demaurex, N., and Krause, K.H. (2000). Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. PNAS 97, 5723-5728.
    G M Cohen, X M Sun, R T Snowden, D Dinsdale, A.D.N.S. (1992). Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. 286,331.
    Gallois, P., Makishima, T., Hecht, V., Despres, B., Laudie, M., Nishimoto, T., and Cooke, R. (1997). An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant. Plant J 11,1325-1331.
    Gavrieli, Y., Sherman, Y., and Ben-Sasson, S.A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119,493-501.
    Gechev, T.S., and Hille, J. (2005). Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell Biol. 168, 17-20.
    Germain, M., and Shore, G.C. (2003). Cellular Distribution of Bcl-2 Family Proteins. Sci. STKE 2003, pe10.
    Ghobrial, I.M., Witzig, T.E., and Adjei, A.A. (2005). Targeting Apoptosis Pathways in Cancer Therapy. CA Cancer J Clin 55,178-194.
    Goodsell, D.S. (2002). The Molecular Perspective: Bcl-2 and Apoptosis. Stem Cells 20,355-356.
    Greenberg, J.T., Guo, A., Klessig, D.F., and Ausubel, F.M. (1994). Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77, 551-563.
    Greenberg, J.T. (1996). Programmed cell death: A way of life for plants. PNAS 93, 12094-12097.
    
    Gross, A., McDonnell, J.M., and Korsmeyer, S.J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes & Dev. 13,1899-1911.
    Gunawardena, A.H. (2008). Programmed cell death and tissue remodelling in plants. J.Exp.Bot. 59,445-451.
    Gustafsson, A.B., and Gottlieb, R.A. (2007). Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol 292,45-51.
    Goldberg, R., M. Pierron, et al. (1992). In Vitro and In Situ Properties of Cell Wall Pectinmethylesterases From Mung Bean Hypocotyls. 43,41-46.
    Goujon, T., R. Sibout, et al. (2003). A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol 51,973-989.
    
    Gunawardena, U. and M. C. Hawes (2002). Tissue specific localization of root infection by fungal pathogens: role of root border cells. Mol Plant Microbe Interact 15,1128-1136.
    Gunawardena, U., M. Rodriguez, et al. (2005). Tissue-specific localization of pea root infection by Nectria haematococca. Mechanisms and consequences. Plant Physiol 137,1363-1374.
    Hamamoto, L., M. C. Hawes, et al. (2006). The production and release of living root cap border cells is a function of root apical meristem type in dicotyledonous angiosperm plants. Ann Bot (Lond) 97,917-923.
    Hawes, M. C. (2000). The role of root border cells in plant defense. Trends Plant Sci 5, 128-133.
    Hawes, M. C., L. A. Brigham, et al. (1998). Function of root border cells in plant health: pioneers in the rhizosphere. Annu Rev Phytopathol 36, 311-327.
    Hawes, M. C. and H. J. Lin (1990). Correlation of Pectolytic Enzyme Activity with the Programmed Release of Cells from Root Caps of Pea (Pisum sativum). Plant Physiol 94,1855-1859.
    Hawes.M.C (1990). Sloughed root cap cells: A regulator of microbial populations in the rhizosphere. Plant Soil 129,19-27.
    Hara-Nishimura, I., Inoue, K., and Nishimura, M. (1991). A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett 294, 89-93.
    Hara-Nishimura, I., and Nishimura, M. (1987). Proglobulin Processing Enzyme in Vacuoles Isolated from Developing Pumpkin Cotyledons. Plant Physiol 85, 440-445.
    Hatsugai, N., Kuroyanagi, M., Nishimura, M., and Hara-Nishimura, I. (2006). A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis 11, 905-911.
    Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2004). A Plant Vacuolar Protease, VPE, Mediates Virus-Induced Hypersensitive Cell Death. Science 305, 855-858.
    He, R., Drury, G.E., Rotari, V.I., Gordon, A., Wilier, M., Farzaneh, T., Woltering, E.J., and Gallois, P. (2008). Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H_2O_2 in Arabidopsis. J Biol Chem 283, 774-783.
    
    Hengartner, M.O. (2000). The biochemistry of apoptosis. Nature 407,770-776.
    Hengartner, M.O. (1995). Life and Death Decisions: ced-9 and Programmed Cell Death in Caenorhabditis elegans. Science 270, 931
    Hoeberichts, F.A., Orzaez, D., van, P.L., and Woltering, E.J. (2001). Changes in gene expression during programmed cell death in tomato cell suspensions. Plant Mol Biol 45, 641-654.
    Hofius, D., Tsitsigiannis, D.I., Jones, J.D., and Mundy, J. (2007). Inducible cell death in plant immunity. Semin Cancer Biol 17,166-187.
    Hsu, S.Y., and Hsueh, A.J. (2000). Tissue-Specific Bcl-2 Protein Partners in Apoptosis: An Ovarian Paradigm. Physiol Rev 80, 593-614.
    Huckelhoven, R., Dechert, C., Trujillo, M., and Kogel, K.H. (2001). Differential expression of putative cell death regulator genes in near-isogenic, resistant and susceptible barley lines during interaction with the powdery mildew fungus. Plant Mol Biol 47, 739-748.
    Huckelhoven, R., Dechert, C., and Kogel, K.H. (2003). From the Cover: Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. PNAS 100, 5555-5560.
    Ishii, S. (1988). Factors Influencing Protoplast Viability of Suspension-Cultured Rice Cells during Isolation Process. Plant Physiol 88,26-29.
    Iwata, Y., and Koizumi, N. (2005). An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. PNAS 102,5280-5285.
    Jones, A.M. (2001). Programmed Cell Death in Development and Defense. Plant Physiol 125,94-97.
    
    Jackson, C. L., T. M. Dreaden, et al. (2007). Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure. Glycobiology.
    
    Jiang, L., S. L. Yang, et al. (2005). VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17, 584-596.
    Kakegawa, K. (2006). Expression of pectin methylesterase gene in cell suspension cultures of Populus alba L. tolerant to boron deficiency. Plant and Cell Physiology 47, S73-S73.
    
    Knudson.L (1919). Viability of detached root cap cells. Am J Bot 6, 309-310.
    Kamauchi, S., Nakatani, H., Nakano, C, and Urade, R. (2005). Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana. FEBS J 272, 3461-3476.
    Katsuhara, M., and Kawasaki, T. (1996). Salt Stress Induced Nuclear and DNA Degradation in Meristematic Cells of Barley Roots. Plant Cell Physiol. 37,169-173.
    Kawai, M., Pan, L., Reed, J.C., and Uchimiya, H. (1999). Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast(1). FEBS Lett 464,143-147.
    Kawai, M., Pan, L., Reed, J.C., and Uchimiya, H. (1999). Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast(1). FEBS Lett 464,143-147.
    
    Kawai-Yamada, M., Jin, L., Yoshinaga, K., Hirata, A., and Uchimiya, H. (2001). Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). PNAS 98,12295-12300.
    Kawai-Yamada, M., Saito, Y., Jin, L., Ogawa, T., Kim, K.M., Yu, L.H., Tone, Y., Hirata, A., Umeda, M., and Uchimiya, H. (2005). A Novel Arabidopsis Gene Causes Bax-like Lethality in Saccharomyces cerevisiae. J. Biol. Chem. 280, 39468-39473.
    Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239-257.
    Kim, B.C., Kim, H.T., Mamura, M., Ambudkar, I.S., Choi, K.S., and Kim, S.J. (2002). Tumor Necrosis Factor Induces Apoptosis in Hepatoma Cells by Increasing Ca2+ Release from the Endoplasmic Reticulum and Suppressing Bcl-2 Expression. J. Biol. Chem. 277,31381-31389.
    Koizumi, N., Martinez, I.M., Kimata, Y., Kohno, K., Sano, H., and Chrispeels, M.J. (2001). Molecular Characterization of Two Arabidopsis Ire1 Homologs, Endoplasmic Reticulum-Located Transmembrane Protein Kinases. Plant Physiol 127, 949-962.
    Korsmeyer, S.J. (1992). Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80, 879-886.
    Kuroyanagi, M., Yamada, K., Hatsugai, N., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2005). Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J Biol Chem 280, 32914-32920.
    Kuroyanagi, M., Nishimura, M., and Hara-Nishimura, I. (2002). Activation of Arabidopsis Vacuolar Processing Enzyme by Self-Catalytic Removal of an Auto-Inhibitory Domain of the C-Terminal Propeptide. Plant Cell Physiol. 43, 143-151.
    Lam, E. (2004). Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5, 305-315.
    
    Lam, M., Dubyak, G., Chen, L., Nunez, G., Miesfeld, R.L., and Distelhorst, C.W. (1994). Evidence that BCL-2 Represses Apoptosis by Regulating Endoplasmic Reticulum-Associated Ca2+ Fluxes. PNAS 91, 6569-6573.
    Leopold, A.C. (1961). Senescence in Plant Development: The death of plants or plant parts may be of positive ecological or physiological value. Science 134,1727-1732.
    Letai, A. (2005). Pharmacological manipulation of Bcl-2 family members to control cell death. J Clin Invest 115,2648-2655.
    Li, W., and Dickman, M.B. (2004). Abiotic stress induces apoptotic-like features in tobacco that is inhibited by expression of human Bcl-2. Biotechnol Lett 26, 87-95.
    Li, W., and Dickman, M.B. (2004). Abiotic stress induces apoptotic-like features in tobacco that is inhibited by expression of human Bcl-2. Biotechnol Lett 26, 87-95.
    Lu, Q.L., Hanby, A.M., Nasser, H.M., Gschmeissner, S.E., Lu, P.J., Taylor-Papadimitriou, J., Krajewski, S., Reed, J.C., and Wright, N.A. (1994). Bcl-2 protein localizes to the chromosomes of mitotic nuclei and is correlated with the cell cycle in cultured epithelial cell lines. J. Cell Sci. 107,363-371.
    Lionetti, V., A. Raiola, et al. (2007). Overexpression of Pectin Methylesterase Inhibitors in Arabidopsis Restricts Fungal Infection by Botrytis cinerea. Plant Physiol. 143,1871-1880.
    Louvet, R., E. Cavel, et al. (2006). Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana. Planta 224, 782-791.
    McMillan G P, B. A. M., Perombelon M. C .M (1994). An isoelectric focusing study of the effect of methyl-esterified pectic substances on the production of extracelluar pectin isoenzymes by soft rot Erwinia spp. J Appl Bacteriol 77,175-184.
    Miyasaka, S. C. and M. C. Hawes (2001). Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol 125, 1978-1987.
    Martinez, I.M., and Chrispeels, M.J. (2003). Genomic Analysis of the Unfolded Protein Response in Arabidopsis Shows Its Connection to Important Cellular Processes. Plant Cell 15, 561-576.
    Matsumura, H., Nirasawa, S., Kiba, A., Urasaki, N., Saitoh, H., Ito, M., Kawai-Yamada, M., Uchimiya, H., and Terauchi, R. (2003). Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L) cells. Plant J 33,425-434.
    Matsuyama, S., Schendel, S.L., Xie, Z., and Reed, J.C. (1998). Cytoprotection by Bcl-2 Requires the Pore-forming alpha 5 and alpha 6 Helices. J. Biol. Chem. 273, 30995-31001.
    McCabe, P.F., and Leaver, C.J. (2000). Programmed cell death in cell cultures. Plant Mol Biol 44, 359-368.
    Mitsuhara, I., Malik, K.A., Miura, M., and Ohashi, Y. (1999). Animal cell-death suppressors Bcl-x(L) and Ced-9 inhibit cell death in tobacco plants. Curr Biol 9, 775-778.
    Mittler, R., and Lam, E. (1995). In Situ Detection of nDNA Fragmentation during the Differentiation of Tracheary Elements in Higher Plants. Plant Physiol 108, 489-493.
    Murphy, K.M., Streips, U.N., and Lock, R.B. (2000). Bcl-2 Inhibits a Fas-induced Conformational Change in the Bax N Terminus and Bax Mitochondrial Translocation. J. Biol. Chem. 275,17225-17228.
    Nicholson, D.W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6,1028-1042.
    Okushima, Y., Koizumi, N., Yamaguchi, Y., Kimata, Y., Kohno, K., and Sano, H. (2002). Isolation and Characterization of a Putative Transducer of Endoplasmic Reticulum Stress in Oryza sativa. Plant Cell Physiol. 43, 532-539.
    Pattingre, S., and Levine, B. (2006). Bcl-2 Inhibition of Autophagy: A New Route to Cancer? Cancer Res. 66,2885-2888.
    Pennell, R.I., and Lamb, C. (1997). Programmed Cell Death in Plants. Plant Cell 9, 1157-1168.
    Pinton, P., Ferrari, D., Rapizzi, E., Di, V.F., Pozzan, T., and Rizzuto, R. (2002). A role for calcium in Bcl-2 action? Biochimie 84,195-201.
    Pourzand, C., Rossier, G., Reelfs, O., Borner, C., and Tyrrell, R.M. (1997). The Overexpression of Bcl-2 Inhibits UVA-mediated Immediate Apoptosis in Rat 6 Fibroblasts: Evidence for the Involvement of Bcl-2 as an Antioxidant. Cancer Res. 57,1405-1411.
    Pan, J. W. (2002). Developmental Regulation and Biolodical Functions of Root Border Cells in Higher Plants. Acta Botanica Sinica 44,1-8.
    Pan, J. W., D. Ye, et al. (2004). Root border cell development is a temperature-insensitive and Al-sensitive process in barley. Plant Cell Physiol 45,751-760.
    Park, S. W., C. B. Lawrence, et al. (2002). Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots. Plant Physiol 130,164-178.
    Pelloux, J., C. Rusterucci, et al. (2007). New insights into pectin methylesterase structure and function. Trends Plant Sci 12,267-277.
    Ponce, G., P. W. Barlow, et al. (2005). Auxin and ethylene interactions control mitotic activity of the quiescent centre, root cap size, and pattern of cap cell differentiation in maize. Plant Cell Environ 28,719-732.
    Rogers (1942). The source and phosphatase activity of exoenzyme systems of corn and tomato roots. soil 54, 353-365.
    Qiao, J., Mitsuhara, I., Yazaki, Y., Sakano, K., Gotoh, Y., Miura, M., and Ohashi, Y. (2002). Enhanced Resistance to Salt, Cold and Wound Stresses by Overproduction of Animal Cell Death Suppressors Bcl-xL and Ced-9 in Tobacco Cells - Their Possible Contribution Through Improved Function of Organella. Plant Cell Physiol. 43,992-1005.
    Reape, T.J., Molony, E.M., and McCabe, P.F. (2008). Programmed cell death in plants: distinguishing between different modes. J Exp Bot 59,435-444.
    Reed, J.C. (1994). Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124, 1-6.
    Reed, J.C. (1997). Promise and problems of Bcl-2 antisense therapy. J Natl Cancer Inst 89, 988-990.
    Reed, J.C. (2008). Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood 111, 3322-3330.
    
    Rogers, H.J. (2005). Cell death and organ development in plants. Curr Top Dev Biol 71,225-261.
    Roulston, A., Marcellus, R.C., and Branton, P.E. (1999). Viruses and apoptosis. Annu Rev Microbiol 53, 577-628.
    Rupinder, S.K., Gurpreet, A.K., and Manjeet, S. (2007). Cell suicide and caspases. Vascul Pharmacol 46,383-393.
    Ryerson, D.E., and Heath, M.C. (1996). Cleavage of Nuclear DNA into Oligonucleosomal Fragments during Cell Death Induced by Fungal Infection or by Abiotic Treatments. Plant Cell 8,393-402.
    Samejima, K., Tone, S., Kottke, T.J., Enari, M., Sakahira, H., Cooke, C.A., Durrieu, F., Martins, L.M., Nagata, S., Kaufmann, S.H., and Earnshaw, W.C. (1998). Transition from Caspase-dependent to Caspase-independent Mechanisms at the Onset of Apoptotic Execution. J. Cell Biol. 143,225-239.
    Sanchez, P., de, T.Z., and Grant, M. (2000). AtBI-1, a plant homologue of Bax inhibitor-1, suppresses Bax-induced cell death in yeast and is rapidly upregulated during wounding and pathogen challenge. Plant J 21, 393-399.
    Sanmartin, M., Jaroszewski, L., Raikhel, N.V., and Rojo, E. (2005). Caspases. Regulating Death Since the Origin of Life. Plant Physiol 137, 841-847.
    Schandl, C.A., Li, S., Re, G.G., Fan, W., and Willingham, M.C. (1999). Mitotic Chromosomal Bcl-2: I. Stable Expression Throughout the Cell Cycle and Association with Isolated Chromosomes. J. Histochem. Cytochem. 47,139-150.
    Scorrano, L., Oakes, S.A., Opferman, J.T., Cheng, E.H., Sorcinelli, M.D., Pozzan, T., and Korsmeyer, S.J. (2003). BAX and BAK Regulation of Endoplasmic Reticulum Ca2+: A Control Point for Apoptosis. Science 300,135-139.
    Shabala, S., Cuin, T.A., Prismall, L., and Nemchinov, L.G. (2007). Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227, 189-197.
    Singh, V.K., Wood, S.M., Knowles, V.L., and Plaxton, W.C. (2003). Phosphite accelerates programmed cell death in phosphate-starved oilseed rape (Brassica napus) suspension cell cultures. Planta 218,233-239.
    
    Smith, C.A. (1995). A novel viral homologue of Bcl-2 and Ced-9. Trends Cell Biol 5, 344.
    Stein, J.C., and Hansen, G. (1999). Mannose Induces an Endonuclease Responsible for DNA Laddering in Plant Cells. Plant Physiol 121,71-80.
    Suarez, M.F., Filonova, L.H., Smertenko, A., Savenkov, E.I., Clapham, D.H., von, A.S., Zhivotovsky, B., and Bozhkov, P.V. (2004). Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14,339-340.
    Suarez, M.F., Filonova, L.H., Smertenko, A., Savenkov, E.I., Clapham, D.H., von, A.S., Zhivotovsky, B., and Bozhkov, P.V. (2004). Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14,339-340.
    Seki, H., T. Nishizawa, et al. (2005). Hairy root-activation tagging: a high-throughput system for activation tagging in transformed hairy roots. Plant Mol Biol 59, 793-807.
    Stephenson, M. B. and M. C. Hawes (1994). Correlation of Pectin Methylesterase Activity in Root Caps of Pea with Root Border Cell Separation. Plant Physiol 106, 739-745.
    Tamas, L., S. Budikova, et al. (2005). Aluminum-induced cell death of barley-root border cells is correlated with peroxidase- and oxalate oxidase-mediated hydrogen peroxide production. Plant Cell Rep 24,189-194.
    Terefe, N. S., M. A. Delele, et al. (2005). Effects of cryostabilizers, low temperature, and freezing on the kinetics of the pectin methylesterase-catalyzed de-esterification of pectin. JAgric Food Chem 53,2282-2288.
    Tian, G. W., M. H. Chen, et al. (2006). Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294, 83-91.
    Trigui-Lahiani, H. and A. Gargouri (2007). Cloning, genomic organisation and mRNA expression of a pectin lyase gene from a mutant strain of Penicillium occitanis. Gene 388, 54-60.
    Tanaka, Y., Makishima, T., Sasabe, M., Ichinose, Y., Shiraishi, T., Nishimoto, T., and Yamada, T. (1997). dad-1, A Putative Programmed Cell Death Suppressor Gene in Rice. Plant Cell Physiol. 38,379-383.
    
    Thomenius, M.J., and Distelhorst, C.W. (2003). Bcl-2 on the endoplasmic reticulum: protecting the mitochondria from a distance. J. Cell Sci. 116,4493-4499.
    Thornberry, N.A., Rano, T.A., Peterson, E.P., Rasper, D.M., Timkey, T., Garcia-Calvo, M., Houtzager, V.M., Nordstrom, P.A., Roy, S., Vaillancourt, J.P., Chapman, K.T., and Nicholson, D.W. (1997). A Combinatorial Approach Defines Specificities of Members of the Caspase Family and Granzyme B. FUNCTIONAL RELATIONSHIPS ESTABLISHED FOR KEY MEDIATORS OF APOPTOSIS. J. Biol. Chem. 272,17907-17911.
    Tsujimoto, Y., Cossman, J., Jaffe, E., and Croce, C.M. (1985). Involvement of the bcl-2 gene in human follicular lymphoma. Science 228,1440-1443.
    Uren, A.G., O, R.K., Aravind, L.A., Pisabarro, M.T., Seshagiri, S., Koonin, E.V., and Dixit, V.M. (2000). Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6, 961-967.
    Uren, A.G., O, R.K., Aravind, L.A., Pisabarro, M.T., Seshagiri, S., Koonin, E.V., and Dixit, V.M. (2000). Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6,961-967.
    van, D.W., and Woltering, E.J. (2005). Many ways to exit? Cell death categories in plants. Trends Plant Sci 10,117-122.
    van, D.W., and Woltering, E.J. (2004). Senescence and programmed cell death: substance or semantics? J. Exp. Bot. 55, 2147-2153.
    Vercammen, D., Declercq, W., Vandenabeele, P., and Van, B.F. (2007). Are metacaspases caspases? J Cell Biol 179, 375-380.
    Vercammen, D., van, C.B., De, J.G., Eeckhout, D., Casteels, P., Vandepoele, K., Vandenberghe, I., Van, B.J., Inze, D., and Van, B.F. (2004). Type II Metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana Cleave Substrates after Arginine and Lysine. J. Biol. Chem. 279,45329-45336.
    Vercammen, D., van, C.B., De, J.G., Eeckhout, D., Casteels, P., Vandepoele, K., Vandenberghe, I., Van, B.J., Inze, D., and Van, B.F. (2004). Type II Metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana Cleave Substrates after Arginine and Lysine. J. Biol. Chem. 279,45329-45336.
    Vitalie I. Rotari, R.H.A.P.G. (2005). Death by proteases in plants: whodunit 123, 376.
    Vicre, M., C. Santaella, et al. (2005). Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria. Plant Physiol 138,998-1008.
    
    Vovk, I. and B. Simonovska (2006). Isolation of tomato pectin methylesterase and polygalacturonase on monolithic columns. J Chromatogr A. 223,736-745.
    Vovk, I. and B. Simonovska (2006). Separation of pectin methylesterases and polygalacturonases on monolithic columns. J Chromatogr B Analyt Technol Biomed Life Sci.
    Vovk, I. and B. Simonovska (2007). Isolation of tomato pectin methylesterase and polygalacturonase on monolithic columns. J Chromatogr A 1144,90-96.
    Wen, F., H. D. Vanetten, et al. (2007). Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143,773-783.
    Wen, E, Y. Zhu, et al. (1999). Effect of pectin methylesterase gene expression on pea root development. Plant Cell 11,1129-1140.
    Woo, H. H. and M. C. Hawes (1997). Cloning of genes whose expression is correlated with mitosis and localized in dividing cells in root caps of Pisum sativum L. Plant Mol Biol 35,1045-1051.
    Woo, H. H., A. M. Hirsch, et al. (2004). Altered susceptibility to infection by Sinorhizobium meliloti and Nectria haematococca in alfalfa roots with altered cell cycle. Plant Cell Rep 22, 967-973.
    Woo, H. H., M. J. Orbach, et al. (1999). Meristem-localized inducible expression of a UDP-glycosyltransferase gene is essential for growth and development in pea and alfalfa. Plant Cell 11, 2303-2315.
    Walensky, L.D. (2006). BCL-2 in the crosshairs: tipping the balance of life and death. Cell Death Differ 13,1339-1350.
    
    Wang, M., Oppedijk, B.J., Lu, X., Van, D.B., and Schilperoort, R.A. (1996). Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Mol Biol 32,1125-1134.
    Ward, M.W., Rehm, M., Duessmann, H., Kacmar, S., Concannon, C.G., and Prehn, J.H. (2006). Real Time Single Cell Analysis of Bid Cleavage and Bid Translocation during Caspase-dependent and Neuronal Caspase-independent Apoptosis. J. Biol. Chem. 281, 5837-5844.
    Watanabe, N., and Lam, E. (2006). Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J 45, 884-894.
    Watanabe, N., and Lam, E. (2008). BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J Biol Chem 283, 3200-3210.
    Watanabe, N., and Lam, E. (2005). Two Arabidopsis Metacaspases AtMCP1b and AtMCP2b Are Arginine/Lysine-specific Cysteine Proteases and Activate Apoptosis-like Cell Death in Yeast. J. Biol. Chem. 280, 14691-14699.
    Watanabe, N., and Lam, E. (2008). BAX Inhibitor-1 Modulates Endoplasmic Reticulum Stress-mediated Programmed Cell Death in Arabidopsis. J. Biol. Chem. 283,3200-3210.
    Wijsman, J.H., Jonker, R.R., Keijzer, R., van, V.C., Cornelisse, C.J., and van, D.J. (1993). A new method to detect apoptosis in paraffin sections: in situ end- labeling of fragmented DNA. J. Histochem. Cytochem. 41,7-12.
    Williams, B., and Dickman, M. (2008). Plant programmed cell death: can't live with it; can't live without it. Mol Plant Pathol 9, 531-544.
    Willis, S., Day, C.L., Hinds, M.G., and Huang, D.C. (2003). The Bcl-2-regulated apoptotic pathway. J. Cell Sci. 116,4053-4056.
    Wolf, B.B., and Green, D.R. (1999). Suicidal Tendencies: Apoptotic Cell Death by Caspase Family Proteinases. J. Biol. Chem. 274,20049-20052.
    Xu, C.J., Chen, K.S., and Ferguson, I.B. (2004). Programmed cell death features in apple suspension cells under low oxygen culture. J Zhejiang Univ Sci 5, 137-143.
    Xu, P., Rogers, S.J., and Roossinck, M.J. (2004). Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress. PNAS 101,15805-15810.
    Xue, D., and Horvitz, H.R. (1997). Caenorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor. Nature 390,305-308.
    Yakimova, E.T., Kapchina-Toteva, V.M., Laarhoven, L.J., Harren, F.M., and Woltering, E.J. (2006). Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells. Plant Physiol Biochem 44,581-589.
    Yakimova, E.T., Kapchina-Toteva, V.M., and Woltering, E.J. (2007). Signal transduction events in aluminum-induced cell death in tomato suspension cells. J Plant Physiol 164,702-708.
    Yamada, K., Shimada, T., Nishimura, M., Hara-Nishimura, I. (2005). A VPE family supporting various vacuolar functions in plants. 123,369.
    Yao, N., Tada, Y., Park, P., Nakayashiki, H., Tosa, Y., and Mayama, S. (2001). Novel evidence for apoptotic cell response and differential signals in chromatin condensation and DNA cleavage in victorin-treated oats. Plant J 28,13-26.
    Zha, H., and Reed, J.C. (1997). Heterodimerization-independent Functions of Cell Death Regulatory Proteins Bax and Bcl-2 in Yeast and Mammalian Cells. J. Biol. Chem. 272, 31482-31488.
    Zhou, B.B., Li, H., Yuan, J., and Kirschner, M.W. (1998). Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. PNAS 95,6785-6790.
    Zhao, X., I. J. Misaghi, et al. (2000). Stimulation of border cell production in response to increased carbon dioxide levels. Plant Physiol 122,181-188.
    Zhou, D., D. Qian, et al. (1997). Developmental and environmental regulation of tissue- and cell-specific expression for a pea protein farnesyltransferase gene in transgenic plants. Plant J 12, 921-930.
    Zhu, M. Y., S. J. Ahn, et al. (2003). Inhibition of growth and development of root border cells in wheat by Al. Physiol Plant 117,359-367.
    Zhu, Y., L. S. Pierson, et al. (1997). Induction of microbial genes for pathogenesis and symbiosis by chemicals from root border cells. Plant Physiol 115,1691-1698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700