病原体Clostridum difficile的乙酰辅酶A合成通路中某些关键金属蛋白的基因克隆、重组表达与纯化及其结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧病原体艰难梭菌(Clostridium difficile)能够直接感染人类导致结肠炎和结肠癌(简称为CDI),在北美和欧洲发现较多,发病率和死亡率较严重,目前在中国也已有报道。由于该病原体极度厌氧,对研究和疾病防治带来较大困难。
     艰难梭菌基因组测序结果表明:该病原体基因组中存在乙酰辅酶A合成通路(Wood-Ljungdah通路)中所有相关同源蛋白,主要包括甲基转移酶、钴铁硫蛋白、乙酰辅酶A合成酶和一氧化碳脱氢酶等。该通路是许多厌氧微生物中重要的能源和物质代谢通路之一,并且不存在于人体中。因此,这些蛋白(酶)有可能成为治疗Clostridium difficile所引发疾病的潜在药物靶点。本文研究的主要目的是为病原体中该通路的后续详细研究奠定基础,并为相关药物的开发提供设计思路。
     本文研究了病原体C. difficile 630的乙酰辅酶A通路中的四种关键酶(蛋白),包括甲基转移酶(MeTrCd,268个氨基酸)、钴铁硫蛋白(CoFeSPCd,包括两个亚基delta和gamma,分别含314个氨基酸和455个氨基酸)、乙酰辅酶A合成酶(ACSCd,708个氨基酸)和一氧化碳脱氢酶(CODHCd,639个氨基酸)。
     首先,我们研究了病原体C. difficile 630中编号为CD0727的甲基转移酶基因(MeTrCd),包括基因克隆、重组表达与纯化,成功建立了高效大肠杆菌表达纯化体系(蛋白产量可达50 mg每升TB培养基);使用圆二色光谱对其二级结构进行了表征;通过序列和结构分析及生物信息学,得到了其同源模拟结构。
     研究了病原体C. difficile 630中编号为CD0725和CD0726(分别编码钴铁硫蛋白gamma和delta亚基)的基因,通过基因克隆、重组表达与纯化研究,成功建立了一套较为高效的重组表达体系;对CoFeSPCd的金属中心Fe4S4和钻胺素的化学重组进行了研究,并运用紫外可见光谱对其进行表征,实验结果表明我们通过重组得到的CoFeSPCd是具有完整金属中心的全蛋白。
     通过色氨酸荧光淬灭光谱测定了甲基四氢叶酸的底物结合常数,及其随pH值减小的构象变化现象。实验结果表明MeTrCd的底物结合能力与同源蛋白MeTrMt(来源于嗜热菌Moorella thermoaceticum的MeTr)相比有显著下降。该差异可能是由MeTrCd中底物结合位点腔His1l的存在造成的。色氨酸荧光淬灭光谱实验表明MeTrCd存在pH依赖性的构象变化性质。该变化导致蛋白疏水区域的色氨酸残基溶剂暴露程度加大,从而有利于底物结合及完成催化功能。
     通过厌氧条件下的截流光谱技术详细研究了MeTrCd的甲基转移反应动力学,得到了MeTrCd与外源性CoFeSPMt(来源于嗜热菌Moorella thermoaceticum的CoFeSP)和钻铵素反应的米式方程动力学参数。通过厌氧条件下的截流光谱技术检测了CoFeSPCd接受甲基的功能,并通过改变CoFeSPCd的浓度得到了以CoFeSPCd为底物的MeTrCd催化甲基动力学常数。研究发现分别使用CoFeSPMt、钴铵素和CoFeSPCd作为催化底物,无论是催化速率常数(Kcat)还是催化效率(Kcat/Km)都遵循这样一个规律:CoFeSPMt     本文详细研究了乙酰辅酶A合成酶。首次建立了病原体C. difficile 630乙酰辅酶A合成酶(ACSCd)的大肠杆菌体外重组表达纯化体系;通过金属含量分析、紫外可见光谱以及EXAFS等光谱研究表明ACSCd在结构上具有ACSMt(来源于嗜热菌Moorella thermoaceticum的ACS)的典型金属活性中心A-cluster;活性测定实验表明ACSCd的乙酰辅酶A合成活性速率常数为0.04μM min-1mg-1、甲基转移酶活性速率常数为0.26±0.05 min-1;对ACSCd的抑制剂进行了初步的研究,并发现三种抑制剂均能有效抑制其活性;离体抑菌活性研究进一步验证了它们对病原体C.difficile的抑制效果。这一研究具有十分重大的理论意义和应用价值,有可能成为寻找治疗CDI疾病药物的一个新策略。
     此外,我们对一氧化碳脱氢酶的基因克隆、蛋白质重组表达纯化进行了初步的研究探索。一氧化碳脱氢酶(CODH)的功能是催化CO和CO2的可逆氧化还原,它是乙酰辅酶A通路中的重要金属酶之一,但是该蛋白很容易以包涵体沉淀的形式存在,人们一直未能建立该蛋白的大肠杆菌表达体系。本文通过构建多个原核表达质粒,对嗜热菌Moorella thermoacetica的CODHMt以及病原体CODHCd的重组表达纯化进行了一系列的探索,我们得到了含有麦芽糖融合标签的蛋白。这一研究为将来详细研究CODH的结构与功能奠定了基础。
     总之,本文对艰难梭菌(Clostridium difficile)乙酰辅酶A合成通路中的四种关键酶(蛋白)进行了基因构建、重组表达与纯化的研究探索,成功得到了其中3种酶(蛋白)的高效表达纯化体系,并进行了详细的结构、功能与性质及抑制剂的研究。该研究不仅增进了人们对该病原体的认识和对乙酰辅酶A合成通路的了解、而且为开发新型治疗CDI药物提供了理论依据和思路。
Clostridium difficile is a ubiquitous anaerobic and spore-forming pathogen. It can produce toxins A and B, and then causes acute illnesses called Clostridium difficile infection (CDI) in humans, ranging from severe diarrhea, antibiotic-associated colitis, pseudomembranous colitis, toxic megacolon, intestinal perforations, and even death. It was found that the genomic DNA of the pathogen contains several genes encoding proteins involved in acetyl-coenzyme A synthesis of Wood-Ljungdahl pathway. The pathway for catabolism and anabolism of the pathogen involves a series of critical enzymes such as formate dehydrogenase, corrinoid-dependent methyltransferase, corrinoid iron-sulfur protein, and acetyl-CoA synthase. Each of the four metalloenzymes plays a critical role in the Wood-Ljungdahl pathway. Thus, these metalloenzymes could be a selective and promising target for the development of new antibiotics agents. Compounds targeting this enzyme should avoid multiple resistance with currently used antibiotics agents. It could be a new strategy to find special antibiotics for the treatment of CDI.
     In this study, we investigated some key metalloenzymes including methyltransferase (MeTrCd,268 aa), Corrinoid iron-sulfur proteins (CoFeSPCd, two subunits included:delta,314 aa and gamma,455 aa), acetyl-coenzyme A synthase (ACSCd,708 aa) and carbon monoxide dehydrogenases (CODHCd,639 aa).
     Corrinoid-dependent methyltransferase plays a central role in this pathway that transfers the methyl group from methyltetrahydrofolate to a cob(I)amide center in the corrinoid iron-sulfur protein. In this study, we developed two efficient expression and purification methods for methyltransferase from Clostridium difficile for the first time with two expression vectors MBPHT-mCherry2 and pETDuet-1, respectively. Using the latter vector, more than 50 mg MeTr was produced per liter TB medium. The recombinant methyltransferase was well characterized by SDS-PAGE, gel filtration chromatograpgy, enzyme assay and far-UV circular dichroism (CD). Furthermore, steady-state kinetics were studied using exogenous cobalamin and CoFeSP from Moorella thermoacetica (CoFeSPMt) as a substrate by stopped-flow method. MeTrCd showed pH dependent conformational change and methyl transfer activity. The kinetic studies of MeTrCd were fitted to the Michaelis-Menten equation, yielding values of kcat(77.6 s-1) and kcat/Km (1.33μM-1s-1) for hydroxycobalamin, and kcat(2.63 s-1) and kcat/Km(0.15μM-1s-1) for CoFeSPMt.
     CoFeSP acts as a transformer in the Wood-Ljungdahl pathway, which belongs to B12-dependent enzymes. In this study, the putative gamma and delta gene of CoFeSPcd from clostridium difficile was firstly expressed in E. coli. High yield of recombinant gammaCd and deltaCd was achieved in this expression system, which was purified efficiently by affinity chromatography. Furthermore, we got the holo-protein using the reconstitution of Fe4S4 and cobalamin. Then, steady-state kinetic was studied using CoFeSPCd as a methyl accepter by stopped-flow method, yielding values of kcat(43.7 s-1) and kcat/Km (0.51μM-s-1). The results of kinetic parameters, using hydroxycobalamin, CoFeSPMt and CoFeSPCd as a substrate respectively, were suggested that the interaction between CoFeSP and MeTr was a key step in the methyl transfer reaction.
     Acetyl-CoA synthases catalyses the condensation of three substrates:CoA, CO, and a methyl group from the methylated corrinoid iron-sulfur protein (CH3-CoFeSP), to produce acetyl-CoA. In this study, the target gene was subcloned into the vector pET30a (Novagen) to generate a C-terminal His-tagged protein. Based this, we established a recombinant expression system for ACSCd in E. coli that enabled a one-step purification of active enzyme under anaerobic conditions. The A-cluster, [Fe4S4][NipNid], existed in ACSCd was confirmed by structural modeling, metal analysis, and UV-Vis spectra of the characteristic feature of [Fe4S4] cubane. The Nip, as a labile metal, can be removed by treatment with chelators but this treatment results in the loss of ACS activity. Three bidentate chelators (10-phenanthroline, 8-hydroxyquinoline, and 2,2-dipyridyl) showed inhibition effects on ACSCd methyl group transfer and acetyl-coenzyme A synthesis activity. These inhibitory results were confirmed by further antibacterial activity assay against Clostridium difficile, though 8-hydroxyquinoline has a weak effect. These results played a solid base for the future research of high throughput screening to find valuable inhibitors, and it might be a new strategy to find new antibiotics for the treatment of CDI.
     At last, we tried to establish a recombinant expression and purifaction system for CODH. CODH catalyzes the reversible oxidation and reduction between carbon monoxide and carbon dioxide. CODHs from Carboxydothermus hydrogenoformans, Rhodospirillum rubrum and Moorella thermoacetica have been well studied. X-ray crystal structures of all three enzymes (CODHRr, CODHCh and CODHMt) were determined between 2001 and 2007. However, the reaction mechanism is probably the most intriguing. We constructed several plasmids and tried to establish a highly effective expression and purification system for CODHmt and CODHCd.Luckily, we got the MBP-fusion protein. All these studies will provide useful information for future research.
     In summary, we described for the first time several means of expressing at high level and purifying methyltetrahydrofolate- and corrinoid-dependent methyl-transferase, corrinoid iron-sulfur protein and acetyl-coenzyme A synthase from human pathogen C. difficile. Their structures and functions were investigated by spectroscopy, enzyme kinetics, and homology structure modeling. Inhibitors based on the enzyme ACSCd assay showed effective antibacterial activity for the pathogen C. difficile. In particular, this study provides a solid basis for the studies of potential drug target like ACSCd, which may apply to drug discovery for the treatment of CDI.
引文
[1]Sun XC, Guiles J, Janjic N. Recent development in the treatment of clostridium difficile associated disease (CDAD) [J]. Annual Reports in Medicinal Chemistry, Vol 43,2008,43:269-279.
    [2]Voth DE, Ballard JD. Clostridium difficile toxins:Mechanism of action and role in disease [J]. Clin Microbiol Rev,2005,18(2):247-+.
    [3]Bartlett JG, Moon N, Chang TW, Taylor N, Onderdonk AB. Role of clostridium-difficile in antibiotic-associated pseudomembranous colitis [J]. Gastroenterology,1978,75(5):778-782.
    [4]George WL, Goldstein EJC, Sutter VL, Ludwig SL, Finegold SM. Etiology of antimicrobial-agent-associated colitis [J]. Lancet,1978,1(8068):802-803.
    [5]Aronsson B, Mollby R, Nord CE. Occurrence of toxin-producing clostridium-difficile in antibiotic-asssociated diarrhea in sweden [J]. Med Microbiol Immunol,1981,170(1):27-35.
    [6]Bartlett JG, Tedesco FJ, Shull S, Lowe B, Chang T. Symptomatic relapse after oral vancomycin therapy of antibiotic-associated pseudomembranous colitis [J]. Gastroenterology,1980,78(3):431-434.
    [7]Burdon DW, George RH, Mogg GAG, Arabi Y, Thompson H, Johnson M, Alexanderwilliams J, Keighley MRB. Fecal toxin and severity of antibiotic-associated pseudomembranous colitis [J]. J Clin Pathol,1981,34(5): 548-551.
    [8]Don GJ, Davis AE. The association between antibiotic-associated diarrhea and c-difficile toxin in children [J].Aust N Z J Med,1981,11(4):433-434.
    [9]George WL, Rolfe RD, Harding GKM, Klein R, Putnam CW, Finegold SM. Clostridium difficile and cyto-toxin in feces of patients with antimicrobial agent-associated pseudo-membranous colitis [J]. Infection,1982,10(4): 205-207.
    [10]George WL, Rolfe RD, Finegold SM. Clostridium-difficile and its cyto-toxin in feces of patients with antimicrobial agent associated diarrhea and miscellaneous conditions [J]. J Clin Microbiol,1982,15(6):1049-1053.
    [11]Meyers S, Mayer L, Bottone E, Desmond E, Janowitz HD. Occurrence of clostridium-difficile toxin during the course of inflammatory bowel-disease [J]. Gastroenterology,1981,80(4):697-700.
    [12]Tedesco FJ. Antibiotic-associated colitis-an abating enigma [J]. J Clin Gastroenterol,1981,3(3):221-224.
    [13]Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection:New developments in epidemiology and pathogenesis [J]. Nat Rev Microbiol,2009, 7(7):526-536.
    [14]Kelly CP, LaMont JT. Clostridium difficile-more difficult than ever [J]. N Engl J Med,2008,359(18).
    [15]Kim J, Smathers SA, Prasad P, Leckerman KH, Coffin S, Zaoutis T. Epidemiological features of clostridium difficile-associated disease among inpatients at children's hospitals in the united states,2001-2006 [J]. Pediatrics, 2008,122(6):1266-1270.
    [16]Rouphael NG, O'Donnell JA, Bhatnagar J, Lewis F, Polgreen PM, Beekmann S, Guarner J, Killgore GE, Coffman B, Campbell J, Zaki SR, McDonald LC. Clostridium difficile-associated diarrhea:An emerging threat to pregnant women [J]. Am J Obstet Gynecol,2008,198(6).
    [17]McDonald LC, Owings M, Jernigan DB. Clostridium difficile infection in patients discharged from us short-stay hospitals,1996-2003 [J]. Emerg Infect Dis,2006,12(3):409-415.
    [18]Pepin J, Valiquette L, Alary ME, Villemure P, Pelletier A, Forget K, Pepin K, Chouinard D. Clostridium difficile-associated diarrhea in a region of quebec from 1991 to 2003:A changing pattern of disease severity [J]. Can Med Assoc J,2004,171(5):466-472.
    [19]Loo VG. A predominantly clonal multi-institutional outbreak of clostridium difficile-associated diarrhea with high morbidity and mortality (vol 353, pg 2442,2005) [J]. N Engl J Med,2006,354(20):2200-2200.
    [20]Loo VG, Poirier L, Miller MA, Oughton M, Libman MD, Michaud S, Bourgault AM, Nguyen T, Frenette C, Kelly M, Vibien A, Brassard P, Fenn S, Dewar K, Hudson TJ, Horn R, Rene P, Monczak Y, Dascal A. A predominantly clonal multi-institutional outbreak of clostridium difficile-associated diarrhea with high morbidity and mortality [J]. N Engl J Med,2005,353(23): 2442-2449.
    [21]Muto CA, Pokrywka M, Shutt K, Mendelsohn AB, Nouri K, Posey K, Roberts T, Croyle K, Krystofiak S, Patel-Brown S, Pasculle AW, Paterson DL, Saul M. A large outbreak of clostridium difficile-associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use [J]. Infect Control Hosp Epidemiol, 2005,26(3):273-280.
    [22]Indra A, Lassnig H, Baliko N, Much P, Fiedler A, Huhulescu S, Allerberger F. Clostridium difficile:A new zoonotic agent? [J]. Wien Klin Wochenschr,2009, 121(3-4):91-95.
    [23]Indra A, Huhulescu S, Fiedler A, Kernbichler S, Blaschitz M, Allerberger F. Outbreak of clostridium difficile 027 infection in vienna, austria 2008-2009 [J]. Euro Surveill,2009,14(17).
    [24]Indra A, Schmid D, Huhulescu S, Hell M, Gattringer R, Hasenberger P, Fiedler A, Wewalka G, Allerberger F. Characterization of clinical clostridium difficile isolates by pcr ribotyping and detection of toxin genes in austria,2006-2007 [J]. J Med Microbiol,2008,57(6):702-708.
    [25]Indra A, Huhulescu S, Schneeweis M, Hasenberger P, Kernbichler S, Fiedler A, Wewalka G, Allerberger F, Kuijper EJ. Characterization of clostridium difficile isolates using capillary gel electrophoresis-based pcr ribotyping [J]. J Med Microbiol,2008,57(11):1377-1382.
    [26]Burdette SD, Bernstein JM. Does the nose know? The odiferous diagnosis of clostridium difficile-associated diarrhea [J]. Clin Infect Dis,2007,44(8): 1142-1142.
    [27]Joebstl M, Heuberger S, Indra A, Nepf R, Koefer J, Wagner M. Clostridium difficile in raw products of animal origin [J]. Int J Food Microbiol,138(1-2): 172-175.
    [28]van den Berg RJ, Class ECJ, Oyib DH, Klaassen CHW, Dijkshoorn L, Brazier JS, Kuijper EJ. Characterization of toxin a-negative, toxin b-positive clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and pcr ribotyping [J]. J Clin Microbiol,2004, 42(3):1035-1041.
    [29]Rupnik M, Kato N, Grabnar M, Kato H. New types of toxin a-negative, toxin b-positive strains among clostridium difficile isolates from asia [J]. J Clin Microbiol,2003,41(3):1118-1125.
    [30]Kato H, Kato N, Katow S, Maegawa T, Nakamura S, Lyerly DM. Deletions in the repeating sequences of the toxin a gene of toxin a-negative, toxin b-positive clostridium difficile strains [J]. FEMS Microbiol Lett,1999,175(2): 197-203.
    [31]Hsu M-S, Wang J-T, Huang W-K, Liu Y-C, Chang S-C. Prevalence and clinical features of clostridium difficile-associated diarrhea in a tertiary hospital in northern taiwan [J]. J Microbiol Immunol Infect,2006,39(3): 242-248.
    [32]Lee NY, Huang YT, Hsueh PR, Ko WC. Clostridium difficile bacteremia, taiwan [J]. Emerg Infect Dis,16(8):1204-1210.
    [33]Huang HH, Wu S, Wang MG, Zhang YY, Fang H, Palmgren AC, Weintraub A, Nord CE. Clostridium difficile infections in a shanghai hospital:Antimicrobial resistance, toxin profiles and ribotypes [J]. Int J Antimicrob Agents,2009, 33(4):339-342.
    [34]Huang H, Fang H, Weintraub A, Nord CE. Distinct ribotypes and rates of antimicrobial drug resistance in clostridium difficile from shanghai and stockholm [J]. Clin Microbiol Infect,2009,15(12):1170-1173.
    [35]Huang HH, Wu S, Wang MG, Zhang YY, Fang H, Palmgren AC, Weintraub A, Nord CE. Molecular and clinical characteristics of clostridium difficile infection in a university hospital in shanghai, china [J]. Clin Infect Dis,2008, 47(12):1606-1608.
    [36]Huang H, Wu S, Wang M, Zhang Y, Fang H, Palmgren AC, Weintraub A, Nord CE. Epidemiological characterization of clostridium difficile strains in shanghai, china [J]. Int J Infect Dis,2008,12:E451-E451.
    [37]Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeno-Tarrraga AM, Wang HW, Holden MTG, Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, STEVens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J. The multidrug-resistant human pathogen clostridium difficile has a highly mobile, mosaic genome [J]. Nat Genet,2006,38(7):779-786.
    [38]Thelestam M, Chaves-Olarte E. Cytotoxic effects of the clostridium difficile toxins [J]. Clostridium Difficile,2000,250:85-96.
    [39]Jank T, Giesemann T, Aktories K. Rho-glucosylating clostridium difficile toxins a and b:New insights into structure and function [J]. Glycobiology, 2007,17(4):15R-22R.
    [40]Riegler M, Sedivy R, Pothoulakis C, Hamilton G, Zacheri J, Bischof G, Cosentini E, Feil W, Schiessel R, Lamont JT, Wenzl E. Clostridium-difficile toxin-b is more potent than toxin-a in damaging human colonic epithelium in-vitro [J]. J Clin Invest,1995,95(5):2004-2011.
    [41]Calabi E, Fairweather N. Patterns of sequence conservation in the s-layer proteins and related sequences in clostridium difficile [J]. J Bacteriol,2002, 184(14):3886-3897.
    [42]Drudy D, Calabi E, Kyne LNF, Sougioultzis S, Kelly E, Fairweather N, Kelly CP. Human antibody response to surface layer proteins in clostridium difficile infection [J]. FEMS Immunol Med Microbiol,2004,41(3):237-242.
    [43]Beck HC, Madsen SM, Glenting J, Petersen J, Israelsen H, Norrelykke MR, Antonsson M, Hansen AM. Proteomic analysis of cell surface-associated proteins from probiotic lactobacillus plantarum [J]. FEMS Microbiol Lett, 2009,297(1):61-66.
    [44]Pechine S, Janoir C, Collignon A. Variability of clostridium difficile surface proteins and specific serum antibody response in patients with clostridium difficile-associated disease [J]. J Clin Microbiol,2005,43(10):5018-5025.
    [45]Fawley WN, Underwood S, Freeman J, Baines SD, Saxton K, Stephenson K, Owens RC, Wilcox MH. Efficacy of hospital cleaning agents and germicides against epidemic clostridium difficile strains [J]. Infect Control Hosp Epidemiol,2007,28(8):920-925.
    [46]Williams OM, Spencer RC. The management of clostridium difficile infection [J]. Br Med Bull,2009,91(1):87-110.
    [47]Silva J, Batts DH, Fekety R, Plouffe JF, Rifkin GD, Baird I. Treatment of clostridium-difficile colitis and diarrhea with vancomycin [J]. Am J Med,1981, 71(5):815-822.
    [48]Teasley DG, Gerding DN, Olson MM, Peterson LR, Gebhard RL, Schwartz MJ, Lee JT. Prospective randomized trial of metronidazole versus vancomycin for clostridium-difficile-associated diarrhea and colitis [J]. Lancet,1983, 2(8358):1043-1046.
    [49]Johnson S, Adelmann A, Clabots CR, Peterson LR, Gerding DN. Recurrences of clostridium-difficile diarrhea not caused by the original infecting organism [J]. J Infect Dis,1989,159(2):340-343.
    [50]Wilcox MH, Fawley WN, Settle CD, Davidson A. Recurrence of symptoms in clostridium difficile infection-relapse or reinfection? [J]. J Hosp Infect,1998, 38(2):93-100.
    [51]Aas J, Gessert CE, Bakken JS. Recurrent clostridium difficile colitis:Case series involving 18 patients treated with donor stool administered via a nasogastric tube [J]. Clin Infect Dis,2003,36(5):580-585.
    [52]Shah D, Dang MD, Hasbun R, Koo HL, Jiang ZD, DuPont HL, Garey KW. Clostridium difficile infection:Update on emerging antibiotic treatment options and antibiotic resistance [J]. Expert Rev Anti Infect Ther,8(5): 555-564.
    [53]Cottreau J, Baker SF, DuPont HL, Garey KW. Rifaximin:A nonsystemic rifamycin antibiotic for gastrointestinal infections [J]. Expert Rev Anti Infect Ther,8(7):747-760.
    [54]Gerding DN, Muto CA, Owens RC. Treatment of clostridium difficile infection [J]. Clin Infect Dis,2008,46:S32-S42.
    [55]Fidaxomicin:Difimicin; lipiarmycin; opt 80; opt-80; par 101; par-101 [J]. Drugs RD,10(1):37-45.
    [56]Russell G, Kaplan J, Ferraro M, Michelow IC. Fecal bacteriotherapy for relapsing clostridium difficile infection in a child:A proposed treatment protocol [J]. Pediatrics,126(1):E239-E242.
    [57]Guiles J, Critchley I, Sun X. New agents for clostridium difficile-associated disease [J]. Expert Opin Invest Drugs,2008,17(11):1671-1683.
    [58]Ragsdale SW. Enzymology of the wood-ljungdahl pathway of acetogenesis [J]. Ann N Y Acad Sci.,2008,1125:129-136.
    [59]Ragsdale SW. Life with carbon monoxide [J]. Crit Rev Biochem Mol Biol, 2004,39(3):165-195.
    [60]Zhu XF, Tan XS. Metalloproteins/metalloenzymes for the synthesis of acetyl-coa in the wood-ljungdahl pathway [J]. Science in China Series B-Chemistry,2009,52(12):2071-2082.
    [61]Ljungdahl LG, Andreesen JR. Formate dehydrogenase, a selenium--tungsten enzyme from clostridium thermoaceticum [J]. Methods Enzymol,1978,53: 360-372.
    [62]Stadtman TC. Selenium-dependent enzymes [J]. Annu Rev Biochem,1980,49: 93-110.
    [63]Cramer SP, Liu CL, Mortenson LE, Spence JT, Liu SM, Yamamoto I, Ljungdahl LG. Formate dehydrogenase molybdenum and tungsten sites--observation by exafs of structural differences [J]. J Inorg Biochem,1985, 23(2):119-124.
    [64]Axley MJ, Stadtman TC. Selenium metabolism and selenium-dependent enzymes in microorganisms [J]. Annu Rev Nutr,1989,9:127-137.
    [65]Ferry JG. Formate dehydrogenase [J]. FEMS Microbiol Rev,1990,7(3-4): 377-382.
    [66]Tishkov VI, Popov VO. Protein engineering of formate dehydrogenase [J]. Biomol Eng,2006,23(2-3):89-110.
    [67]Jormakka M, Byrne B, Iwata S. Formate dehydrogenase--a versatile enzyme in changing environments [J]. Curr Opin Struct Biol,2003,13(4):418-423.
    [68]Brondino CD, Rivas MG, Romao MJ, Moura JJ, Moura I. Structural and electron paramagnetic resonance (epr) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria [J]. Acc Chem Res,2006,39(10): 788-796.
    [69]Bagramyan K, Trchounian A. Structural and functional features of formate hydrogen lyase, an enzyme of mixed-acid fermentation from escherichia coli [J]. Biochemistry (Mosc),2003,68(11):1159-1170.
    [70]Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD. Crystal structure of formate dehydrogenase h:Catalysis involving mo, molybdopterin, selenocysteine, and an fe4s4 cluster [J]. Science,1997,275(5304):1305-1308.
    [71]Durfor CN, Wetherbee PJ, Deaton JC, Solomon El. Characterization and spectroscopic properties of reduced mo and w formate dehydrogenase from c. Thermoaceticum [J]. Biochem Biophys Res Commun,1983,115(1):61-67.
    [72]Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJG, Moura 1, Romao MJ. Gene sequence and the 1.8 angstrom crystal structure of the tungsten-containing formate dehydrogenase from desulfolvibrio gigas [J]. Structure,2002,10(9):1261-1272.
    [73]Doukov T, Seravalli J, Stezowski JJ, Ragsdale SW. Crystal structure of a methyltetrahydrofolate- and corrinoid-dependent methyltransferase [J]. Structure,2000,8(8):817-830.
    [74]Matthews RG, Koutmos M, Datta S. Cobalamin-dependent and cobamide-dependent methyltransferases [J]. Curr Opin Struct Biol,2008, 18(6):658-666.
    [75]Guenther BD, Sheppard CA, Tran P, Rozen R, Matthews RG, Ludwig ML. The structure and properties of methylenetetrahydrofolate reductase from escherichia coli suggest how folate ameliorates human hyperhomocysteinemia [J]. Nat Struct Biol,1999,6(4):359-365.
    [76]Parker DJ, Wu TF, Wood HG. Total synthesis of acetate from co 2 Methyltetrahydrofolate, an intermediate, and a procedure for separation of the folates [J]. J Bacteriol,1971,108(2):770-776.
    [77]Roberts DL, James-Hagstrom JE, Garvin DK, Gorst CM, Runquist JA, Baur JR, Haase FC, Ragsdale SW. Cloning and expression of the gene cluster encoding key proteins involved in acetyl-coa synthesis in clostridium thermoaceticum:Co dehydrogenase, the corrinoid/fe-s protein, and methyltransferase [J]. Proc Natl Acad Sci U S A,1989,86(1):32-36.
    [78]el Kasmi A, Rajasekharan S, Ragsdale SW. Anaerobic pathway for conversion of the methyl group of aromatic methyl ethers to acetic acid by clostridium thermoaceticum [J]. Biochemistry,1994,33(37):11217-11224.
    [79]Doukov TI, Zhao S, Ross CR,3rd, Roberts DL, Kim JJ, Ragsdale SW, Stezowski JJ. Preliminary x-ray crystallographic study of methyltetrahydrofolate:Corrinoid/iron sulfur protein methyltransferase from clostridium thermoaceticum [J]. Acta Crystallogr D Biol Crystallogr,1995, 51(Pt 6):1092-1093.
    [80]Doukov TI, Hemmi H, Drennan CL, Ragsdale SW. Structural and kinetic evidence for an extended hydrogen-bonding network in catalysis of methyl group transfer-role of an active site asparagine residue inactivation of methyl transfer by methyltransferases [J]. J Biol Chem,2007,282(9):6609-6618.
    [81]Zhao S, Roberts DL, Ragsdale SW. Mechanistic studies of the methyltransferase from clostridium thermoaceticum:Origin of the ph dependence of the methyl group transfer from methyltetrahydrofolate to the corrinoid/iron-sulfur protein [J]. Biochemistry,1995,34(46):15075-15083.
    [82]Zhao S, Ragsdale SW. A conformational change in the methyltransferase from clostridium thermoaceticum facilitates the methyl transfer from (6s)-methyltetrahydrofolate to the corrinoid/iron-sulfur protein in the acetyl-coa pathway [J]. Biochemistry,1996,35(7):2476-2481.
    [83]Jansen M, Hansen TA. Tetrahydrofolate serves as a methyl acceptor in the demethylation of dimethylsulfoniopropionate in cell extracts of sulfate-reducing bacteria [J]. Arch Microbiol,1998,169(1):84-87.
    [84]Hippler B, Thauer RK. The energy conserving methyltetrahydromethanopterin:Coenzyme m methyltransferase complex from methanogenic archaea:Function of the subunit mtrh [J]. FEBS Lett,1999, 449(2-3):165-168.
    [85]Seravalli J, Shoemaker RK, Sudbeck MJ, Ragsdale SW. Binding of (6r,s)-methyltetrahydrofolate to methyltransferase from clostridium thermoaceticum:Role of protonation of methyltetrahydrofolate in the mechanism of methyl transfer [J]. Biochemistry,1999,38(18):5736-5745.
    [86]Seravalli J, Zhao S, Ragsdale SW. Mechanism of transfer of the methyl group from (6s)-methyltetrahydrofolate to the corrinoid/iron-sulfur protein catalyzed by the methyltransferase from clostridium thermoaceticum:A key step in the wood-ljungdahl pathway of acetyl-coa synthesis [J]. Biochemistry,1999, 38(18):5728-5735.
    [87]Studer A, Vuilleumier S, Leisinger T. Properties of the methylcobalamin H(4)folate methyltransferase involved in chloromethane utilization by methylobacterium sp strain cm4 [J]. Eur J Biochem,1999,264(1):242-249.
    [88]Vannelli T, Messmer M, Studer A, Vuilleumier S, Leisinger T. A corrinoid-dependent catabolic pathway for growth of a methylobacterium strain with chloromethane [J]. Proc Natl Acad Sci U S A,1999,96(8): 4615-4620.
    [89]Terlesky KC, Nelson MJK, Ferry JG. Isolation of an enzyme complex with carbon-monoxide dehydrogenase-activity containing corrinoid and nickel from acetate-grown methanosarcina-thermophila [J]. J Bacteriol,1986,168(3): 1053-1058.
    [90]Ragsdale SW, Lindahl PA, Munck E. Mossbauer, electron-paramagnetic-res, and optical studies of the corrinoid iron-sulfur protein involved in the synthesis of acetyl coenzyme-a by clostridium-thermoaceticum [J]. J Biol Chem,1987,262(29):14289-14297.
    [91]Harder SR, Lu WP, Feinberg BA, Ragsdale SW. Spectroelectrochemical studies of the corrinoid iron-sulfur protein involved in acetyl coenzyme-a synthesis by clostridium-thermoaceticum [J]. Biochemistry,1989,28(23): 9080-9087.
    [92]Jablonski PE, Lu WP, Ragsdale SW, Ferry JG. Characterization of the metal centers of the corrinoid iron-sulfur component of the co dehydrogenase enzyme complex from methanosarcina-thermophila by epr spectroscopy and spectroelectrochemistry [J]. J Biol Chem,1993,268(1):325-329.
    [93]Wirt MD, Kumar M, Ragsdale SW, Chance MR. X-ray absorption-spectroscopy of the corrinoid iron sulfur protein involved in acetyl coenzyme-a synthesis by clostridium-thermoaceticum [J]. J Am Chem Soc, 1993,115(6):2146-2150.
    [94]Doukov TI, Zhao SY, Ross CR, Roberts DL, Kim JJ, Ragsdale SW, Stezowski JJ. Preliminary-x-ray crystallographic study of methyltetrahydrofolate-corrinoid iron-sulfur protein methyltransferase from clostridium-thermoaceticum [J]. Acta Crystallographica Section D-Biological Crystallography,1995,51:1092-1093.
    [95]MaupinFurlow J, Ferry JG. Characterization of the cdhd and cdhe genes encoding subunits of the corrinoid iron-sulfur enzyme of the co dehydrogenase complex from methanosarcina thermophila [J]. J Bacteriol,1996,178(2): 340-346.
    [96]Svetlitchnaia T, Svetlitchnyi V, Meyer O, Dobbek H. Structural insights into methyltransfer reactions of a corrinoid iron-sulfur protein involved in acetyl-coa synthesis [J]. Proc Natl Acad Sci U S A,2006,103(39): 14331-14336.
    [97]Liptak MD, Datta S, Matthews RG, Brunold TC. Spectroscopic study of the cobalamin-dependent methionine synthase in the activation conformation: Effects of the y1139 residue and s-adenosylmethionine on the b-12 cofactor [J]. J Am Chem Soc,2008,130(48):16374-16381.
    [98]Datta S, Koutmos M, Pattridge KA, Ludwig ML, Matthews RG. A disulfide-stabilized conformer of methionine synthase reveals an unexpected role for the histidine ligand of the cobalamin cofactor [J]. Proc Natl Acad Sci USA,2008,105(11):4115-4120.
    [99]Clark JE, Ragsdale SW, Ljungdahl LG, Wiegel J. Levels of enzymes involved in the synthesis of acetate from co2 in clostridium-thermoautotrophicum [J]. J Bacteriol,1982,151(1):507-509.
    [100]Drennan CL, Spangler NJ, Ludden PW, Rees DC. Structure determination of carbon monoxide dehydrogenase from rhodospirillum rubrum [J]. FASEB Journal,1998,12(8):A1430.
    [101]Pusheva MA, Sokolova TG. Distribution of co-dehydrogenase activity in the anaerobic thermophilic carboxydotrophic bacterium carboxydothermus hydrogenoformans grown at the expense of co or pyruvate [J]. Microbiology, 1995,64(5):491-495.
    [102]Ragsdale SW, Clark JE, Ljungdahl LG, Lundie LL, Drake HL. Properties of purified carbon-monoxide dehydrogenase from clostridium-thermoaceticum, a nickel, iron-sulfur protein [J]. J Biol Chem,1983,258(4):2364-2369.
    [103]Drennan CL, Doukov TI, Seravalli J, Ragsdale SW. Crystallography studies of the ni-containing carbon monoxide dehydrogenase/acetyl-coa synthase family of enzymes [J]. J Inorg Biochem,2001,86(1):207-207.
    [104]Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL. A ni-fe-cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-coa synthase [J]. Science,2002,298(5593):567-572.
    [105]Darnault C, Volbeda A, Kim EJ, Legrand P, Vernede X, Lindahl PA, Fontecilla-Camps JC. Ni-zn-[fe-4-s-4] and ni-ni-[fe-4-s-4] clusters in closed and open subunits of acetyl-coa synthase/carbon monoxide dehydrogenase [J]. Nat Struct Biol,2003,10(4):271-279.
    [106]Volbeda A, Fontecilla-Camps JC. Structural bases for the catalytic mechanism of ni-containing carbon monoxide dehydrogenases [J]. Dalton Transactions, 2005, (21):3443-3450.
    [107]Jeoung JH, Dobbek H. Carbon dioxide activation at the ni,fe-cluster of anaerobic carbon monoxide dehydrogenase [J]. Science,2007,318: 1461-1464.
    [108]Lindahl PA. The ni-containing carbon monoxide dehydrogenase family:Light at the end of the tunnel? [J]. Biochemistry,2002,41(7):2097-2105.
    [109]Feng J, Lindahl PA. Carbon monoxide dehydrogenase from rhodospirillum rubrum:Effect of redox potential on catalysis [J]. Biochemistry,2004,43(6): 1552-1559.
    [110]Feng J, Lindahl PA. Effect of sodium sulfide on ni-containing carbon monoxide dehydrogenases [J]. J Am Chem Soc,2004,126(29):9094-9100.
    [111]Hu ZG, Spangler NJ, Anderson ME, Xia JQ, Ludden PW, Lindahl PA, Munch E. Nature of the c-cluster in ni-containing carbon monoxide dehydrogenases [J]. J Am Chem Soc,1996,118(4):830-845.
    [112]DeRose VJ, Telser J, Anderson ME, Lindahl PA, Hoffman BM. A multinuclear endor study of the c-cluster in co dehydrogenase from clostridium thermoaceticum:Evidence for hxo and histidine coordination to the [fe4s4] center [J]. J Am Chem Soc,1998,120(34):8767-8776.
    [113]Fraser DM, Lindahl PA. Evidence for a proposed intermediate redox state in the co/co2 active site of acetyl-coa synthase (carbon monoxide dehydrogenase) from clostridium thermoaceticum [J]. Biochemistry,1999,38(48): 15706-15711.
    [114]Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O. Crystal structure of a carbon monoxide dehydrogenase reveals a [ni-4fe-5s] cluster [J]. Science, 2001,293(5533):1281-1285.
    [115]Svetlitchnyi V, Dobbek H, Meyer-Klaucke W, Meins T, Thiele B, Romer P, Huber R, Meyer O. A functional ni-ni-[4fe-4s] cluster in the monomeric acetyl-coa synthase from carboxydothermus hydrogenoformans [J]. Proc Natl Acad Sci U S A,2004,101(2):446-451.
    [116]Loke HK, Tan XS, Lindahl PA. Genetic construction of truncated and chimeric metalloproteins derived from the alpha subunit of acetyl-coa synthase from clostridium thermoaceticum [J]. J Am Chem Soc,2002,124(29):8667-8672.
    [117]Bramlett MR, Tan XS, Lindahl PA. Inactivation of acetyl-coa synthase/carbon monoxide dehydrogenase by copper [J]. J Am Chem Soc,2003,125(31): 9316-9317.
    [118]Tan XS, Bramlett MR, Lindahl PA. Effect of zn on acetyl coenzyme a synthase:Evidence for a conformational change in the a subunit during catalysis [J]. J Am Chem Soc,2004,126(19):5954-5955.
    [119]Tan XS, Loke HK, Fitch S, Lindahl PA. The tunnel of acetyl-coenzyme a synthase/carbon monoxide dehydrogenase regulates delivery of co to the active site [J]. J Am Chem Soc,2005,127(16):5833-5839.
    [120]Tan XS, Volbeda A, Fontecilla-Camps JC, Lindahl PA. Function of the tunnel in acetylcoenzyme a synthase/carbon monoxide dehydrogenase [J]. J Biol Inorg Chem,2006,11(3):371-378.
    [121]Tan XS, Sewell C, Yang QW, Lindahl PA. Reduction and methyl transfer kinetics of the alpha subunit from acetyl coenzyme a synthase [J]. J Am Chem Soc,2003,125(2):318-319.
    [122]Lindahl PA. Acetyl-coenzyme a synthase:The case for a ni-p(0)-based mechanism of catalysis [J]. J Biol Inorg Chem,2004,9(5):516-524.
    [123]Bramlett MR, Stubna A, Tan XS, Surovtsev IV, Munck E, Lindahl PA. Mossbauer and epr study of recombinant acetyl-coa synthase from moorella thermoacetica [J]. Biochemistry,2006,45(28):8674-8685.
    [124]Tan XS, Surovtsev IV, Lindahl PA. Kinetics of co insertion and acetyl group transfer steps, and a model of the acetyl-coa synthase catalytic mechanism [J]. J Am Chem Soc,2006,128(37):12331-12338.
    [125]Tan XS, Kagiampakis I, Surovtsev IV, Demeler B, Lindahl PA. Nickel-dependent oligomerization of the alpha subunit of acetyl-coenzyme a synthase/carbon monoxide dehydrogenase [J]. Biochemistry,2007,46: 11606-11613.
    [126]Seravalli J, Kumar M, Ragsdale SW. Rapid kinetic studies of acetyl-coa synthesis:Evidence supporting the catalytic intermediacy of a paramagnetic nifec species in the autotrophic wood-ljungdahl pathway [J]. Biochemistry, 2002,41(6):1807-1819.
    [127]George SJ, Seravalli J, Ragsdale SW. And infrared spectroscopic evidence that a kinetically competent paramagnetic intermediate is formed when acetyl-coenzyme a synthase reacts with co [J]. J Am Chem Soc,2005,127(39): 13500-13501.
    [128]Seravalli J, Ragsdale SW. Pulse-chase studies of the synthesis of acetyl-coa by carbon monoxide dehydrogenase/acetyl-coa synthase-evidence for a random mechanism of methyl and carbonyl addition [J]. J Biol Chem,2008,283(13): 8384-8394.
    [129]Kerscher L, Oesterhelt D. Pyruvate-ferredoxin oxidoreductase new findings on an ancient enzyme [J]. Trends in Biochemical Sciences,1982,7(10): 371-374.
    [130]Chabriere E, Vernede C, Guigliarelli B, Charon MH, Hatchikian EC, Fontecilla-Camps JC. Crystal structure of the free radical intermediate of pyruvate:Ferredoxin oxidoreductase [J]. Science,2001,294(5551): 2559-2563.
    [131]Charon MH, Volbeda A, Chabriere E, Pieulle L, Fontecilla-Camps JC. Structure and electron transfer mechanism of pyruvate:Ferredoxin oxidoreductase [J]. Current Opinion in Structural Biology,1999,9(6): 663-669.
    [132]Fontecilla-Camps JC, Chabriere E, Hatchikian EC. Crystal structure of the free radical intermediate of pyruvate ferredoxin oxidoreductase [J]. Journal of Inorganic Biochemistry,2001,86(1):48-48.
    [133]Pieulle L, Charon MH, Bianco P, Bonicel J, Petillot Y, Hatchikian EC. Structural and kinetic studies of the pyruvate-ferredoxin oxidoreductase/ferredoxin complex from desulfovibrio africanus [J]. European Journal of Biochemistry,1999,264(2):500-508.
    [134]Pieulle L, Nouailler M, Morelli X, Cavazza C, Gallice P, Blanchet S, Bianco P, Guerlesquin F, Hatchikian EC. Multiple orientations in a physiological complex:The pyruvate-ferredoxin oxidoreductase-ferredoxin system [J]. Biochemistry,2004,43(49):15480-15493.
    [135]Vita N, Hatchikian EC, Nouailler M, Dolla A, Pieulle L. Disulfide bond-dependent mechanism of protection against oxidative stress in pyruvate-ferredoxin oxidoreductase of anaerobic desulfovibrio bacteria [J]. Biochemistry,2008,47(3):957-964.
    [136]Ikeda T, Yamamoto M, Arai H, Ohmori D, Ishii M, Igarashi Y. Enzymatic and electron paramagnetic resonance studies of anabolic pyruvate synthesis by pyruvate:Ferredoxin oxidoreductase from hydrogenobacter thermophilus [J]. Febs Journal,277(2):501-510.
    [137]Schutz A, Golbik R, Konig S, Hubner G, Tittmann K. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and nmr study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates [J]. Biochemistry, 2005,44(16):6164-6179.
    [138]Moulis JM, Davasse V, Meyer J, Gaillard J. Molecular mechanism of pyruvate-ferredoxin oxidoreductases based on data obtained with the clostridium pasteurianum enzyme [J]. Febs Letters,1996,380(3):287-290.
    [139]Tittmann K, Wille G, Golbik R, Weidner A, Ghisla S, Hubner G. Radical phosphate transfer mechanism for the thiamin diphosphate-and fad-dependent pyruvate oxidase from lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient fad semiquinone/hydroxyethyl-thdp radical pair [J]. Biochemistry,2005,44(40):13291-13303.
    [140]Furdui C, Ragsdale SW. The roles of coenzyme a in the pyruvate:Ferredoxin oxidoreductase reaction mechanism:Rate enhancement of electron transfer from a radical intermediate to an iron-sulfur cluster [J]. Biochemistry,2002, 41(31):9921-9937.
    [141]Astashkin AV, Seravalli J, Mansoorabadi SO, Reed GH, Ragsdale SW. Pulsed electron paramagnetic resonance experiments identify the paramagnetic intermediates in the pyruvate ferredoxin oxidoreductase catalytic cycle [J]. Journal of the American Chemical Society,2006,128(12):3888-3889.
    [142]Hoffman PS, Sisson G, Croxen MA, Welch K, Harman WD, CremadeS N, Morash MG. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of helicobacter pylori, selected anaerobic bacteria and parasites, and campylobacter jejuni [J]. Antimicrobial Agents and Chemotherapy,2007,51(3):868-876.
    [143]Esposito M, Stettler R, Moores SL, Pidathala C, Muller N, Stachulski A, Berry NG, Rossignol JF, Hemphill A. In vitro efficacies of nitazoxanide and other thiazolides against neospora caninum tachyzoites reveal antiparasitic activity independent of the nitro group [J]. Antimicrobial Agents and Chemotherapy, 2005,49(9):3715-3723.
    [144]Arguello-Garcia R, Cruz-Soto M, Romero-Montoya L, Ortega-Pierres G. In vitro resistance to 5-nitroimidazoles and benzimidazoles in giardia duodenalis: Variability and variation in gene expression [J]. Infection Genetics and Evolution,2009,9(6):1057-1064.
    [1]Ragsdale SW. Enzymology of the wood-ljungdahl pathway of acetogenesis [J]. Ann N Y Acad Sci.,2008,1125:129-136.
    [2]Clark JE, Ragsdale SW, Ljungdahl LG, Wiegel J. Levels of enzymes involved in the synthesis of acetate from co2 in clostridium-thermoautotrophicum [J]. J Bacteriol,1982,151(1):507-509.
    [3]Matthews RG, Koutmos M, Datta S. Cobalamin-dependent and cobamide-dependent methyltransferases [J]. Curr Opin Struct Biol,2008,18(6): 658-666.
    [4]Alonso H, Cummins PL, Gready JE. Methyltetrahydrofolate:Corrinoid/iron-sulfur protein methyltransferase (metr):Protonation state of the ligand and active-site residues [J]. J Phys Chem B,2009,113(44):14787-14796.
    [5]Bose A, Kulkarni G, Metcalf WW. Regulation of putative methyl-sulphide methyltransferases in methanosarcina acetivorans c2a [J]. Mol Microbiol,2009, 74(1):227-238.
    [6]Oelgeschlager E, Rother M. In vivo role of three fused corrinoid/methyl transfer proteins in methanosarcina acetivorans [J]. Mol Microbiol,2009,72(5): 1260-1272.
    [7]Ferguson T, Soares JA, Lienard T, Gottschalk G, Krzycki JA. Rama, a protein required for reductive activation of corrinoid-dependent methylamine methyltransferase reactions in methanogenic archaea [J]. J Biol Chem,2009, 284(4):2285-2295.
    [8]Fleischhacker AS, Matthews RG. Ligand trans influence governs conformation in cobalamin-dependent methionine synthase [J]. Biochemistry,2007,46: 12382-12392.
    [9]Drennan CL, Huang S, Drummond JT, Matthews RG, Ludwig ML. How a protein binds b-12-a 3.0-angstrom x-ray structure of b-12-binding domains of methionine synthase [J]. Science,1994,266(5191):1669-1674.
    [10]Datta S, Koutmos M, Pattridge KA, Ludwig ML, Matthews RG. A disulfide-stabilized conformer of methionine synthase reveals an unexpected role for the histidine ligand of the cobalamin cofactor [J]. Proc Natl Acad Sci U S A, 2008,105(11):4115-4120.
    [11]Liptak MD, Datta S, Matthews RG, Brunold TC. Spectroscopic study of the cobalamin-dependent methionine synthase in the activation conformation: Effects of the y1139 residue and s-adenosylmethionine on the b-12 cofactor [J]. J Am Chem Soc,2008,130(48):16374-16381.
    [12]Deng L, Elmore CL, Lawrance AK, Matthews RG, Rozen R. Methionine synthase reductase deficiency results in adverse reproductive outcomes and congenital heart defects in mice [J]. Mol Genet Metab,2008,94(3):336-342.
    [13]Stich TA, Seravalli J, Venkateshrao S, Spiro TG, Ragsdale SW, Brunold TC. Spectroscopic studies of the corrinoid/iron-sulfur protein from moorella thermoacetica [J]. J Am Chem Soc,2006,128(15):5010-5020.
    [14]Svetlitchnaia T, Svetlitchnyi V, Meyer O, Dobbek H. Structural insights into methyltransfer reactions of a corrinoid iron-sulfur protein involved in acetyl-coa synthesis [J]. Proc Natl Acad Sci U S A,2006,103(39):14331-14336.
    [15]Evans JC, Huddler DP, Hilgers MT, Romanchuk G, Matthews RG, Ludwig ML. Structures of the n-terminal modules imply large domain motions during catalysis by methionine synthase [J]. Proc Natl Acad Sci U S A,2004,101(11): 3729-3736.
    [16]Liptak MD, Fleischhacker AS, Matthews RG, Brunold TC. Probing the role of the histidine 759 ligand in cobalamin-dependent methionine synthase [J]. Biochemistry,2007,46(27):8024-8035.
    [17]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal w and clustal x version 2.0 [J]. Bioinformatics,2007,23(21): 2947-2948.
    [18]Sander C, Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment [J]. Proteins-Structure Function and Genetics,1991,9(1):56-68.
    [19]Baker D, Sali A. Protein structure prediction and structural genomics [J]. Science, 2001,294(5540):93-96.
    [20]Gouet P, Courcelle E, Stuart DI, Metoz F. Espript:Analysis of multiple sequence alignments in postscript [J]. Bioinformatics,1999,15(4):305-308.
    [21]Arnold K, Bordoli L, Kopp J, Schwede T. The swiss-model workspace:A web-based environment for protein structure homology modelling [J]. Bioinformatics,2006,22(2):195-201.
    [22]Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeno-Tarrraga AM, Wang HW, Holden MTG, Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J. The multidrug-resistant human pathogen clostridium difficile has a highly mobile, mosaic genome [J]. Nat Genet,2006,38(7):779-786.
    [23]Kapust RB, Tozser J, Fox JD, Anderson DE, Cherry S, Copeland TD, Waugh DS. Tobacco etch virus protease:Mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency [J]. Protein Eng,2001,14(12): 993-1000.
    [24]Kapust RB, Tozser J, Copeland TD, Waugh DS. The p1'specificity of tobacco etch virus protease [J]. Biochem Biophys Res Commun,2002,294(5):949-955.
    [25]Doukov T, Seravalli J, Stezowski JJ, Ragsdale SW. Crystal structure of a methyltetrahydrofolate-and corrinoid-dependent methyltransferase [J]. Structure, 2000,8(8):817-830.
    [26]Chatterjee A, Li Y, Zhang Y, Grove TL, Lee M, Krebs C, Booker SJ, Begley TP, Ealick SE. Reconstitution of thic in thiamine pyrimidine biosynthesis expands the radical sam superfamily [J]. Nat Chem Biol,2008,4(12):758-765.
    [27]Lu WP, Schiau I, Cunningham JR, Ragsdale SW. Sequence and expression of the gene encoding the corrinoid iron-sulfur protein from clostridium-thermoaceticum and reconstitution of the recombinant protein to full activity [J]. J Biol Chem, 1993,268(8):5605-5614.
    [28]Zhao S, Ragsdale SW. A conformational change in the methyltransferase from clostridium thermoaceticum facilitates the methyl transfer from (6s)-methyltetrahydrofolate to the corrinoid/iron-sulfur protein in the acetyl-coa pathway [J]. Biochemistry,1996,35(7):2476-2481.
    [29]Seravalli J, Zhao S, Ragsdale SW. Mechanism of transfer of the methyl group from (6s)-methyltetrahydrofolate to the corrinoid/iron-sulfur protein catalyzed by the methyltransferase from clostridium thermoaceticum:A key step in the wood-ljungdahl pathway of acetyl-coa synthesis [J]. Biochemistry,1999,38(18): 5728-5735.
    [30]Rehm D, Weller A. Kinetics of fluorescence quenching by electron and h-atom transfer [J]. Isr J Chem,1970,8(2):259-&.
    [31]Lehrer SS. Solute perturbation of protein fluorescence-quenching of tryptophyl fluorescence of model compounds and of lysozyme by iodide ion [J]. Biochemistry,1971,10(17):3254-&.
    [32]Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer [J]. Photosynth Res,1986,10(1-2):51-62.
    [33]Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence [J]. Biochim Biophys Acta,1989,990(1):87-92.
    [34]Krause GH, Weis E. Chlorophyll fluorescence and photosynthesis-the basics [J]. Annu Rev Plant Physiol Plant Mol Biol,1991,42:313-349.
    [35]Roberts JR, Lu WP, Ragsdale SW. Acetyl-coenzyme a synthesis from methyltetrahydrofolate, co, and coenzyme a by enzymes purified from clostridium thermoaceticum:Attainment of in vivo rates and identification of rate-limiting steps [J]. J Bacteriol,1992,174(14):4667-4676.
    [36]Zhao S, Roberts DL, Ragsdale SW. Mechanistic studies of the methyltransferase from clostridium thermoaceticum:Origin of the ph dependence of the methyl group transfer from methyltetrahydrofolate to the corrinoid/iron-sulfur protein [J]. Biochemistry,1995,34(46):15075-15083.
    [37]Montfort WR, Perry KM, Fauman EB, Finermoore JS, Maley GF, Hardy L, Maley F, Stroud RM. Structure, multiple site binding, and segmental accommodation in thymidylate synthase on binding dump and an antifolate [J]. Biochemistry,1990,29(30):6964-6977.
    [38]Warren MS, Brown KA, Farnum MF, Howell EE, Kraut J. Investigation of the functional-role of tryptophan-22 in escherichia-coli dihydrofolate-reductase by site-directed mutagenesis [J]. Biochemistry,1991,30(46):11092-11103.
    [39]Doukov TI, Hemmi H, Drennan CL, Ragsdale SW. Structural and kinetic evidence for an extended hydrogen-bonding network in catalysis of methyl group transfer-role of an active site asparagine residue inactivation of methyl transfer by methyltransferases [J]. J Biol Chem,2007,282(9):6609-6618.
    [40]Jennings PA, Wright PE. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin [J]. Science,1993,262(5135): 892-896.
    [41]Mirica LM, Ottenwaelder X, Stack TDP. Structure and spectroscopy of copper-dioxygen complexes [J]. Chem Rev,2004,104(2):1013-1045.
    [42]Seefeldt LC, Ensign SA. A continuous, spectrophotometric activity assay for nitrogenase using the reductant titanium(iii) citrate [J]. Anal Biochem,1994, 221(2):379-386.
    [43]Tan XS, Sewell C, Lindahl PA. Stopped-flow kinetics of methyl group transfer between the corrinoid-iron-sulfur protein and acetyl-coenzyme a synthase form clostridium thermoaceticum [J]. J Am Chem Soc,2002,124(22):6277-6284.
    [44]Goulding CW, Postigo D, Matthews RG. Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine [J]. Biochemistry, 1997,36(26):8082-8091.
    [45]Dorweiler JS, Finke RG, Matthews RG. Cobalamin-dependent methionine synthase:Probing the role of the axial base in catalysis of methyl transfer between methyltetrahydrofolate and exogenous cob(i)alamin or cob(i)inamide [J]. Biochemistry,2003,42(49):14653-14662.
    [46]Matthews RG. Cobalamin-dependent methyl transfers [J]. Biochemistry,2001, 40(29):127.
    [47]Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function [J]. J Comput Chem,1998,19(14):1639-1662.
    [48]Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking [J]. J Mol Biol,1997,267(3):727-748.
    [49]Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm [J]. J Mol Biol,1996,261(3):470-489.
    [50]Ewing TJA, Makino S, Skillman AG, Kuntz ID. Dock 4.0:Search strategies for automated molecular docking of flexible molecule databases [J]. J Comput-Aided Mol Des,2001,15(5):411-428.
    [51]Chen R, Weng ZP. A novel shape complementarity scoring function for protein-protein docking [J]. Proteins-Structure Function and Genetics,2003, 51(3):397-408.
    [52]Tan XS, Sewell C, Yang QW, Lindahl PA. Reduction and methyl transfer kinetics of the alpha subunit from acetyl coenzyme a synthase [J]. J Am Chem Soc,2003, 125(2):318-319.
    [53]Tan XS, Surovtsev IV, Lindahl PA. Kinetics of co insertion and acetyl group transfer steps, and a model of the acetyl-coa synthase catalytic mechanism [J]. J Am Chem Soc,2006,128(37):12331-12338.
    [54]Grahame DA, Gencic S, DeMoll E. A single operon-encoded form of the acetyl-coa decarbonylase/synthase multienzyme complex responsible for synthesis and cleavage of acetyl-coa in methanosarcina thermophila [J]. Archives of Microbiology,2005,184(1):32-40.
    [55]Gencic S, Grahame DA. Two separate one-electron steps in the reductive activation of the a cluster in subunit beta of the acds complex in methanosarcina thermophila [J]. Biochemistry,2008,47(20):5544-5555.
    [56]Gu WW, Gencic S, Cramer SP, Grahame DA. The a-cluster in subunit beta of the acetyl-coa decarbonylase/synthase complex from methanosarcina thermophila: Ni and fek-edge xanes and exafs analyses [J]. Journal of the American Chemical Society,2003,125(50):15343-15351.
    [1]Zhu XF, Tan XS. Metalloproteins/metalloenzymes for the synthesis of acetyl-coa in the wood-ljungdahl pathway [J]. Science in China Series B-Chemistry,2009, 52(12):2071-2082.
    [2]Ragsdale SW, Pierce E. Acetogenesis and the wood-ljungdahl pathway of co2 fixation [J]. Biochimica Et Biophysica Acta-Proteins and Proteomics,2008, 1784(12):1873-1898.
    [3]Ragsdale SW. Enzymology of the wood-ljungdahl pathway of acetogenesis [J]. Ann N Y Acad Sci.,2008,1125:129-136.
    [4]Ragsdale SW. Life with carbon monoxide [J]. Crit Rev Biochem Mol Biol,2004, 39(3):165-195.
    [5]Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeno-Tarrraga AM, Wang HW, Holden MTQ Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J. The multidrug-resistant human pathogen clostridium difficile has a highly mobile, mosaic genome [J]. Nat Genet,2006,38(7):779-786.
    [6]Gouet P, Courcelle E, Stuart DI, Metoz F. Espript:Analysis of multiple sequence alignments in postscript [J]. Bioinformatics,1999,15(4):305-308.
    [7]Seravalli J, Ragsdale SW. Pulse-chase studies of the synthesis of acetyl-coa by carbon monoxide dehydrogenase/acetyl-coa synthase-evidence for a random mechanism of methyl and carbonyl addition [J]. J Biol Chem,2008,283(13): 8384-8394.
    [8]Parkin A, Seravalli J, Vincent KA, Ragsdale SW, Armstrong FA. Rapid and efficient electrocatalytic co2/co interconversions by carboxydothermus hydrogenoformans co dehydrogenase i on an electrode [J]. Journal of the American Chemical Society,2007,129(34):10328-+.
    [9]Harrop TC, Olmstead MM, Mascharak PK. Structural models of the bimetallic subunit at the a-cluster of acetyl coenzyme a synthase/co dehydrogenase: Binuclear sulfur-bridged ni-cu and ni-ni complexes and their reactions with co [J]. Journal of the American Chemical Society,2004,126(45):14714-14715.
    [10]Loke HK, Bennett GN, Lindahl PA. Active acetyl-coa synthase from clostridium thermoaceticum obtained by cloning and heterologous expression of acsab in escherichia coli [J]. Proc Natl Acad Sci U S A,2000,97(23):12530-12535.
    [11]Svetlitchnyi V, Dobbek H, Meyer-Klaucke W, Meins T, Thiele B, Romer P, Huber R, Meyer O. A functional ni-ni-[4fe-4s] cluster in the monomeric acetyl-coa synthase from carboxydothermus hydrogenoformans [J]. Proc Natl Acad Sci U S A,2004,101(2):446-451.
    [12]Gurman SJ, Binsted N, Ross I. A rapid, exact curved-wave theory for exafs calculations [J]. Journal of Physics C-Solid State Physics,1984,17(1):143-151.
    [13]Ravel B, Newville M. Athena, artemis, hephaestus:Data analysis for x-ray absorption spectroscopy using ifeffit [J]. Journal of Synchrotron Radiation,2005, 12:537-541.
    [14]Tan XS, Bramlett MR, Lindahl PA. Effect of zn on acetyl coenzyme a synthase: Evidence for a conformational change in the a subunit during catalysis [J]. J Am Chem Soc,2004,126(19):5954-5955.
    [15]Lindahl PA. Acetyl-coenzyme a synthase:The case for a ni-p(0)-based mechanism of catalysis [J]. J Biol Inorg Chem,2004,9(5):516-524.
    [16]Darnault C, Volbeda A, Kim EJ, Legrand P, Vernede X, Lindahl PA, Fontecilla-Camps JC. Ni-zn-[fe-4-s-4] and ni-ni-[fe-4-s-4] clusters in closed and open subunits of acetyl-coa synthase/carbon monoxide dehydrogenase [J]. Nat Struct Biol,2003,10(4):271-279.
    [17]Liu Y, Zhu, X., Wang, F., Li, P., Huang, Z.-X., Tan, X. Probing the role of the bridging c509 between [fe4s4] cubane and [nipnid] centre in the a-cluster of acetyl-coenzyme a synthase [J]. Chem Commun,2011,47(4):1291-1293.
    [18]Tan XS, Loke HK, Fitch S, Lindahl PA. The tunnel of acetyl-coenzyme a synthase/carbon monoxide dehydrogenase regulates delivery of co to the active site [J]. J Am Chem Soc,2005,127(16):5833-5839.
    [19]Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC. Oxidation of methane by a biological dicopper centre [J]. Nature,465(7294):115-U131.
    [20]Rehr JJ, Deleon JM, Zabinsky SI, Albers RC. Theoretical x-ray absorption fine-structure standards [J]. J Am Chem Soc,1991,113(14):5135-5140.
    [21]Rehr JJ, Albers RC, Zabinsky SI. High-order multiple-scattering calculations of x-ray-absorption fine-structure [J]. Phys Rev Lett,1992,69(23):3397-3400.
    [22]Rehr JJ, Albers RC. Theoretical approaches to x-ray absorption fine structure [J]. Reviews of Modern Physics,2000,72(3):621-654.
    [23]Wirt MD, Kumar M, Ragsdale SW, Chance MR. X-ray absorption-spectroscopy of the corrinoid iron sulfur protein involved in acetyl coenzyme-a synthesis by clostridium-thermoaceticum [J]. J Am Chem Soc,1993,115(6):2146-2150.
    [24]Xia JQ, Dong J, Wang SK, Scott RA, Lindahl PA. Exafs, epr, and electronic absorption spectroscopic study of the alpha-metallosubunit of co dehydrogenase from clostridium-thermoaceticum [J]. J Am Chem Soc,1995,117(27): 7065-7070.
    [25]Maynard EL, Lindahl PA. Kinetic mechanism of acetyl-coa synthesis catalyzed by co dehydrogenase acetyl-coa synthase:Preliminary evidence for a molecular tunnel [J]. J Inorg Biochem,1999,74(1-4):227-227.
    [26]Maynard EL, Lindahl PA. Evidence of a molecular tunnel connecting the active sites for co2 reduction and acetyl-coa synthesis in acetyl-coa synthase from clostridium thermoaceticum [J]. J Am Chem Soc,1999,121(39):9221-9222.
    [27]Bramlett MR, Tan XS, Lindahl PA. Inactivation of acetyl-coa synthase/carbon monoxide dehydrogenase by copper [J]. J Am Chem Soc,2003,125(31): 9316-9317.
    [28]Tan XS, Sewell C, Lindahl PA. Stopped-flow kinetics of methyl group transfer between the corrinoid-iron-sulfur protein and acetyl-coenzyme a synthase form clostridium thermoaceticum [J]. J Am Chem Soc,2002,124(22):6277-6284.
    [29]Tan XS, Sewell C, Yang QW, Lindahl PA. Reduction and methyl transfer kinetics of the alpha subunit from acetyl coenzyme a synthase [J]. J Am Chem Soc,2003, 125(2):318-319.
    [30]Tan XS, Surovtsev IV, Lindahl PA. Kinetics of co insertion and acetyl group transfer steps, and a model of the acetyl-coa synthase catalytic mechanism [J]. J Am Chem Soc,2006,128(37):12331-12338.
    [31]Rolfe RD, Finegold SM. Purification and characterization of clostridium-difficile toxin [J]. Infect Immun,1979,25(1):191-201.
    [32]Sullivan NM, Pellett S, Wilkins TD. Purification and characterization of toxin-a and toxin-b of clostridium-difficile [J]. Infect Immun,1982,35(3):1032-1040.
    [33]Rupnik M, Kato N, Grabnar M, Kato H. New types of toxin a-negative, toxin b-positive strains among clostridium difficile isolates from asia [J]. J Clin Microbiol,2003,41(3):1118-1125.
    [34]van den Berg RJ, Class ECJ, Oyib DH, Klaassen CHW, Dijkshoorn L, Brazier JS, Kuijper EJ. Characterization of toxin a-negative, toxin b-positive clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and per ribotyping [J]. J Clin Microbiol,2004,42(3): 1035-1041.
    [35]Svetlitchnaia T, Svetlitchnyi V, Meyer O, Dobbek H. Structural insights into methyltransfer reactions of a corrinoid iron-sulfur protein involved in acetyl-coa synthesis [J]. Proc Natl Acad Sci U S A,2006,103(39):14331-14336.
    [36]Ludwig ML, Matthews RG. B-12-dependent methionine synthase:A structure that adapts to catalyze multiple methyl transfer reactions [J]. Structures and Mechanisms:From Ashes to Enzymes,2002,827:186-201.
    [37]Bandarian V, Pattridge KA, Lennon BW, Huddler DP, Matthews RG, Ludwig ML. Domain alternation switches b-12-dependent methionine synthase to the activation conformation [J]. Nat Struct Biol,2002,9(1):53-56.
    [38]Loke HK, Tan XS, Lindahl PA. Genetic construction of truncated and chimeric metalloproteins derived from the alpha subunit of acetyl-coa synthase from clostridium thermoaceticum [J]. J Am Chem Soc,2002,124(29):8667-8672.
    [39]Lindahl PA, Chang B. The evolution of acetyl-coa synthase [J]. Orig Life Evol Biosph,2001,31(4):403-434.
    [40]Shin W, Lindahl PA. Discovery of a labile nickel ion required for co acetyl-coa exchange activity in the nife complex of carbon-monoxide dehydrogenase from clostridium-thermoaceticum [J]. J Am Chem Soc,1992,114(24):9718-9719.
    [41]FELBER JP CT, VALLEE BL. The mechanism of inhibition of carboxypeptidase a by 1,10-phenanthroline [J]. Biochemistry,1962,1:231-238.
    [42]Liu Y, Yang LA, Molin S. Synergistic activities of an efflux pump inhibitor and iron chelators against pseudomonas aeruginosa growth and biofilm formation [J]. Antimicrob Agents Chemother,54(9):3960-3963.
    [43]Teasley DG, Gerding DN, Olson MM, Peterson LR, Gebhard RL, Schwartz MJ, Lee JT. Prospective randomized trial of metronidazole versus vancomycin for clostridium-difficile-associated diarrhea and colitis [J]. Lancet,1983,2(8358): 1043-1046.
    [44]Lannfelt L, Blennow K, Zetterberg H. Safety, efficacy, and biomarker findings of pbt2 in targeting a beta as a modifying therapy for alzheimer's disease:A phase iia, double-blind, randomised, placebo-controlled trial (vol 7, pg 779,2008) [J]. Lancet Neurol,2009,8(11):981-981.
    [1]Ragsdale SW, Pierce E. Acetogenesis and the wood-ljungdahl pathway of co2 fixation [J]. Biochimica Et Biophysica Acta-Proteins and Proteomics,2008, 1784(12):1873-1898.
    [2]Ragsdale SW. Enzymology of the wood-ljungdahl pathway of acetogenesis [J]. Ann N Y Acad Sci.,2008,1125:129-136.
    [3]Ragsdale SW. Life with carbon monoxide [J]. Crit Rev Biochem Mol Biol,2004, 39(3):164-195.
    [4]Lindahl PA, Chang B. The evolution of acetyl-coa synthase [J]. Orig Life Evol Biosph,2001,31(4):403-434.
    [5]Diekert GB, Graf EG, Thauer RK. Nickel requirement for carbon-monoxide dehydrogenase formation in clostridium-pasteurianum [J]. Archives of Microbiology,1979,122(1):117-120.
    [6]Ferry JG. Co dehydrogenase [J]. Annual Review of Microbiology,1995,49: 304-333.
    [7]Ragsdale SW, Kumar M. Nickel-containing carbon monoxide dehydrogenase/acetyl-coa synthase [J]. Chem Rev,1996,96(7):2514-2539.
    [8]Bastian NR, Diekert G, Niederhoffer EC, Teo BK, Walsh CT, Ormejohnson WH. Nickel and iron exafs of carbon-monoxide dehydrogenase from clostridium-thermoaceticum strain dsm [J]. Journal of the American Chemical Society,1988,110(16):5581-5582.
    [9]Ragsdale SW, Clark JE, Ljungdahl LG, Lundie LL, Drake HL. Properties of purified carbon-monoxide dehydrogenase from clostridium-thermoaceticum, a nickel, iron-sulfur protein [J]. Journal of Biological Chemistry,1983,258(4): 2364-2369.
    [10]Przybyla AE, Robbins J, Menon N, Peck HD. Structure-function-relationships among the nickel-containing hydrogenases [J]. Ferns Microbiology Reviews, 1992,88(2):109-135.
    [11]Ragsdale SW. Nickel and the carbon cycle [J]. J Inorg Biochem,2007,101: 1657-1666.
    [12]Darnault C, Volbeda A, Kim EJ, Legrand P, Vernede X, Lindahl PA, Fontecilla-Camps JC. Ni-zn-[fe-4-s-4] and ni-ni-[fe-4-s-4] clusters in closed and open subunits of acetyl-coa synthase/carbon monoxide dehydrogenase [J]. Nature Structural Biology,2003,10(4):271-279.
    [13]Jeoung JH, Dobbek H. Structural basis of cyanide inhibition of ni, fe-containing carbon monoxide dehydrogenase [J]. Journal of the American Chemical Society, 2009,131(29):9922-+.
    [14]Dobbek H, Svetlitchnyi V, Gremer L, Huber R, Meyer O. Crystal structure of a carbon monoxide dehydrogenase reveals a [ni-4fe-5s] cluster [J]. Science,2001, 293(5533):1281-1285.
    [15]Lindahl PA. The ni-containing carbon monoxide dehydrogenase family:Light at the end of the tunnel? [J]. Biochemistry,2002,41(7):2097-2105.
    [16]Kung Y, Doukov TI, Seravalli J, Ragsdale SW, Drennan CL. Crystallographic snapshots of cyanide- and water-bound c-clusters from bifunctional carbon monoxide dehydrogenase/acetyl-coa synthase [J]. Biochemistry,2009,48(31): 7432-7440.
    [17]Rees DC, Howard JB. The interface between the biological and inorganic worlds: Iron-sulfur metalloclusters [J]. Science,2003,300(5621):929-931.
    [18]Drake HL, Hu SI, Wood HG. Purification of carbon-monoxide dehydrogenase, a nickel enzyme from clostridium-thermoaceticum [J]. Journal of Biological Chemistry,1980,255(15):7174-7180.
    [19]Kim YM, Hegeman GD. Purification and some properties of carbon-monoxide dehydrogenase from pseudomonas-carboxydohydrogena [J]. Journal of Bacteriology,1981,148(3):904-911.
    [20]Ragsdale SW, Ljungdahl LG, Dervartanian DV. Isolation of carbon-monoxide dehydrogenase from acetobacterium-woodii and comparison of its properties with those of the clostridium-thermoaceticum enzyme [J]. Journal of Bacteriology,1983,155(3):1224-1237.
    [21]Terlesky KC, Nelson MJK, Ferry JG. Isolation of an enzyme complex with carbon-monoxide dehydrogenase-activity containing corrinoid and nickel from acetate-grown methanosarcina-thermophila [J]. Journal of Bacteriology,1986, 168(3):1053-1058.
    [22]Bonam D, Ludden PW. Purification and characterization of carbon-monoxide dehydrogenase, a nickel, zinc, iron-sulfur protein, from rhodospirillum-rubrum [J]. Journal of Biological Chemistry,1987,262(7):2980-2987.
    [23]Beller HR, Spormann AM, Sharma PK, Cole JR, Reinhard M. Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium [J]. Applied and Environmental Microbiology,1996,62(4):1188-1196.
    [24]Svetlitchnyi V, Peschel C, Acker G, Meyer O. Two membrane-associated nifes-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium carboxydothermus hydrogenoformans [J]. Journal of Bacteriology,2001,183(17):5134-5144.
    [25]Loke HK, Bennett GN, Lindahl PA. Active acetyl-coa synthase from clostridium thermoaceticum obtained by cloning and heterologous expression of acsab in escherichia coli [J]. Proc Natl Acad Sci U S A,2000,97(23):12530-12535.
    [26]Seravalli J, Ragsdale SW. C-13 nmr characterization of an exchange reaction between co and co2 catalyzed by carbon monoxide dehydrogenase [J]. Biochemistry,2008,47(26):6770-6781.
    [27]Noji H, Yasuda R, Yoshida M, Kinosita K. Direct observation of the rotation of f-1-atpase [J]. Nature,1997,386(6622):299-302.
    [28]Gu J, Stephenson CG, Iadarola MJ. Recombinant proteins attached to a nickel-nta column-use in affinity purification of antibodies [J]. BioTechniques, 1994,17(2):257-&.
    [29]Studier FW, Moffatt BA. Use of bacteriophage-t7 rna-polymerase to direct selective high-level expression of cloned genes [J]. J Mol Biol,1986,189(1): 113-130.
    [30]Seravalli J, Kumar M, Lu WP, Ragsdale SW. Mechanism of co oxidation by carbon-monoxide dehydrogenase from clostridium-thermoaceticum and its inhibition by anions [J]. Biochemistry,1995,34(24):7879-7888.
    [31]Jeoung JH, Dobbek H. Carbon dioxide activation at the ni,fe-cluster of anaerobic carbon monoxide dehydrogenase [J]. Science,2007,318:1461-1464.
    [32]Clark JE, Ragsdale SW, Ljungdahl LG, Wiegel J. Levels of enzymes involved in the synthesis of acetate from co2 in clostridium-thermoautotrophicum [J]. J Bacteriol,1982,151(1):507-509.
    [33]Seravalli J, Ragsdale SW. Pulse-chase studies of the synthesis of acetyl-coa by carbon monoxide dehydrogenase/acetyl-coa synthase-evidence for a random mechanism of methyl and carbonyl addition [J]. J Biol Chem,2008,283(13): 8384-8394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700