米胚谷氨酸脱羧酶性质及其富集γ-氨基丁酸研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对米胚谷氨酸脱羧酶(GAD)的分离纯化、酶学特性、光谱性质和氨基酸残基的化学修饰等进行了深入的研究,并应用米胚GAD及其活性调节机制制备了高γ-氨基丁酸(GABA)米胚。
    首先研究了米胚中GABA的测定方法,结果发现比色法误差较大,无法作为米胚中GABA的定量测定方法。而纸层析法精密度高,虽然比HPLC?法的测定结果略低,但差异不大,适合用于大量米胚样品的测定。
    通过(NH4)2SO4分级沉淀、DEAE-Sephrose FF离子交换色谱、Superdex 200 凝胶过滤色谱和Glu Sephrose CL 4B亲和色谱等分离纯化技术对米胚GAD进行了分离纯化,从米胚中分离得到的GAD经 SDS-PAGE鉴定为单一组分。体积排阻高效液相色谱测得米胚GAD的相对分子质量为78k,SDS-PAGE测得其亚基的相对分子质量为40k,因此米胚GAD酶蛋白是由两个相同的亚基构成的二聚体。
    米胚GAD的最适反应温度为40℃,最适反应pH为5.6。米胚GAD的热稳定较差, 75℃时酶基本完全失活。但米胚GAD在较宽的pH范围内(pH4.5-8.0)都较为稳定,能保持88%以上的酶活。米胚GAD对Glu的Km值为32.3mmol/L,Vmax为1.159mg/min;对PLP的Km值为1.7μmol/L ,Vmax为1.171mg/min。
    Ca2+浓度达到500μmol/L时对米胚GAD的激活作用最强,可使酶的相对活性达到145%,GAD的表观米氏常数 Km’为25.9mmol/L,小于米胚GAD对 Glu的Km,说明Ca2+提高了酶与底物的亲和力,对米胚GAD的活性确有较强的激活作用。
    在含PLP体系中,纯化的GAD的酶活性大大提高。GAD脱辅基后酶活完全丧失了,但是加入PLP后活性基本得以恢复,说明PLP从米胚GAD分子中的脱除是一个可逆过程。
    米胚GAD的紫外-可见光谱特征为除280nm以下与蛋白质有关的吸收峰以外,420nm处有一个弱吸收峰,这是PLP与米胚GAD主链结合后产生的吸收峰。米胚GAD的荧光光谱分析表明,米胚GAD主要表现为Tyr残基的荧光特征,米胚GAD脱辅基前后的荧光发射光谱完全相似。
    米胚GAD氨基酸残基的化学修饰研究表明,米胚GAD中的His残基与其酶活性有关,但可能不是其活性所必需的基团。Arg残基则是酶活性的必需基团,并且整个酶分子中有一个Arg残基为活性必需基团。底物GLu对Arg残基的修饰有着很强的保护作用,因而可推测说明Arg残基可能位于酶的底物结合位点。米胚GAD的His和Arg残基被修饰后,荧光发射光谱有着非常相似的变化,Trp残基的荧光发射基本被猝灭了,说明酶蛋白微区的
    
    
    构象发生了变化。
    CD光谱分析表明,米胚GAD的二级结构中, α-螺旋占13.2%,β-折叠占38.3%,是一种高β-折叠蛋白。米胚GAD脱辅基后蛋白质的二级结构的变化是部分β-折叠结构转变为了回转结构。His和 Arg残基被修饰后,酶蛋白的二级结构有较大的变化,底物对Arg残基修饰引起的结构变化有保护作用。分析米胚GAD二级结构的变化与酶活性的关系发现,米胚GAD二级结构中α-螺旋结构的维持对酶的活性可能更为重要。
    通过对水浸泡工艺进行优化,并利用Ca2+激活GAD,米胚中GABA的量可以由未富集前的28mg/100g提高到615mg/100g左右,比资料报道有较大提高。 利用胰蛋白酶水解可以进一步提高GABA的富集量,在最佳条件下,GABA产量可达2.3g/100g,比GABA-RG1提高了2倍。
    外加Glu和添加米胚GAD的激活剂是制备高浓度GABA的有效方法。最佳工艺条件是:pH5.6、0.08mol/L磷酸缓冲液, PLP和Ca2+的添加量分别为2 mmol/molGlu和20mmol/molGlu,米胚的用量为42.5U/mmolGlu,料液比为1/10,反应时间和温度为6h和40℃。产品中GABA含量为20.6g/100g,比GABA-RG2又提高了7.8倍,并且Glu的转化率可以达到100%。
    动物实验表明, GABA-RG可显著促进小鼠GH的分泌和后腿肌重的增长,对小鼠力竭游泳时间和爬杆时间有显著地延长作用。还可使运动后小鼠血乳酸的含量明显下降,血清尿素氮含量明显降低,肝糖原含量的显著提高。这些结果表明 GABA-RG能促进小鼠GH分泌并提高运动能力。根据国家卫生部关于保健性食品的评价指标,可以判定GABA-RG具有抗疲劳的作用。
This research was conducted to purify and characterize the GAD from rice germ, to study the properties of GAD, and to produce rice germ with high GABA content.
    The methods for GABA assay in rice germ was studied. It was suggested that the colorimetry method could not be used because of the determination error. Paper chromatography was a suitable method, and can be used in combination with HPLC for GABA assay in rice germ.
    GAD was purified from rice germ by ammonium sulfate fractionation, DEAE- Sephrose FF chromatography, Superdex 200 gel filtration, and Glu- Sephrose CL 4B affinity chromatography. Single band from SDS-PAGE showed the subunit Mw was 40k. Similar molecular weight (78k) was obtained by SE-HPLC. It was suggested that the GAD from rice germ had two homological subunits.
    The purified GAD showed its maximal activity at pH5.6 and 40℃. The enzyme was inactivated completely at 75 ℃. It was stable at pH4.5-8.0. The Km and Vmax of GAD for Glu was 32.3mmol/L and 1.159mg/min; The Km and Vmax of GAD for PLP was 1.7μmol/L and 1.171mg/min.
    GAD could be activated by Ca2+, the comparative activity reached 145% when 500μmol/L Ca2+ was added, and the apparent Km’ was changed to 25.9mmol/L, less than the Km for Glu. This showed that the Ca2+ enhanced the affinity between enzyme and Glu, and activated the enzyme.
    The purified GAD could be activated by PLP. The enzyme was inactivated by removal of the bond PLP, but it could be renewed completely after PLP adding.
    Absorbance spectra of GAD showed one weak peak at 420nm, it was produced by the binding of PLP. Fluorescence emission spectra of GAD was characterized by a Tyr peak, and had no change after PLP removed.
    The modification of DIC and DEPC resulted in a great loss of GAD activity, suggesting that the His and Arg involve in the enzyme active site. The number of the essential Arg was estimated as one. The Glu could protect the modification of DIC, suggesting that the essential Arg may be in the substrate binding site of the enzyme.
    Circular Dichroism analysis of GAD showed that the ratios of α-helix and β-sheet in the secondary structures were 13.2% and 38.3%. The secondary structures had a little change after PLP removed. The modification of DIC and DEPC resulted in great changes of the secondary structures. The α-helix might be more important to GAD activity.
    Optimizing the conditions of GABA - accumulation by water soaking and protein hydrolyzing by trypsin could increase the content of GABA in GABA-RG to 615mg/100g and 2.3g/100g. But
    
    
    a higher GABA content must be obtained using Glu and GAD activator. The optimized conditions were 0.08mol/L phosphate buffer (pH5.6),adding 2 mmol/molGlu of PLP and 20mmol/molGlu of Ca2+ , 42.5U/mmolGlu of rice germ, and the ratio of rice germ to solvent was 1:10, reaction time and temperature were 6h and 40℃. The content of GABA in the final product (GABA-RG3) was 20.6g/100g,the convert rate of Glu was 100%.
    Finally, the new function of GABA-RG on growth hormone (GH) secretion stimulation and exercise performance enhancing of rats were studied. It showed that the GABA-RG stimulated GH secretion and enhanced leg muscle weight of rats obviously. The swimming time burden with 5% weight and climb time of rats were prolonged. The biological index of rats including blood lactic acid , BUN and liver glycogen were also improved.
    Judging by relevant specifications of governmental health food standards, we can conclude that GABA-RG has anti-fatigue activities.
引文
叶惟泠,γ-氨基丁酸的发现史,生理科学进展,1986,17(2):187-189
    穆小民、吴显荣,高等植物体内γ-氨基丁酸的代谢及生理作用,氨基酸杂志,1994,No.4:44-46
    Streeter J G, Thompson J F., In vivo and in vitro studies on γ- aminobutyric acid metabolism with the radish plant. Plant Physiol., 1972, 49:579-584
    Satya Narayan V, Nair P M. Metabolism, enzymology and possible roles of 4- aminobutyric acid. Biochemistry, 1989,8:21-25
    王来仪,γ-氨基丁酸、受体药理学及对心血管活动的调节,心血管学报,1991,10(1):46-49
    Takahashi H et al. On the site of action of γ- aminobutyric acid on blood pressure and and heart rate of anestheized cats. Jpn J Physiol., 1958, 8:378-380
    Antonaccio MJ & Tayloy DG. Involvement of central GABA reception in the regulation of blood pressure and heart of anestizes cats. Eur J Pharmacol., 1977, 46:283-285
    Sun MK & Guyenrt PG. Arterial bar-oreceptor and vagal inputs to sympatho excitatory neurons in rat medulla. Am J Physiol., 1987, 252:699-702
    Billingsley ML, et al., Effect of peripherally adiministered GABA and other amino acids on cardiopulmonary responses in anesthetize rats and dogs. Arch Int Pharmacodyn., 1982, 255:131
    Segal SA, et al. Blockade of central nervous system GABAergic tone causes sympothetic mediated increases in coronary vasculas resistance in cats. Circulation Res., 1984, 55:404-408
    陆勤, γ-氨基丁酸的神经营养作用,国外医学生理、病理科学与临床分册,1995,15(3):187-188
    Cavagnini F, Invittic C, et al., Effect of acute and repeated administration of γ- aminobutyric acid(GABA) on growth hormone and prolaction secretion in man. Marelli A Acta Endocrinol., (Copenh) 1980, 93(2):149-154
    McCann SM, Vijayan E, et al. Gamma aminobutyric acid(GABA), a modulator pituitary hormone secretion by hypothalamic and pituitary action. Psychoneuroendocrinology, 1984, 9(2): 97-106
    Murphy W J. Effects of Growth Hormone and Prolactin immune development and function. Life Science, 1995,57(1):11-14.
    姬秋和,生长激素变化与衰老,国外医学内分泌分册,1995,15(1):26-28
    邹大进,张家庆,生长激素抗衰老作用的研究进展,国外医学内科学分册,1992,19(6):257-264
    韩左宁,刘白,马树俊,生长激素与免疫调节作用,国外医学免疫学分册,1993,No.1,25-29
    梁建清,生长激素的作用与应用,四川生理科学杂志,2002,24(1):39-40
    Leventhal A.G., Wang Y., Pu M., Zhou Y., et al., GABA and its agonists improved visual
    
    
    cortical function in senescent monkeys, Science, 2003,300:812-815
    赵健,《中国化学药品大全》,1992,科学出版社
    Plokhov A. Yu., Gusyatiner M.M., Yampolskaya T.A., et al., Preparation of γ- aminobutyric acid using E. coli cell with high activity of glutamate decarboxylase, Applied Environment Microbiology, 2000,Vol.88:257-265
    许建军,江波,许时婴,生物合成γ-氨基丁酸的乳酸菌的筛选,食品科技,2002,Vol.10:7-9
    穆小民、沈黎明、吴显荣,高等植物体内γ-氨基丁酸代谢的酶学研究进展,中国农业大学学报,1996,Vol.1(1),29-32
    Schales O., Schales S S. Glutamic acid decarboxylase of higher plants: II, pH-activity curve, reaction kinetics, inhibition by hydroxylamine. , Arch Biochem., 1946,11:112-166
    Beevers H, An L-glutamic acid decaraboxylase from baeley. Biochem J., 1951,48:132-137
    Smith J E, Waygood E R, Resolution of the apoenzyme and coenzyme of L-glutamic acid decarboxylase from sunflower cotyledons. Can J Biochem Physiol, 1961, 39:1055-1059
    Inatomi K, Slaughter J C. Glutamate decarboxylase from barley embryos and roots. Biochem J., 1975,147:479-484
    Statyan V, Nair P M. Purification and caracterization of L-glutamate decarboxylase from Solanum tuberosum. Eur J Biochem., 1985,150:53-60
    Lamkin W.M, Nelson S W, Miller B S et al. Glutamic acid decarboxylase activity as a measure of percent germination for barley. Cereal Chem., 1983,60(2):166-171
    Sceiner J, Grabe D F, Tulo M. Seed physiology, production, & technology. Crop Science,1989,29:782-786
    Satya N.V., Nair P.M. Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phtyochemistry, 1990,29:367-375
    Gloria M. Bautista, J C. Lugay, et al. Glutamic acid decarboxylase activity as a viability index of artificially dried and stored rice. Cereal Chem., 1964, 41:188-191
    Saikusa T., Distribution of Free Amino Acid in the Rice Kernal and Kernal Fraction and the Effect of Water soaking on the Distribution, J. Agric. Food Chem. ,1994, 42:1122-1125
    Saikusa T., Accumulation of Gamma aminobutyric acid (GABA) in the Rice Germ During Water Soaking, Biosci. Biotesh. Biochem., 1994, 58(12):2291-2292
    Sadami O., Staoshi A., Enzymatic Production of γ- aminobutyric acid using rice(Oryza sativa ) germ . Food Sci. Technol. Res., 2000, 6(3):208-211
    Wu JY. Mackay IR, Chen QY, et al. Antibodies to glutamic acid decarboxylase from mouse brain. J Biol Chem., 1973, 248(9):3029
    Nathan B, Bao J, Hsu C C, et al., A membrane of brain L-glutamate decarboxylase: identification, isolation and its relation to insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA, 1994, 91:242-246
    Chu W C, Metaler DE. Enzymatically active truncated cat brain glutamate decarboxylase: expression, purification and absorption spectrum. Arch Biophys., 1994,313:287-295
    Moody AJ, Hejnas KR, Marshall MO, et al., Isolation by anion-exchange of immunologically
    
    
    and enzymatically active human islet glutamic acid decarboxylase 65 overexpressed in Sf9 inset cells. Diabetologia, 1995,38:14-23
    Fonda M.L.,L-Glutamate decarboxylase from bacteria, Method Enzymol.,1985,Vol.113,1-10
    Nomura M., Kimoto H., Someya Y., Furukawa S., and Suzuki I., cheese starters during cheese ripening., J.Dairy Sci. 1998,81:1486-1491
    赵联景,固定化大肠杆菌细胞生产γ-氨基丁酸的研究 ,生物工程学报,1989,5(2),123-128
    Yokuyama S., Hiramatsu J-1, Hayakawa K., Production of γ- aminobutyric acid by from distillery Lees by Lactobacillus brevis IFO-12005., J. Biosci. Bioeng., 2002,Vol.93(1):95-97
    Strausbach,P.H. Fisher,E.H., Chemical an physical properties of Escherichia coli glutamate decarboxylase.,Biochemistry, 1970,Vol. 9:226-233
    Shukuya R. and Schwert G.W., Glutamic acid decarboxylase,Ⅱthe inactivation of the enzyme at low temperatures, J. Biol. Chem., 1960,Vol.235(6):1658-1661
    Maras B., Sweeney G., Barra D., Bossa F., and John R. A., The amino acid sequence of glutamate decarboxylase from Escherichia coli, Evolutionary relationship between mammalian and bacterial enzymes, Eur. J. Biochem., 1992,Vol.204:93-98
    Hao R., Schmit J.C., Purification and characterization of glutamate decarboxylase from Neurospora crassa condia, J. Biol. Chem.,1991, Vol. 266: 5135-5149
    Hao R., Schmit J.C.,Cloning of the gene for glutamate decarboxylase and its expression during condiation in Neurospora crassa, Biochem. J.,1993,Vol.293:735-738
    Ueno Y., Hayakawa K., Takahashi S., and Oda K., Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005, Biosci. Biotech. Biochem., 1997,61(7):1168-1171
    Sanders J.W.,Leenhouts K., Burghoorn J., et. al., A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation, Mole. Micrebio.,1998,Vol.27(2):299-310
    Pamela L.C.Small and Scott R. Waterman, Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli, Trends in Microbio., 1998,Vol.6(6):214-216
    Lorca G.L., Devaldez G.F., A low-pH-indecible, stationary-phase acid tolerance response in Lactobacillus acidphilus CRL, Microbiology, 2001,Vol.42(1):21-25
    Nomura M., Nakajima I., Fujita Y., et al. Lactococcus lactis contains only one glutamate decarboxylase gene, Microbiology, 1999, Vol.145:1375-1380
    穆小民、沈黎明、吴显荣,林山生山黧豆谷氨酸脱羧酶的分离纯化及部分性质的研究,生物化学杂志,1997,13(2):181-185
    范军、李纯、朱苏文、程备久,小麦谷氨酸脱羧酶的分离纯化及部分性质的研究,中国生物化学与分子生物学学报,1998,14(5):641-644
    Toshihiko Matsumoto, Izumi Yamaura and Masaru Funatsu, Purification and Properties Decarboxylase from Squash, Agric. Biol. Chem., 50(6):1413-1417
    袁仕善、周智广, 谷氨酸脱羧酶若干研究进展,生理科学进展,1998,29(1):77-80
    
    Areshev AG, Mamaeva OK, Andreeva NS, Sukhareva BS, Structure of glutamate decarboxylase and related PLP-enzymes: computer-graphical studies, J. Biomol. Struct. Dyn., 2000,18: 127-136
    Salzmann D, Christen P, Mehta PK, Sandmeier E,Rates of evolution of pyridoxal-5'-phosphate-dependent enzymes, Biochem. Biophys. Res. Commun., 2000,270: 576-580.
    Arazi T.,?Baum G.,?Snedden W.A.,?Shelp B.J., and?Fromm H., Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase, Plant Physiol.,?1995,108 (2): 551–561
    Baum, G., Chen, Y., Arazi, T., Takatsuji, H., and Fromm, H., A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis, J. Biol. Chem., 1993,268, 19610-19617
    Yevtushenko DP, McLean MD, Peiris S, Van Cauwenberghe OR, Shelp BJ Calcium/calmodulin activation of two divergent glutamate decarboxylases from tobacco, J. Exp. Bot., 2003,54: 2001-2002.
    Yuan T, Vogel HJ,Calcium-calmodulin induced dimerization of the carboxyl-terminal domain from petunia: a novel calmodulin peptide interaction motif, J. Biol. Chem., 1998,273: 30328-30335.
    Chen Y., Baum G., and?Fromm H., The 58-Kilodalton calmodulin-Binding glutamate decarboxylase is a ubiquitous protein in petunia organs and its expression is developmentally regulated, Plant Physiol., 1993,106:1381 -1387
    Snedden WA, Arazi ., Fromm H., and Shelp BJ, Calcium/calmodulin activation of soybean glutamate decarboxylase, Plant Physiol., 1995, 108(2):543-549
    Camas A, Cardenas L, Quinto C, Lara M , Expression of different calmodulin genes in bean (Phaseolus vulgaris L.): Role of nod factor on calmodulin gene regulation, Mol. Plant Microbe Interact, 2002,15: 428-436
    Baum, G.,Lev-Yadum S., Fridmann Y., et al., Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants.1996, EMBO J.,15:2988-2996
    Catherine P., Scott-Taggart, et al., Regulation of γ- aminobutyric acid synthesis in situ by glutamate decarboxylase, Physiologia Plantarum, 1999,106:363-369
    Schmidli RS, Colman PG, Bonifacio E, et al., Disease sensitivity and specificity of 52.assays for glutamic acid decarboxylase antibodies, Diabetes, 1995, 44:636-640
    Kaufman DL, Clare-Salzler M, et al., Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature, 1993,
    Tian J, Atkinson MA, Clare-Salzler M, et al., Nasal administation of glutamate decarboxylase(GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes. J Exp Med, 1996,183:1561-1567
    章汝平,何立芳,用后道味精母液提取谷氨酸后的废液生产γ-氨基丁酸,长沙电力学院学报(自
    
    
    然科学版),1998,Vol.13(4):433-435
    余敦寿,崔俊鑫,在γ-氨酪酸生产中提高谷氨酸脱羧酶活力的研究,氨基酸杂志,1991,4:9-11
    Rice E.W., Johnson M.E., and Reasoner D.J., Rapid glutamate decarboxylase assay for detection of Escherichia coli, Applied Environment Microbiology,1993, 59(12):4347-4349
    Michael A., Grant, Stephen D.W., and Peter F., Glutamate decarboxylase genes as a prescreening marker for detection of pathogenic Escherichia coli groups, Applied Environment Microbiology,2001, 76(7):3110-3114
    愛岩 世高等, Development of a super-GABA by Lactic Acid Fermentation,食品与开发,日刊,Vol.36(6):12-14
    乃用,短乳杆茵用酒糟生产γ-氨基丁酸,工业微生物,2002, Vol.32 (3):62
    Development of New Ingredients Riched with GABA, 食品与开发,日刊,Vol.36(6): 17-18
    Omori M., Kato M., Tamma T., et al., Production of CTG gabaron black tea by modifying withering condition, Tea, 1998, 19(2):92-96
    林智,大森正司,γ-氨基丁酸茶(Gabaron Tea)降血压机理的研究,茶叶科学,2001,21(2)153-156
    林智,大森正司,γ-氨基丁酸茶成分对大鼠血管紧张素Ⅰ转换酶(ACE)活性的影响,茶叶科学,2002,22(1):43-46
    杉下、朋子,The Research and Development of Rice Germ Enrich with GABA ,食品与开发,日刊,Vol.36(6) :10-11
    伊藤,γ-氨基丁酸高含量米糠的制造方法,食品工业,日刊,2000(10):43-45
    冈田忠司等,Physiological Function of Rice Germ Enriched with GABA, , 食品与开发,日刊,Vol.36(6):7-9
    茅原等,Recent Studies on Biological Functions of GABA-on Improvements of Hypertension and Brain Function, 食品与开发,日刊,Vol.36(6): 4-6
    冈田忠司等,Effect of the Deffatted Rice Germ Enriched with GABA for Sleeplessness,Depression,Autonomic Disorder by Oral Administration, Nippon Shokuhin Kagaku Kaishi, Vol.47(8): 596-603
    Ogawa Y.,Yamaguchi H.Shimaoka Y,γ-aminobutyric acid-containing natural food material and method for manufacturing the same, United States Patent, 2002 ,20020106424
    许仁溥,发芽糙米开发,粮食与油脂,2001,No.8:37-38
    游祖持,日本对于超γ-氨基丁酸研究与利用,食品与发酵工业2002,No.3:-42-43
    特開2001-014356 GABA含有飲食品の製造方法
    杨柳,叶蕴华,袁洪生等,人参中γ-氨基丁酸的分离、鉴定及氨基酸的定量分析,科学通报,1991,No.7, 513-515
    吴锦忠,李向高,鲜人参与红参氨基酸成分比较研究,中药材,1990,13(5):27-28
    张莉,肖玉霞,倪景华等,广东国宾茶中的氨基酸分析研究,茶叶,1995,Vol.21(2):20-21
    金丰秋,金其荣,富含γ-氨基丁酸的桑茶的生理功能,山西食品工业,2001,Vol.4:5-6
    黄亚辉,郑洪发,曾贞等,金白龙茶(GABARON)治疗高血压临床实验报告,高血压杂志,2002,Vol.10(1):55-56
    
    周元春,我国培育出预防高血压稻米新品种,科技文萃,2003,No.4:141-141
    张晖,姚惠源,姜元荣等,大米胚研究开发新进展,中国油脂,2002,27(3):81-84
    许仁溥,大米胚的开发利用,粮食与油脂,2001,No.10:6-8
    石文虎,于文兵,高丽丽,MK-677复合制剂对小鼠运动能力的影响,南京体育学院学报(自然科学版),2003,2(1):39-43
    陈碧英,文平,中药制剂对大鼠血清激素水平和运动能力的影响,中国运动医学杂志,1996,15(2):106-110
    胡敏,石琼,龚惠兰,生长激素与运动相关性研究进展及其争议,浙江体育科学,20002, 2(1):57-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700