结核杆菌小分子热休克蛋白Hsp16.3调控分子伴侣活性的结构基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子伴侣蛋白在生物体内的主要功能是帮助新生肽链的折叠以及防止变性蛋白的聚集等。小分子热休克蛋白是分子伴侣蛋白中的一个亚家族,结构特征是含有保守的α-crystallin结构域。本文的工作研究来自人类重要的病原微生物结核分支杆菌(Mycobacterium tuberculosis)的小分子热休克蛋白Hsp16.3调控分子伴侣活性的机制,主要包括三方面的内容。
    第一方面研究寡聚体解聚和分子伴侣活性的关系,主要结果为:⑴用化学交联法证明了Hsp16.3九聚体的解聚是发挥活性的必要条件;⑵发现Hsp16.3在维持九聚体大小不变的情况下可以通过调整寡聚体的动力学性质(解聚速度、亚基交换速度)来调节分子伴侣活性;⑶发现Hsp16.3能在生理温度范围内(25°C-37.5°C)调节分子伴侣活性,暗示该蛋白在体内具有结合变性蛋白的能力;⑷建立了一个描述寡聚体解聚和发挥分子伴侣活性的动力学模型,可以解释很多小分子热休克蛋白的实验现象。
    第二方面研究Hsp16.3蛋白的一级序列和寡聚体结构、分子伴侣活性的关系,主要结果为:⑴证明N端区域(35个氨基酸)包含底物结合位点;⑵N端区域作为一个整体对形成九聚体是必需的,首次观测到至少有三个亚基的N端区域对九聚体的形成不是必需的;⑶首次发现N端区域可以稳定作为大寡聚体的组装单位——三聚体;⑷发现C端尾巴保守的IXI motif对寡聚化是必需的;⑸鉴定了保守的LPGV motif的作用,证明59位的Gly位于亚基作用面上;⑹构建了有更高活性的小寡聚体,充分证明了小寡聚体是Hsp16.3的活性形式,而九聚体对活性不是必需的。
    第三方面研究Cys在分子伴侣蛋白家族中的进化,主要结果为:⑴发现Cys和Trp在该蛋白家族的含量显著低于其他蛋白家族;⑵首次观察到Cys所形成的二硫键对分子伴侣蛋白的损害作用,从而部分了解释了Cys在分子伴侣蛋白中含量少的进化现象,并揭示了构象柔性对分子伴侣蛋白的重要性。
Molecular chaperones are predominantly involved in assisting newly synthesized protein folding and in preventing denaturing proteins from misfolding and aggregation. Small heat shock proteins (sHsps), as one sub-class of molecular chaperones, are known for the existence of a highly conserved 80-100 amino acids α-crystallin domain. In present dissertation, I am attempting to reveal the mechanism of Hsp16.3, one sHsps from the human pathogen Mycobacterium tuberculosis, in modulating its chaperone-like activities to suppress the aggregation of denaturing proteins, as shown by the following three sections.
    The oligomeric dissociation was previously revealed to be correlated with chaperone-like activities of sHsps. Here our further studies by chemical cross-linking showed that the oligomeric dissociation of Hsp16.3 is a prerequisite for its chaperone-like activities. Furthermore, we demonstrated that Hsp16.3 is able to modulate its chaperone-like activities by adjusting the rate of oligomeric dissociation while maintaining its static oligomeric size unchangeable. As a result, a kinetic model to describe the dynamic oligomeric dissociation and chaperone activities is proposed to explain some contradictory observations. In addition, Hsp16.3 was found to modulate its chaperone-like activities in a range of physiological temperatures (25°C-37.5°C), thus indicating that the protein is capable of binding non-native proteins in vivo.
    In an attempt to reveal the relation of oligomeric structure of Hsp16.3 with its primary structure, we found that the N-terminal region is a substrate-binding site and essential for chaperone-like activities. Remarkably, these regions in Hsp16.3 nine subunits, being essential as a whole for the nonameric assembly and important for stabilization of trimers, of which in at least three subunits are unessential for such an assembly. The C-terminal extension, especially the conserved IXI/V motif in this region, is
    
    
    also critical for the nonameric assembly of Hsp16.3, however, the dissociated oligomers with this motif truncated exhibits greatly enhanced chaperone activities. Gly59 in the conserved motif LPGV was found to be located in the subunit interface of Hsp16.3, of which the replacement by Trp results in the disappearance of nonamer and enhanced chaperone-like activities. In light of these observations, we propose that the nonamric structure of Hsp16.3 is not a prerequisite for its chaperone-like activities and the dissociated oligomers are active.
    The structural feature of molecular chaperone family was summarized as highly conformational flexibility and spontaneously folding/assembly, however, the mechanism is far from clear. The frequency of Cys and Trp in molecular chaperones is significantly less than that in other protein families. Further more, we for the first time presented evidence to show that disulfide bonds will convert Hsp16.3 from a chaperone to a non-chaperone, thus partially explaining the above intriguing evolution observation and implying that the conformational flexibility is important for molecular chaperones.
引文
Anfinsen, C.B. Principles that govern the folding of protein chains, Science, 1973 181: 223-230
    Levinthal, C. Are there pathways for protein folding? J. Chim. Phys, 1968 65: 44-45
    Zwanzig, R., Szabo, A. and Bagchi, B. Levinthal’s paradox, Proc. Natl. Acad. Sci. USA, 1992 89: 20-22
    Schymkowitz, J. W. H., Rousseau, F. and Serrano, L. Surfing on protein folding energy landscapes, Proc. Natl. Acad. Sci. USA, 2002 99: 15846–15848
    Hartl, F.U. & Hayer-hartl M. Molecular chaperones in the cytocol: from nascent chain to folded protein, Science, 2002 295: 1852-1858.
    Netzer, W. & Hartl, F. Recombination of protein domains facilitated by co-translational folding in eukaryotes Nature 1997 388: 343–349
    Ellis, R. J. Macromolecular crowding: an important but neglected aspect of the intracellular environment, Curr. Opin. Struct. Biol., 2001 11: 114–119
    Minton, A. P. Implications of macromolecular crowding for protein assembly, Curr. Opin. Struct. Biol., 2000 10: 34–39
    Cohen, F. E. Protein misfolding and prion diseases. J. Mol. Biol. 1999 293: 313-20.
    Johnston, J. A., Ward, C. L., Kopito, R. R. aggrosomes: a cellular response to misfolded proteins. J. Cell. Biol. 1998 143: 1883-1898
    Koyama, Y., Goldman, R. R. Formation of GFAP cytoplasmic inclusions in astrocytes and their disaggregation by aB-crystallin. Am. J. Pathol. 1999 154: 1563-1572
    Bova, M. P., Yaron, O., Huang, Q. et al. Mutation R120G in alpha B-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proc. Natl. Acad. Sci. U. S. A. 1999 96: 6137-6142
    Litt, M., Kramer, P., LaMorticella, D. M., et al. Autosomal dominant congential catalact associated with a missense mutation in the human a-crystallin gene CRYAA. Hum. Mol. Genet. 1998 7:, 471-474
    Koo, E. H., Lansbury, Jr. P. T., Kellty, J. W. amyloid diseases: abnormal protein aggregation in neurodegenration. Proc. Natl. Acas. Sci. USA. 1999 96: 9989-9990
    Frydman, J., Erdjument-Bromage, H., Tempst, P. et al., Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase, Nature Struct. Biol. 1999 6: 697-705
    Schiene, C. and Fischer, G., Enzymes that catalyse the restructuring of proteins, Curr.
    
    
    Opin. Struct. Biol. 2000 10: 40-45
    Wickner, S., Maurizi, M. R. and GottesmanPosttranslational Quality Control: Folding, Refolding, and Degrading Proteins, Science, 1999 286: 1888-1893
    Mogk, A. and Bukau, B. Molecular Chaperones: Structure of a Dispatch Protein Disaggregase, Current Biology, 2004 14: 78-80
    Tissières, A., Mitchell, H. K., and Tracy, U. M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 1974 84: 389-398
    Craig, E. A., Weissman, J. S., Horwich, A. L. Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell 1994 78: 365-372
    Morimoto, R. I., Tissières, A., Georgopoulos, C., editors. Stress Proteins in Biology and Medicine. 1991 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
    Morimoto, R. I., Tissières, A., Georgopoulos, C., editors. The Biology of Heat Shock Proteins and Molecular Chaperones. 1994 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
    Agashe V. R., and Hartl, F. U. roles of molecular chaperones in cytoplasmic protein folding. Cell develop. Biol. 2000 11: 15-25
    Bogdanov, M., Sun. J., Kaback. H. R. et al. A phospholipid acts as a chaperone in assembly of a membrane transport protein. J. Biol. Chem. 1996 271: 11615-11618.
    Herschlag, D. RNA chaperones and the RNA folding problem. J. Biol. Chem. 1995 270: 20871-20874
    Bukau, B. and Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell, 1998 92: 351-366
    Feldman, D.E. and Frydman, J. Protein folding in vivo: the importance of molecular chaperones, Curr. Opin. Struct. Biol. 2000 10: 26–33
    Ellis, R.J. Molecular chaperones: Inside and outside the Anfinsen cage, Curr. Biol. 2001 11: 1038–R1040
    Ewalt K, Hendrick JP, Houry WA, et al., In-vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 1997 90:491-500
    Houry WA, Frishman D, Eckerskorn C, et al.,: Identification of in vivo substrates of the chaperonin GroEL. Nature 1999 402: 147-154
    Thulasiraman, V., Yang, C. F., Frydman, J. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 1999 18: 85-95
    Buchner, J., Ehrnsperger, M., Gaestel, M., et al., Purification and characterization of small
    
    
    heat shock proteins. Methods Enzymol, 1998 290: 339-349
    Keppé, G., Leunissen, J. A. M, de Jong, W. W. Evolution and Diversity of Prokaryotic Small Heat Shock Proteins, Progress in Molecular and Subcellular Biology, Arrigo, A. P. and Müller, W. E. G Eds, 2002 28,1-17
    Lee, G.J., Roseman, A.M., Saibil, H.R., et al., A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state, EMBO J., 1997 16: 659-671
    Glover, J. R. and Lindquist, S. 1998 Hsp104, Hsp70, and Hsp40: A Novel Chaperone System that Rescues Previously Aggregated Proteins, Cell, 1998 94: 73-82
    van Montfort, R.L.M, Basha, E., Fieldrich, K.L et al., Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol., 2001 8: 1025-1030
    Morrow, G., Inaguma, Y., Kato, K. et al. The Small Heat Shock Protein Hsp22 of Drosophila melanogaster Is a Mitochondrial Protein Displaying Oligomeric Organization, J. Biol. Chem. 2000 275: 31204-31210
    Kim,K.K, Kim, R., Kim, S.H. Crystal structure of a small heat-shock protein. Nature, 1998 394: 595-599
    Smulders, R.H.P.H., Carver, J.A., Lindner, R.A., et al., Immobilization of the C-terminal Extension of Bovine αA-Crystallin Reduces Chaperone-like Activity J. Biol. Chem., 1996 271: 29060-29066
    Belhlke, J., Lutsch,G., Gaestel.M, et al. Supramolecular structure of the recombinant murine small heat shock protein Hsp25. FEBS Lett, 1991 288: 119-125
    Kokke, B.P, Leroux, M.R, Candido, E.P., et al. Caenorhabditis elegans small heat-shock proteins Hsp12.2 and Hsp12.3 form tetramers and have no chaperone-like activity. FEBS Lett.1998 433: 228-232
    Chang, Z., Primm, T. P., Jakana, J., et al., Mycobacterium tuberculosis 16-kDa antigen Hsp16.3 functions as oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 1996 271: 7218-7224.
    Berengian, A.R., Parfenova, M., and Mchaourab, H.S. Site-directed Spin Labeling Study of Subunit Interactions in the -Crystallin Domain of Small Heat-shock Proteins: comparison of the oligomer symmetry in -crystallin, hsp 27,?and hsp 16.3. J. Biol. Chem. 1999 274: 6305-6314
    Abulimiti, A., Fu, X., Gu, L., et al., Mycobacterium tuberculosis Hsp16.3 Nonamers are Assembled and Re-assembled via Trimer and Hexamer Intermediates, J. Mol. Biol., 2003 326: 1013–1023
    
    Gu L, Abulimiti A, Li W, Chang Z. Monodisperse Hsp16.3 nonamer exhibits dynamic dissociation and reassociation, with the nonamer dissociation prerequisite for chaperone-like activity., J. Mol. Biol., 2002 319: 517-526
    Haley, D. A., Bova, M. P., Huang, Q. L., et al., Small Heat-Shock Protein Structures Reveal a Continuum from Symmetric to Variable Assemblies J. Mol. Biol. 2000 298: 261-272
    Thorsten Rogalla,Regulation of Hsp27 Oligomerization, Chaperone Function, and Protective Activity against Oxidative Stress/Tumor Necrosis Factor a by Phosphorylation,J. Biol. Chem. 1999 274: 18947–18956,
    Thorsten Rogalla: Regulation of Hsp27 Oligomerization, Chaperone Function, and Protective Activity against Oxidative Stress/Tumor Necrosis Factor a by Phosphorylation, J. Biol. Chem. 1999 274: 18947–18956
    Ehrnsperger, M., Lilie, H., Gaestel, et al., The Dynamics of Hsp25 Quaternary Structure, J. Biol. Chem., 1999 274: 14867-14874
    Haslbeck, M., Walke, S., Stromer, T., et al., Hsp26: a temperature-regulated chaperone, EMBO. J., 1999 18: 6744-6751
    Merck, K. B., De Haard-Hoekman, W. A., Oude Essink, B. B., et al., Expression and aggregation of recombinant alpha A-crystallin and its two domains, Biochim. Biophys. Acta. 1992 1130 3: 267-276
    Merck, K. B., Horwitz, J., Kersten, M., et al., Comparison of the homologous carboxyl-terminal domain and tail of alpha-crystallin and small heat shock protein. Mol. Biol. Rep. 1993 18: 209-215
    Leroux M. R., Ma B. J., Batelier, G., et al., Unique structural features of a novel class of small heat shock proteins, J. Biol. Chem. 1997 272: 12847-12853
    Leroux, M. R.,, Melki, R., Gordon, B., et al., Structure-Function Studies on Small Heat Shock Protein Oligomeric Assembly and Interaction with Unfolded Polypeptides J. Biol. Chem. 1997 272: 24646–24656
    Feil, I. K., Malfois, M., Hendle, J., et al., A Novel Quaternary Structure of the Dimeric α-Crystallin Domain with Chaperone-like Activity, J. Biol. Chem., 2001 276: 12024–12029
    Boyle, D., Gopalakrishnan,S., Takemoto,L. Localization of the chaperone binding site. Biochem. Biophys. Res. Commun. 1993 192:1147-1153
    Sharma, K. K., Kaur, H., Kumar, G. S. et al., Interaction of 1,1’-Bi4-anilinonaphthalene-5,5’-disulfonic Acid with alpha-crystallin, J.Biol.Chem.,
    
    
    1998 273: 8965-8970.
    Smulders, R.H.P.H.; de Jong, W.W. The hydrophobic probe 4,4′-bis1-anilino-8-naphthalene sulfonic acid is specifically photoincorporated into the N-terminal domain of αB-crystallin, FEBS Letters, 1997 409: 101-104
    Sharma, K. K., Kaur, H. and Kester, K. Functional Elements in Molecular Chaperone α-Crystallin: Identification of Binding Sites in αB-Crystallin, Biochem. Biophys. Res. Commun. 1997 239: 217-222
    Sharma, K. K., Kumar, G. S., Murphy, A. S. et al., Identification of 1,1-Bi4-anilinonaphthalene-5,5-disulfonic Acid Binding Sequences in a-Crystallin, J. Biol. Chem., 1998 273: 15474–15478
    Sharma, K. K., Kumar, R. S., Kumar, G. S., et al., Synthesis and Characterization of a Peptide Identified as a Functional Element in αA-crystallin J. Biol. Chem. 2000 275: 3767-3771
    Das, K.P., Petrash, J.M., Surewicz, W.K. Conformational properties of substrate proteins bound to a molecular chaperone (-crystallin on refolding of (-crystallin. J. Biol. Chem., 1996 271: 10449
    Ehrnsperger, M., Graber, S., Gaestel, M. et al., Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation, EMBO J., 1997 16: 221–229
    Veinger L, Diamant S, Buchner J, et al., The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 1998 273: 11032-11037
    Coates, A. R. M., Hewitt, J., Allen, B. W. et al., Antigenic diversity of Mycobacterium tuberculosis and Mycobacterium bovis , detected by means of monoclonal antibodies. Lancet, 1981 2: 167–169
    Lee, B. Y., Hefta, S. A. and Brennan, P. J.. Major membrane protein of virulent Mycobacterium tuberculosis. Infect. Immun. 1992 60: 2066–2074
    Young, D. B., and Garbe, T. Heat shock proteins and antigens of Mycobacterium tuberculosis. Infect. Immun. 1991 59: 3086-3093
    Yuan, Y., Crane, D.D., Barry, C.E. Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial alpha-crystallin homolog. J. Bacteriol, 1996 178: 4484-4492
    Garbe, T.R., Hibler,N.S., Deretic,V. Response to Reactive Nitrogen Intermediates in Mycobacterium uberculosis: Induction of the 16-Kilodalton a-Crystallin omolog by
    
    
    Exposure to Nitric Oxide Donors, Infect. Immun. 1999 67: 460–465
    Yuan, Y., Crane, D.D., Simpson, R.M., et al., The 16-kDa alpha-crystallin Acr protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc. Natl. Acad. Sci. USA. 1998 95: 9578-9583
    Cunningham, A.F., Spreadbury, C.L. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog. J. Bacteriol. 1998 180: 801-808
    Tabira, T., Ohara, N., Kitaura, H., et al., The 16 kDa a-crystallin-like protein of Mycobacterium bovic BCG is produced under conditions of oxygen deficiency and is associated with ribosomes. Res. Microbiol. 1998 149: 255–264.
    Yang, H., Huang, S., Dai, H., et al., The mycobacterium tuberculosis small heat shock protein Hsp16.3 exposes hydrophobic surfaces at mild conditions: conformational flexibility and molecular chaperone activity, Protein Science, 1999 8: 174-179
    Datta, S.A. & Rao, C.M. Packing-induced Conformational and Functional Changes in the subunits of α-crystallin, J. Biol. Chem., 2000 275: 41004-41010
    Bova, M.P., Ding, L.L., Horwitz, J. et al.,. Subunit Exchange of αA-Crystallin, J.Biol.Chem., 1997 272: 29511-29517.
    Bova, M.P., Mchaourab, H.S., Han, Y. et al., Subunit Exchange of Small Heat Shock Proteins, J.Biol.Chem., .2000 275: 1035-1042.
    Sobott, F., Benesch, J.L.P., Vierling, E., et al., Subunit Exchange of Multimeric Protein Complexes, J. Biol. Chem. 2002 277: 38921–38929
    Studer, S. & Narberhaus, F. Chaperone Activity and Homo- and Hetero-oligomer Formation of Bacterial Small Heat Shock Proteins, J. Biol. Chem., 2000 275: 37212-37218
    Yamaoka, T., Pore gradient gel electrophoresis: theory, practice, and applications, Analytica Chimica Acta, 1998 372: 91-98
    Mao, Q., Ke, D., Feng, X. et al., Preheat treatment for mycobacterium tuberculosis Hsp16.3: correlation between s structural phase change at 60°C and a dramatic increase in chaperone activity, Biochem. Biophy. Res. Commun., 2001 284: 942-947
    Raman, B. & Rao, C. M., Chaperone-like Activity and Quaternary Structure of a-Crystallin, J. Biol. Chem., 1994 269: 27266-27268
    Raman, B. & Rao, C.M. Chaperone-like Activity and Temperature-induced Structural Changes of a-Crystallin, J. Biol. Chem., 1997 272: 23559-23564
    Saibil, H. Molecular chaperones: containers and surfaces for folding, stabilising or
    
    
    unfolding proteins, Curr. Opin. Struct. Biol. 2000 10:251–258
    Sharma, K.K. and Ortwerth, B.J. Effect of cross-linking on the chaperone-like function of alpha-crystallin, Exp. Eye. Res., 1995 61: 413-421
    Derham, B.K. and Harding, J.J. Harding a-Crystallin as a Molecular Chaperone, Prog. Retin. Eye. Res. 1999 18: 463-509
    Vanhoudt, J., Abgar, S., Alerts, T., et al., Native quaternary structure of Bovine alpha-crystallin, Biochemistry, 2000 39: 4483-4492.
    Koteiche HA, McHaourab HS. Mechanism of chaperone function in small heat-shock proteins, J. Biol. Chem., 2003 278: 10361-10367
    Bova, M.P., Huang, Q., Ding, L., et al., Subunit Exchange, Conformational Stability, and Chaperone-like Function of the Small Heat Shock Protein 16.5 from Methanococcus jannaschii, J. Biol. Chem. 2002 277: 38468–38475
    Lakowicz, J.R., Principles of Fluorescence Spectroscopy Second Edition, 1999 pp.291-320, Kluwer Academic/Plenum Publisers
    Agustinho, S.C.M, Tinto, M.H., Perussi, J.R, et al., Fluorescence studies of extracellular hemoglobin of Glossoscolex Paulistus in met form obtained from sephadex gel filtration, Comp. Biochem. Physiol., 1997 118: 171-181
    Creighton, T.E. Proteins structures and molecular properties second edition, 1993 W.H.Freeman and Company
    Lindner R.A., Kapur. A., Mariani, M., et al., Structural alterations of alpha-crystallin during its chaperone action, E. J. Biol., 1998 258: 170-183
    Das, K. P. and Surewicz, W. K. temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of α-crystallin, FEBS Lett. 1995 369: 321-325
    Lee, J.S., Satoh, T., Shinoda, H., et al., Effect of Heat-Induced Structural Perturbation of Secondary and Tertiary Structures on the Chaperone Activity of a-Crystallin, Biochem. Biophy. Res. Commun., 1997 237: 277–282
    Hopkins, D.A., Plumier, J.C.L., and Currie, R.W. Induction of the 27-kDa Heat Shock Protein Hsp27 in the Rat Medulla Oblongata after Vagus Nerve Injury Exp.Neurol. 1998 153: 173–183
    Carmelo, V. and Sá-Correia, I. HySP26 gene transcription is strongly induced during Saccharomyces cerevisiae growth at low pH, FEMS Micro. Lett. 1997 149: 85-88
    Stromer, T., Ehrnsperger, M., Gaestel, M., et al., Analysis of the interaction of small heat shock proteins with unfolding proteins, J. Biol. Chem., 2003 278: 18015-18021
    Kim, R. Kim, K.K., Yokotah, H. et al., Small heat shock protein of Methanococcus
    
    
    jannaschii, a hyperthermophile, Proc. Natl. Acad. Sci. USA, 1998 95: 9129–9133
    Carver, J.A., Lindner, R.A., Lyon, C., et al., The Interaction of the Molecular Chaperone α-Crystallin with Unfolding a-Lactalbumin:A Structural and Kinetic Spectroscopic Study. J. Mol. Biol. 2002 318: 815–827
    Valdez, M. M., Clark, J. I., Wu, G. J. S., et al., Functional similarities between the small heat shock proteins Mycobacterium tuberculosis HSP 16.3 and human aB-crystallin, Eur. J. Biochem. 2002 269: 1806-1813
    Plesofsky-Vig, N., Vig, J. and Brambl, R. Phylogeny of the alpha-crystallin-related heat-shock proteins. J. Mol. Evo., 1992 35: 537-545
    Waters, E. R. and Vierling, E. the diversion of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol. Biol. Evol. 1999 16: 127-139
    Koteiche, H.A. and Mchaourab H.S. The determinants of the oligomeric structure in Hsp16.5 are encoded in the α-crystallin domain, FEBS Letters 2002 519: 16-22
    Smulders, R.H.P.H., van Boekel, M.A.M. and de Jong, W.W. Mutations and modifications support a ‘pitted-flexiball’ model for α-crystallin Int. J. Biol. Macromol. 1998 22: 187–196
    Fu, X., Li, W., Mao, Q. et al., Disulfide bonds convert small heat shock protein Hsp16.3 from a chaperone to a non-chaperone: implications for the evolution of cysteine in molecular chaperones, Biochem. Biophys. Res. Commun. 2003 308: 627-635
    Fu, X., Liu, C., Liu, Y., et al., Small Heat Shock Protein Hsp16.3 Modulates Its Chaperone Activity by Adjusting the Rate of Oligomeric Dissociation Biochem. Biophys. Res. Commun. 2003 310: 412-420
    Fu, X., Jiao, W., Abulimiti, A. et al., Inter-subunit cross-linking suppressed the dynamic oligomeric dissociation of Mycobacterium tuberculosis Hsp16.3 and reduced its chaperone activity, Biochemistry Moscow, 2003 in press,
    Smulders, R. H. P. H., van Geel, I. G., Gerards, W. L. H., et al., Reduced Chaperone-like Activity of αAins-crystallin, an Alternative Splicing Product Containing a Large Insert Peptide, J. Biol. Chem. 1995 270: 13916 – 13924
    Rao, C.M., Raman, B., Ramakrishna, T., et al., Structural perturbation of a-crystallin and its chaperone-like activity, Int. J. Biol. Macromol., 1998 22: 271-281
    Ellis, R.J. and Hartl, F.U. Folding and binding Problems with proteins, Curr. Opin. Struct. Biol. 2000 10:13–15
    Pfund, C.., Huang, P., Lopez-Hoyo., N., et al., Divergent Functional Properties of the Ribosome-Associated Molecular Chaperone Ssb Compared with Other Hsp70s, Mol. Biol.
    
    
    Evo. 2001 12: 3773-3782
    Buckle, A.M., Zahn, R., and Fersht, A.R., A structural model for GroEL-polypeptide recognition protein folding / hsp60 / cpn60 / mini-chaperone / crystallography, Proc. Natl. Acad. Sci. USA, 1997 94: 3571-3575
    Ybarra, J. and Horowitz, P.M Inactive GroEL Monomers Can Be Isolated and Reassembled to Functional Tetradecamers That Contain Few Bound Peptides, J.Biol.Chem., .1995 270: 22962–22967
    Ybarra, J., and Horowitz, P.M. Refolding and Reassembly of Active Chaperonin GroEL After Denaturation, J.Biol.Chem., 1995 270: 22113–22115
    Panda, M., Ybarra, J., and Horowitz, P.M., High Hydrostatic Pressure Can Probe the Effects of Functionally Related Ligands on the Quaternary Structures of the Chaperonins GroEL and GroES, J. Biol. Chem., 2001 276: 6253–6259
    Ellis, R.J. and Hartl, F.U. Principles of protein folding in the cellular environment, Curr. Opin. Struct. Biol., 1999 9: 102-110
    Dobson, C.M. and Karplus, M. the fundamentals of protein folding: bringing together theory and experiment, Curr. Opin. Struct. Biol. 1999 9: 92-101
    Kumarevela, T.S., M. Michael; Gromihab, M.N. Ponnuswamya,U, Analysis of hydrophobic and charged patches and influence of medium- and long-range interactions in molecular chaperones,Biophys. Chem., 1998 75: 105-113
    Schiene, C. and Fischer, G., Enzymes that catalyse the restructuring of proteins, Curr. Opin. Struct. Biol. 2000 10: 40-45
    Venter, J.C. The sequence of the human genome, Science, 2001 291: 1304-1351
    Allen, G. Protein: a comprehensive Treatise, JAI Press Inc., 1997 2: 256-263.
    Graumann, J., Lilie, H., Tang, X., et al., Activation of the Redox-Regulated Molecular Chaperone Hsp33—A Two-Step Mechanism, Structure, 2001 9: 377–387
    Feng X, Huang S, Fu X, et al., The reassembling process of the nonameric Mycobacterium tuberculosis small heat-shock protein Hsp16.3 occurs via a stepwise mechanism. Biochem. J. 2002 363: 329-334
    Vendruscolo M. and Paci E. Protein folding: bringing theory and experimental closer together. Curr. Opin. Struct. Biol. 2003 13: 82-87
    Ashcroftab, A.E. Structural Plasticity and Noncovalent Substrate Binding in
    
    
    the GroEL Apical Domain J. Biol. Chem., 2002 277: 33115-33126
    Spudich, G.M., Fernandez, D., Zhou, X.R. et al., Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc. Natl. Acad. Sci.USA, 1996 93: 7512-7517

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700