闽江河口悬浮泥沙特征及输运过程初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据2007年闽江河口4个站位洪季大潮的同步观测资料,分析了闽江河口潮周期内悬浮泥沙的分布特征、底质再悬浮特征和悬浮泥沙的输运过程和机制。
     研究表明:闽江河口地区水动力条件复杂多变,悬浮泥沙浓度的垂向分布在不同时刻对应着不同的分布形式,最大浑浊带在潮周期内的平移是导致其上游和下游地区悬浮泥沙浓度变化的主要原因,梅花水道高浓度时段与底部再悬浮作用密切相关;悬浮泥沙粒级组成上以粉砂为主,分选较差,粒级偏向粗颗粒一侧,单峰分布,物源单一;随着水深的减小,悬浮泥沙粒级含量标准偏差呈增大趋势,敏感组分增多,这种现象反映了再悬浮作用的影响;河口沉积物在多数时间内处于活动状态,落潮阶段的活动性要大于涨潮阶段,梅花水道沉积物的活动性最大,再悬浮作用明显;河口沉积物再悬浮通量较小,沉降通量总体大于再悬浮通量;A1站位周日潮汐输沙具有不对称性,A2站位呈现高瞬时输沙率和低净输沙率;第一个潮周期内涨潮流在输运过程中的作用更为明显,强烈的底质再悬浮是使分汊水道瞬时输运率大于主水道的主要原因;平均流、斯托克斯漂移效应、潮汐捕集作用和垂向潮振荡引起的剪切扩散是引起闽江河口悬浮泥沙输运的重要因素。
Simultaneous observation at four stations at Minjiang estuary was carried out during spring tide in the flood season of 2007. Based on the observed data,we analyzed the suspended sediment distribution, character of sediment resuspension, their transport and the mechanism at Minjiang estuary in a tidal cycle.
     The result showed that the hydrodynamic conditions were complicated at Minjiang estuary,the vertical distribution of suspended sediment showed temporal changes. The turbidity maximum zone movement in tide cycle leaded to the change of suspended sediment in upstream or downstream, however, the high concentration period in Meihua channel was closely related to resuspension. Suspended sediment was mainly composed of fine silt, which was poor sorted, the grain grade was inclined to the side of coarse grain with a single peak, which suggested a uniform source. When the water depth decreased, both the standard deviation of the suspended sediment size fraction content and the sensitive components quantity increased, which reflected the effect of resuspension.
     The sediment at the estuary was often active, and the activity in flood tide was greater than that in ebb tide. The sediment activity was greatest in Meihua channel and resuspension was obvious. The sedimentary flux at the estuary is higher than the resuspension flux, which is comparatively low.
     Tide sediment transport in diurnal at A1 station was asymmetric and A2 station demonstrated high instantaneous flux rate and low net flux rate. Flood tide current played a much more important role than other factors in the suspended sediment transport in the first tide cycle. The intense resuspension is the major reason to result in greater instantaneous flux in the branch channel than that in the main channel. The advection, storks drift, tidal trapping and vertical shearing diffusion all played important roles in the transport of resuspended sediment.
引文
Ariathurai R,Krone R B. 1976. Erosion rate of cohesive sediment transport. Journal of Hydraulic Engineering,ASCE,102(HY3),323–338.
    Ariathurai R,Arulanandan k. 1976. Finite element model for cohesive sediment transport. Journal of Hydraulic Engineering,ASCE,104(HY4),279–283.
    Bayne B L,Hawkins A J S. 1992. Ecological and physiological aspects of herbivory in benthic suspension feeding molluscs. Plant-animal interactions in the marine bethos,265–288.
    Clark S,Elliott A J. 1998. Modelling Suspended Sediment Concentrations in the Firth of Forth. Estuarine,Coastal and Shelf Science,43,235–250.
    Cole P,Miles G V. 1983. Two-domensional model of mud transport. Journal of Hydraulic Engineering,ASCE,109(1),1–12.
    Dyer, K R. 1986. Coastal and Estuarine Sediment Dynamics. Wiley,New York,Chapter 8.
    Fettweis M,Sas M.,Monbaliu J. 1998. Seasonal,neap-spring and tidal variation of cohesive sediment concentration in the Scheldt estuary, Belgium. Estuarine,Coastal and Shelf Science,47,21–36.
    Fugate D C,Friedrichs C T. 2002. Determining concentration and fall velocity of estuarine particle populations using ADV,OBS and LISST. Continental Shelf Research,22,1867–1886.
    Hamblin P F. 1989. Observations and model of sediment transport near the turbidity maximum of the upper Saint Lawrence Estuary. Journal of Geophysical Research,94, 14419–14428.
    Holligan. P M,de Boois eds.1993. Land-Ocean Interactions in the Coastal Zone (LOICZ),Science Plan. Global Change Report,25,1–150.
    Gartner J W. 2004. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California Marine Geology,211,169–187.
    Gelfenbaum G..1983. Suspended-sediment response to semidiurnal and fortnightly tidal variations in a mesotidal estuary:Columbia river,USA. Marine Geology,52,39–57.
    Grabemann I,Krause G.. 1989. Transport processes of suspended matter derived from time series in a tidal estuary. Journal of Geophysical Research,94,14373–14380.
    Guo Q C,Jin Y C. 1998. Modeling sediment transport using depth-averaged and moment equations. Journal of Hydraulic Engineering,125(12),1262–1269.
    Lavelle J W,Mofjeld H O,Baker E T. 1984. An in situ erosion rate for a fine-grained marine sediment. Journal of Geophysical Research,89,6543–6552.
    Lindsay P,Balls P W,West J R. 1996. Influence of tidal range and river discharge on suspended particulate matter fluxes in the Forth Estuary (Scotland). Estuarine,Coastal and Shelf Science,42,63–82.
    Lumborg U. 2005. Modelling the deposition, erosion, and flux of cohesive sediment through ?resund. Journal of Marine Systems,56,179–193.
    Lunven M,Gentien P. 2000. Suspended sediments in a macrotidal estuary:comparison and use of different sensors. Oceanologica Acta,23,245–260.
    McManus J. 1988. Grain size determination and interpretation. In: Tucker M(ed). Techniques in Sedimetology,Black-well,Oxford,63–85.
    Miller M C,Mccave L N,Komar P D. 1977. Threshold of sediment motion under unidirectional current. Sedimetology,24,507–527.
    Milliman J D,Syvistski J P M. 1992. Geomorphic/tectonic control of fluvial sediment discharge to the ocean:the importance of small mountainous rivers. Journal of Geology,100,525–544.
    Milliman J D,Farnsworth K L,Albertin C S. 1999. Flux and fate of fluvial sediments leaving large islands in the East Indies. Journal of Sea Reserch,41,97–107.
    Mitchener H,Torfs H.1996. Erosion of mud/sand mixtures. Coastal Engineering,29,1–25.
    Moreau A L,Locat J,Philip H, Bernard L, Yvon O. 2006. Resuspension potential of surficial sediments in Saguenay Fjord (Quebec, Canada). Marine Geology,225,85–101.
    Nittrouer C A,Curtin T B,Demaster D J. 1986. Concentration and flux of suspended sediment on the Amazon continental shelf. Continental shelf Research,6,151–74.
    O'Connor BA,Nicholson, J. 1988. A three-dimensional model of suspended particulate sediment transport. Coastal Engineering,12,157–174. Olsen N R B,Skoglund M. 1994. Three-dimensional numerical modeling of water and sediment flow in sand strap. Journal of Hydraulic Research,32(6),833–844.
     Patchineelama S M,Kjerfveb B . 2004. Suspended sediment variability on seasonal and tidal time scales in the Winyah Bay estuary, South Carolina, USA. Estuarine Coastal and Shelf Science,59,307–318.
     Pernetta J C,Milliman J D(eds). 1995. Land-Ocean Interactions in the Coastal Zone (LOICZ), Implementation Plan. Global Change Report,33,1–125.
     Ribbea J,Hollowayb P E. 2001. A model of suspended sediment transport by internal tides. Continental Shelf Research,21,395–422.
     Ridderinkhof H,Ronald van der Ham,Willem van der Lee. 2000. Temporal variations in concentration and transport of suspended sediments in a channel–flat system in the Ems-Dollard estuary. Continental Shelf Research,20,1479–1493.
     Hassen B M. 2001. Spatial and temporal variability in nutrients and suspended material processing in the Fierd'Ars Bay (France). Estuarine Coastal and Shelf Science,52,457–469.
     Roman M R,Tenore K R. 1978. Tidal resuspension in Buzzards Bay,Massachusetts. I. Seasonal changes in the resuspension of organic carbon and chlorphyll a. Estuarine Coastal and Shelf Science,6,37–46.
     Schoellhamer D H . 1990. Observation of sediment resuspension in Old Tampa Bay,Florida. In Proceedings of the National Conference on Hydraulic Engineering. San Diego,California,51–56.
     Schoellhamer D H. 1995. Sediment Resuspension Mechanisms in Old Tampa Bay, Florida. Estuarine Coastal and Shelf Science,40,603–620.
     Schoellhamer D H. 1996. Factors affecting suspended-solids concentrations in South San Francisco Bay, California. Journal of Geophysical Research,101 (C5), 12087–12095.
     Schoellhamer D H. 1996. Anthropogenic Sediment Resuspension Mechanisms in a Shallow Microtidal Estuary. Estuarine Coastal and Shelf Science,43,533–548.
     Schoellhamer D H. 1997. Time series of SSC,salinity,temperature,and total mercury concentration in San Francisco Bay during water year 1996. 1996 Annual Report of the Regional Monitoring Program for Trace Substances,65–77.
    Schoellhamer D H. 2001. Influence of salinity, bottom topography, and tides on locations of estuarine turbidity maxima in northern San Francisco Bay. In: McAnally W H,Mehta, A J (Eds.),Coastal and Estuarine Fine Sediment Transport Processes. Elsevier Science B.V.,Amsterdam, 2001a,343–357. URL: http://ca.water.usgs.gov/ abstract/sfbay/elsevier0102.pdf.
     Schoellhamer D H. 2001. Singular spectrum analysis for time series with missing data. Geophysical Research Letters,2001b,28(16),3187–3190. URL:http://ca.water.usgs.gov/ja/grl/ssam.pdf.
     Schoellhamer D H. 2002. Variability of suspended-sediment concentration at tidal to annual time scales in San Francisco Bay, USA. Continental Shelf Research,22,1857–1866.
     Tattersalla G R,Elliotta A J,Lynn N M. 2003. Suspended sediment concentrations in the Tamar estuary. Estuarine Coastal and Shelf Science,57,679–688.
     Turner A,Millward G E. 2002. Suspended particles:Their role in estuarine biogeochemical cycles. Estuarine,Coastal and Shelf Science,55,857–884.
     Vale C, Sundby B. 1987. Suspended Sediment Fluctuations in the Tagus Estuary on Semi-Diurnal and Fortnightly Time Scales. Estuarine Coastal and Shelf Science,1987,25,495–508.
     Velegrakis A F,Gao S,Lafite R,DuPont J P,Huault M F,Nash L A,Collins M B.1997. Resuspension and advection processes affecting suspended particulate matter concentrations in the central English Channel. Journal of Sea Research,38,17–34.
     Voulgaris G,Meyers S T. 2004. Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek. Continental Shelf Research,24,1659–1683.
     Wu W M,Rodi W,Wenka T. 2000. 3D numerical model for suspended sediment transport in open channels. Journal of Hydraulic Engineering,ASCE,126(1),4–15.
     陈吉余,沈焕庭,恽才兴,等. 1988. 长江河口动力过程与地貌演变. 上海科技出版社.
     陈沈良,谷国传. 2000. 杭州湾口悬沙浓度变化与模拟. 泥沙研究,5,45–50.
     陈沈良,张国安,杨世伦等. 2004. 长江口水域悬沙浓度时空变化与泥沙再悬浮. 地理学报,59(2),260–266. 常瑞芳. 1997. 海岸工程环境,青岛海洋大学出版社.
     陈祥锋,马淑燕,刘苍字. 1998. 闽江口动力沉积特征的探讨. 海洋通报,17(6),40–47.
     陈峰,王海鹏,郑志凤,等. 1998. 闽江口水下三角洲的形成与演变 Ⅰ .水下三角洲形成的环境因子与地貌发育. 台湾海峡,17(4),396–401.
     陈峰,张培辉,王海鹏,等. 1999. 闽江口水下三角洲的形成与演变 Ⅱ .水下三角洲平原. 台湾海峡,18(1),1–5.
     窦亚伟,林敏基. 1991. 闽江口悬浮泥沙动态与分区的遥感分析. 台湾海峡,10(2),150–155.
     窦国仁,董凤舞. 1995. 潮流和波浪的挟沙能力. 科学通报,40(5),443–446.
     窦国仁,董风舞,窦希萍. 1995. 河口海岸泥沙数学模型. 中国科学(A辑), 29,995–1001.
     范诺尼(Vanoni V A). 1981. 泥沙工程.黄河水利委员会水利科学研究所等译,北京,水利出版社.
     冯辉,益建芳,恽才兴. 1989. 闽江口及邻近海域卫星遥感图像的综合分析. 热带海洋,8(4),22–29.
     谷国传,胡方西,宋元平. 1991. 三门湾的悬沙分布和输移特性. 东海海洋,9(3),1–11.
     高抒,张立人. 1989. 金塘水道潮流一悬沙相关性及其与再悬浮作用的关系. 海洋通报,8(4),51–58.
     高抒. 1997. 海洋沉积动力学研究与应用前景展望. 世界科技研究与发展, 19(3),62–66.
     高建华,高抒,董礼先,张经. 2003. 鸭绿江河口地区沉积物特征及悬沙输送. 海洋通报,22(5),26–33.
     高建华,汪亚平,王爱军等. 2004. ADCP在长江口悬沙输运观测中的应用. 地理研究,23(4),455–462.
     贺松林,孙介民. 1996. 长江河口最大浑浊带的悬沙输移特征. 海洋与湖沼, 27(1),60–66. 胡敦欣,韩舞鹰,章申,等. 2001. 长江、珠江口及临近海域陆海相互作用. 海洋出版社.
     金惜三,李炎. 2001. 鸭绿江洪季的河口最大混浊带. 东海海洋,19(1),1–10.
     蒋智勇,程和琴,陈吉余等. 2002. 长江口南港底沙再悬浮特征及其浓度预测. 应用基础与工程科学学报,10(4),372–379.
     李瑞杰,孙效功. 1999. 潮流作用下河口悬沙运动二维数学模型. 海洋湖沼通报,3,10–15.
     李九发,时伟荣,沈焕庭. 1994. 长江河口最大浑浊带的泥沙特性和输移规律. 地理研究,13(1),51–59.
     李九发,何青,张琛. 2000. 长江河口拦门沙河床淤积和泥沙再悬浮过程. 海洋与湖沼,31(1),101–109.
     李伯根,谢钦春,夏小明等. 1999. 椒江河口最大浑浊带悬沙粒度分布及其对潮动力的响应. 泥沙研究,1,18–26.
     李军,高抒,贾建军等. 2003. 1998年11月长江河口悬浮体粒度特征的空间分布. 海洋通报,22(6),21–29.
     李军,高抒,曾志刚等. 2003. 长江口悬浮体粒度特征及其季节性差异. 海洋与湖沼,34(5),499–510.
     李春初. 2004. 中国南方河口过程与演变规律. 科学出版社.
     李占海,高抒,沈焕庭. 2006. 金塘水道的悬沙输运和再悬浮作用特征. 泥沙研究,4,55–62.
     李占海,高抒,沈焕庭等. 2006 江苏大丰潮滩悬沙级配特征及其动力响应. 海洋学报,28(4),87–95.
     李一平,逄勇,李勇. 2007. 水动力作用下太湖底泥的再悬浮通量. 水利学报, 38(5),558–564.
     刘苍字,贾海林,陈祥锋. 2001. 闽江河口沉积结构与沉积作用. 海洋与湖沼, 32(2),177–184.
     罗潋葱,秦伯强. 2003. 太湖波浪与湖流对沉积物再悬浮不同影响的研究. 水文,23(4),1–4.
     罗潋葱,秦伯强,朱广伟. 2004. 太湖底泥蓄积量和可悬浮量的计算. 海洋与湖沼,35(6),491–496. 潘定安,谢裕龙,沈焕庭. 1991. 闽江口川石水道的水文泥沙特性及内拦门沙成因分析. 华东师范大学学报(自然科学版),1,87–96.
     潘定安,贺松林,沈焕庭. 1992. 闽江口外通海航道及外拦门沙形成机制探讨. 泥沙研究,3,1–10.
     潘定安,沈焕庭. 1993. 闽江口的盐、淡水混合. 海洋与湖沼,24(6),599–608.
     潘定安,孙介民. 1996. 长江口拦门沙地区的泥沙运动规律. 海洋与湖沼,27(2),279–286.
     钱宁,万兆惠. 1983. 泥沙运动力学,科学出版社.
     沈焕庭,郭成涛,朱慧芳等. 1984. 长江河口最大浑浊带的变化规律及成因探讨. 海岸河口区动力地貌沉积过程论文集,科学出版社,76–89.
     沈焕庭,李九发,朱慧芳. 1986. 长江河口悬沙输移特性. 泥沙研究,1,1–13.
     沈焕庭,朱慧芳,茅志昌. 1986. 长江口环流及其对悬沙输移的影响. 海洋与湖沼,17(1),26–35.
     沈焕庭. 1990. 珠江河口演变. 海洋出版社.
     沈焕庭,朱建荣. 1999. 论我国海岸带陆海相互作用研究. 海洋通报,18(6),11–17.
     沈焕庭,贺松林,茅志昌,李九发. 2001. 中国河口最大浑浊带刍议. 泥沙研究,1,23–29.
     沈焕庭. 2001 长江河口物质通量. 海洋出版社.
     沈焕庭,茅志昌,朱建荣. 2003. 长江河口盐水入侵. 海洋出版社
     沈健,沈焕庭,潘定安,肖成猷. 1995. 长江河口最大浑浊带水沙输运机制分析. 地理学报,50(5),419–420.
     时伟荣. 1993. 长江口浑浊带含沙量的潮流变化及其成因分析. 地理学报,48(5),412–419.
     时钟,凌鸿烈. 1999. 长江口细颗粒悬沙浓度垂向分布. 泥沙研究,2,59–64.
     时钟,周洪张. 2000. 长江口北槽口外悬沙浓度垂线分布的数学模拟. 海洋工程,18(3),57–62.
    时钟,陈伟民. 2000. 长江口北槽最大浑浊带泥沙过程. 泥沙研究,1,28–39.
    王康墡 苏纪兰. 1987. 长江口南港环流及悬移物质输运的计算分析.海洋学报,9(5),627–637.
    王海鹏,张培辉,陈峰,等. 2000. 闽江口水下三角洲沉积特征及沉积环境 Ⅰ.现代沉积特征和沉积环境. 台湾海峡,19(1),113–118.
    王海鹏,张培辉,陈峰,等. 2000. 闽江口水下三角洲沉积特征及沉积环境 Ⅱ.晚更新世—全新世沉积特征和沉积环境. 台湾海峡,19(2),132–140.
    王凡,许炯心. 2004. 长江、黄河口及邻近海域陆海相互作用若干重要问题. 海洋出版社.
    汪亚平,高抒,贾建军. 2000. 海底边界层水结构及底移质搬运研究进展,海洋地质与第四纪地质,20(3),101–106.
    汪小钦,王钦敏,邬群勇,等. 2003. 遥感在悬浮物质浓度提取中的应用——以福建闽江口为例,遥感学报,7(1),54–58.
    徐茂泉. 1995. 闽江口表层沉积物中碎屑矿物的研究.厦门大学学报(自然科学版),34(3),466–469.
    徐茂泉. 1996. 闽江口表层沉积物中 0.125—0.250mm 粒级重矿物的分布与组合特征. 台湾海峡,15(3),229–234.
    谢钦春,李伯根,夏小明等. 1998. 椒江河口悬沙浓度垂向分布和泥跃层发育. 海洋学报,20(6),58–69.
    杨旸,汪亚平,高建华等. 2006. 长江口枯季水动力悬沙特征与再悬浮研究. 南京大学学报(自然科学版),42(6),643–655. .
    俞鸣同. 1992. 闽江河口北支冬季盐水入侵的分析. 海洋通报,11(4),17–22.
    俞鸣同. 1998. 闽江河口盐水楔活动的研究. 海洋通报,17(6),1–6.
    郑德研. 1988. 闽江多汊口门的水沙运动和河床地貌初探. 热带海洋,7(3),36–44.
    张东生,蒋勤. 1991. 江苏北部灌河口悬沙输送数学模型. 海洋学报,13(1), 126–136.
    左书华,李九发,万新宁等. 2006. 长江河口悬沙浓度变化特征分析. 泥沙研究,3,68–75.
    中国海湾志编纂委员会. 1998. 中国海湾志(第十四分册). 海洋出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700