探地雷达和红外热像仪在西藏寺院和敦煌石窟空鼓壁画保护中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在壁画的保护修复实践中,调查空鼓病害的分布范围、严重程度以及评价空鼓壁画的灌浆加固效果一直是个技术难题。传统上通常采用敲壁辨音的经验方法,但它依赖于个人主观感觉,缺乏科学性。
     本文以高频脉冲电磁波在层状有耗色散介质中的传播规律为理论依据,在室内模拟试验的基础上,成功运用壁面耦合式探地雷达方法检测表面有涂层的西藏寺院壁画内部的空鼓病害,并在对空鼓壁画进行灌浆加固后,用相同的方法对比检测浆液结石体的充填范围,据此评价灌浆加固效果。在尝试采用空气耦合式探地雷达方法检测表面没有涂层的敦煌石窟壁画内部的空鼓病害之后,本文基于热传导的理论分析,在主动加热条件下,改用红外热像仪检测,取得了较好的效果。
     (1)探地雷达模拟检测。制作西藏寺院壁画和敦煌石窟壁画的模拟地仗,在其内部预设深度和厚度各不相同的规则空鼓,通过正演模拟试验确定探地雷达的采集参数,积累数据处理的经验,并比较不同雷达天线的性能。结果表明,针对RAMAC探地雷达和GroundVision数据采集、后处理软件,时窗深度宜为3ns左右,采样频率应为212 GHz左右。由于西藏寺院壁画的地仗层厚度不足10 cm,在探地雷达数据处理中,应用有限冲激脉冲响应滤波去除直耦杂波是利用高频探地雷达识别浅表层壁画空鼓病害的关键。经滤波处理后,空鼓部位的探地雷达图像特征表现为负相振幅的陡增,而且空鼓厚度的大小与相邻两负相峰值的时深差成正比,它表征空鼓的严重程度。对空鼓部位进行模拟灌浆加固后,浆液在固化初期的探地雷达反射回波显著减弱,与灌浆加固前的负相强振幅形成对比,这是评价空鼓壁画灌浆加固效果的依据。浆液完全固化后,灌浆加固敦煌石窟空鼓壁画的灌浆材料在雷达图像上反映为与灌浆加固前非常相似的强反射回波,而灌浆加固西藏寺院空鼓壁画的PS-F系列灌浆材料的探地雷达反射回波仍然非常微弱。
     (2)探地雷达现场检测。根据探地雷达正演模拟试验,现场检测布达拉宫、罗布林卡和萨迦寺的壁画空鼓病害,结果表明这三大寺的壁画空鼓病害较严重,在雷达图像上均表现出负相振幅增强的特征。布达拉宫西大殿的壁画空鼓集中位于木质横梁附近;萨迦寺坛城殿的壁画空鼓主要位于夯土墙的上部,而且越偏向上部,空鼓病害越严重。在对检出的壁画空鼓部位进行灌浆加固后,浆液充填处的探地雷达反射回波明显减弱,表明灌浆加固效果良好。
     (3)红外热像仪现场检测。基于壁画内部热传导的不连续性,视空鼓病害为热阻型缺陷,在远场点源的热辐射下,利用红外热像仪对比分析敦煌西千佛洞第12窟西壁的壁画表面温度差。受洞窟形制和外界环境的影响,窟内壁画表面初始温度的空间分布差异较明显,控制空气热流的温度接近洞窟环境历史最高温度,增大沿壁画深度方向的温度梯度,弱化横向热扩散。现场检测结果表明,洞窟内的空气经一段时间持续加热后,壁画表面的平均温度从11℃升高到18℃,而特定区域的壁面温度高达19℃。结合现场检测条件,对比分析后发现,壁画表面温度相对较高的区域与空鼓病害的分布范围基本一致,而且空鼓区域与非空鼓区域的交界处同壁画表面的空鼓破裂边界比较吻合。
     综合分析西藏寺院壁画和敦煌石窟壁画的赋存环境、制作材料和表面条件,探地雷达适用于检测西藏寺院壁画内部的空鼓病害,并且可以用来评价空鼓壁画灌浆加固的效果;而红外热像仪则适合检测敦煌石窟壁画内部的空鼓病害。
In the practice of conservation of wall paintings,it is quite a problem in technology to investigate the area and the degree of wall painting delamination,and there is also an urgent need of method to evaluate effectiveness of grouts injection.Traditionally,the diagnosis of delamination in grotto wall paintings and palace wall paintings is achieved by distinguishing the tone when tapping wall paintings by hand,such experience is useful in determining the area and the degree of delamination,but it depends a lot on subjective sensation,lacking scientific nature.
     Focusing on propagation of high frequency pulse electromagnetic(EM) waves in layered lossy and dispersive medium,and based on physical forward modeling experiment,this paper has successfully located delamination in polished wall paintings in Tibetan lamaseries by using RAMAC ground penetrating radar(GPR).As the delaminated wall paintings are conserved through injection of grouts,the area of grouts can be determined by the same way,so that the effectiveness of grouts injection is evaluated.An attempt on detecion of delamination in unpolished wall paintings in Dunhuang grottoes by GPR in the manner of air coupling is made, but on basis of heat conduction theory,such goal is achieved by using infrared thermography(IRT) under thermal radiation.
     (1) Modeling Detection of Delamination by GPR.Replica of Tibetan wall painting plaster is made,and regular voids at different depth and with varied size are set inside,then the forward modeling detection is carried out in order to get appropriate parameters for acquisition of radar data,to find effective filters for signal processing,and to compare the performance of different antennas.Specifically to RAMAC/GPR and its accessory software of Ground Vision,it is suggested that the depth of time window should be about 3 ns and sampling frequency about 212 GHz.As a rule the thickness of wall painting plaster in Tibetan lamaseries is less than 10cm,and it depends on efficient removal of direct coupled waves in radar profile to detect delamination beneath wall painting plaster.As the GPR raw data is processed by applying filter of finite imoulse response(FIR),delamination in wall paintings is characterized as sudden amplification of negative amplitude in waveform,and the extent of delamination is proportional to the time difference of two adjacent troughs,representing how serious the deterioration is.After the injection of grouts in early time,the amplitude of EM echo reflected from interface between plaster and slurry decreases to that of background noise,which is in obvious contrast with strong negative amplitude before grouting and is the foundation for evaluation of grouting effectiveness. However,as the concretion of grouts sets completely,strong impulse echo is received due to great difference of wave impedance between plaster and grouts for conservation of wall paintings in Dunhuang grottoes,but nearly no echo is genegrated on the interface between plaster and PS-F series grouts for conservation of wall paintings in Tibetan lamaseries.
     (2) In-situ Detection of Delamination and Evaluation of Grouting Quality by GPR. According to characteristic phenomena discovered and practical experience got in previous modeling experiment,GPR is applied to detect delamination in wall paintings in Potala Palace, Norbulingka and Sagya Monastery in Tibet,and the quality of grouting project is evaluated afterwards.It is shown that strong negative amplitudes appear on certain GPR traces,which is in accordance with existence of serious delamination in wall paintings in these Tibetan lamaseries. Delamination in wall paintings in the Western Hall of Potala Palace is in great relation of wooden beam between plaster and blockstone wall.In the Mandala Hall of Sagya Monastery,delamination spreads from the top area of rammed wall,and it is proven to be more serious in the upper area. As these delaminated wall paintings are conserved by injection of grouts,the amplitude or energy of reflected EM waves from interested interface becomes less,which is the evidence of effective and successful grouting.
     (3) In-situ Detection of Delamination by Infrared Thermography.Infrared thermography (IRT) is based on discontinuity of thermal conductivity within the wall paintings and that the deterioration of delamination is a type of thermal resistive defect,and the temperature difference of wall painting surface is calculated and analyzed by using thermal imaging infrared camera after thermal radiation by means of a point heat source in far field.Under the influence of grotto architecture and ambient environment,the initial temperature distribution on wall painting surface before heating is not uniform,so that the radial temperature gradient perpendicular to the surface of wall painting should be increased as high as possible according to the highest temperature in history inside the grotto,in order to decrease the effect of transverse thermodiffusion.In-situ infrared thermography of the west wall in Cave 12 of the West Thousand Buddha's Caves in Dunhuang proves that,after continuous heating for some hours,the average temperature of wall painting surface goes up to 18℃from 11℃,and the surface temperature Of certain area reaches as high as 19℃.In combination with the condition of wall paintings investigated,the area where the surface temperature is relatively high corresponds to that of thermal accumulation,which is in good consistence with the range of delamination in wall paintings.Moreover,the boundary or buffer zone between well adhered area and delaminated area generally overlaps with the cracks on wall painting surface.
     Under comprehensive consideration of preservation space,plaster layers and surface condition,GPR is not only suitable for detection of delamination in wall paintings in Tibetan lamaseries,but also capable of evaluating the quality and effectiveness of grouts injection.In contrast,infrared thermography is feasible to detect delamination in wall paintings in Dunhuang grottoes.
引文
[1]汪万福,马赞峰,李最雄,等.空鼓病害壁画灌浆加固技术研究[J].文物保护与考古科学,2006,18(1):52-59.
    [2]李最雄,汪万福,王旭东,等.西藏布达拉宫壁画保护修复工程报告[M].北京:文物出版社,2008.
    [3]仵君魁.西藏佛教寺院壁画艺术[M].成都:四川人民出版社,1994:367-372.
    [4]祁英涛.中国古代建筑的保护与维修[M].北京:文物出版社,1986.
    [5]李最雄,汪万福,赵林毅,等.西藏布达拉宫、罗布林卡和萨迦寺空鼓壁画修复模拟实验[J].敦煌研究,2002,76(6):64-77.
    [6]汪万福,马赞峰,于宗仁,等.西藏布达拉宫、罗布林卡和萨迦寺壁画制作材料分析[J].敦煌研究,2002,76(6):78-84.
    [7]马赞峰,汪万福,王雪莹,等.西藏几处重要文化古迹壁画现状考察[J].中国藏学,2002(3):117-125.
    [8]汪万福,李最雄,马赞峰,等.西藏布达拉宫东大殿空鼓病害壁画保护修复研究[J].中国藏学,2005,71(3):214-221.
    [9]李最雄.丝绸之路石窟壁画彩塑保护[M].北京:科学出版社,2005.
    [10]徐勇.敦煌壁画的材料研究[D][博士学位论文].兰州:兰州大学,2007.
    [11]兰燕.新疆米兰遗址壁画研究[D][硕士学位论文].兰州:兰州大学,2008.pp34.
    [12]赵林毅.布达拉宫壁画的保护修复[D][硕士学位论文].兰州:兰州大学,2007.
    [13]高翠凤.复原--永乐宫壁画搬迁始末[D][硕士学位论文].北京:中国艺术研究院,2008.
    [14]徐岩红.永乐宫壁画艺术中的科学技术初探[D][硕士学位论文].太原:山西大学,2004.pp33.
    [15]杜少虎.洛阳汉墓壁画绘作风格辨析[D][硕士学位论文].北京:中国艺术研究院,2003.pp48.
    [16]Frank PREUSSER.Scientific and technical examination of the tomb of Queen Nefertari at Thebes[C]//Sharon CATHER.The conservation of wall paintings - proceedings of a symposium organized by the Courtauld Institute of Art and the Getty Conservation Institute,London,July 14-16,1987.London:Tien Wah Press,1991:1-12.
    [17]Ornella CASAZZA,Sabino GIOVANNONI.Preliminary research for the conservation of the Brancacci Chapel,Florence[C]// Sharon CATHER.The conservation of wall paintings - proceedings of a symposium organized by the Courtauld Institute of Art and the Getty Conservation Institute,London,July 14-16,1987.London:Tien Wah Press,1991:14-19.
    [18]孙兵,顾成权,方云,等.应用超声波检测地仗层空腔区域[J].工程地球物理学报,2004,1(6):484-493.
    [19]黄理兴,高鹏飞,肖国强,等.采用地质雷达探测莫高窟壁画厚度的试验研究[J].辽宁工程技术大学学报(自然科学版),2001,20(4):457-459.
    [20]张得煊,王旭东,郭青林,等.红外热像检测技术在古代壁画空鼓检测中的应用探讨[C]//古遗址保护国际学术讨论会暨国际岩石力学学会区域研讨会,敦煌,2008.
    [21]李云鹤.重层壁画整体揭取迁移技术[J].敦煌研究,1988(3):63-66.
    [22]李最雄,王旭东.榆林窟东崖的岩体裂隙灌浆及其效果的人工监测[J].敦煌研究,1994,39(2):173-184.
    [23]白冰,周健.探地雷达测试技术发展概况及其应用现状[J].岩石力学与工程学报,2001,20(4):527-531.
    [24]章文勋.天线[M].北京:电子工业出版社,2006.
    [25]中华人民共和国交通部.JTG D40-2002公路水泥混凝土路面设计规范[S].北京:人民交通出版社,2002.
    [26]葛如冰,孟凡强.地质雷达检测路面脱空大小的定量计算公式[J].工程勘察,2008,(9):65-68.
    [27]Waheed UDDIN.Ground penetrating radar study - phase Ⅰ:technology review and evaluation[R].Mississippi Department of Transportation,2006.
    [28]张蓓.路面结构层材料介电特性及其厚度反演分析的系统识别方法--路面雷达关键技术研究[D][博士学位论文].重庆:重庆大学,2003.pp44-45,pp57-58.
    [29]David K.CHENG.Field and wave electromagnetics[M].Beijing:Tsinghua University Press,2007.
    [30]粟毅,黄春琳,雷文太.探地雷达理论与应用[M].北京:科学出版社,2006.
    [31]Klaus KN(O|¨)DEL,Gerhard LANGE,Hans J(u|¨)rgen VOIGT.Environmental geology,handbook of field methods and case studies[M].Germany:Springer Berlin Heidelberg,2008.
    [32]Francisco Manuel Carvalho Pinto FERNANDES.Evaluation of two novel NDT techniques:microdrilling of clay bricks and ground penetrating radar[Ph.D.thesis].Portugal:University of Minho,2006.pp254-256.
    [33]Zhi-yong ZHAO.Application of ground penetrating radar to locate subsurface voids in urban areas[Ph.D.thesis].Louisville:University of Louisville,2005.
    [34]刘传孝.探地雷达空洞探测机理研究及应用实例分析[J].岩石力学与工程学报,2000,19(2):238-241.
    [35]刘传孝,蒋金泉,杨永杰.地质雷达应用于探测拱桥、空洞的效果验证[J].岩土力学,2001,22(1):106-108.
    [36]王国群,何开胜.堤防动物洞穴的探地雷达探测研究[J].岩土力学,2006,27(5):838-841.
    [37]Lukasz Konrad TOPCZEWSKI.Improvement and application of ground penetrating radar non-destructive technique for the concrete brigde inspection[Ph.D.thesis].Portugal:University of Minho,2007.
    [38]Remke L.VAN DAM,Wolfgang SCHLAGER.Identifying causes of ground-penetrating radar reflections using time-domain reflectometry and sedimentological analyses[J].Sedimentology,2000(47):435-449.
    [39]刘传孝,蒋金泉,杨永杰.断层特征参数地质雷达探测与识别的应用研究[J].岩土力学,2004,25(5):832-838.
    [40]张丰收,黄宏伟,谢雄耀,等.盾构隧道壁后注浆材料的介电常数测定[J].岩石力学与工程学报,2006,25(增2):3757-3762.
    [41]杜军,黄宏伟,谢雄耀,等.介电常数对探地雷达检测隧道壁注浆效果研究[J].地下空间与工程学报,2006,2(3):420-424.
    [42]杜军,黄宏伟,谢雄耀.注浆材料介电常数在雷达图像识别中的应用[J].岩土力学,2006,27(7):1214-1223.
    [43]杜军.盾构隧道壁后注浆探测图像识别及沉降控制研究[博士学位论文][D].上海:同济大学,2006.
    [44]张丰收.盾构隧道探地雷达探测的介电特性试验、数值模拟及应用[硕士学位论文][D].上海:同济大学,2007.
    [45]钟燕辉.层状体系介电特性反演及其工程应用[博士学位论文][D].大连:大连理工大学,2006.
    [46]梁志刚.土的电磁特性及同轴电缆电磁波反射技术研究[博士学位论文][D].杭州:浙江大学,2005.pp28-33,pp75-77,pp92-93,pp101.
    [47]孙宇瑞.非饱和土壤介电特性测量理论与方法的研究[博士学位论文][D].北京:中国农业大学,2000.
    [48]李文超,王绪本,邓薇.超宽带探地雷达探测性能研究[J].成都理工大学学报(自然科学版),2008,35(2):167-171.
    [49]Fan-nian KONG,Tore Lasse BY.Performance of a GPR system which uses step frequency signals[J].Journal of Applied Geophysics,1995(33):15-26.
    [50]邓薇,王绪本,李文超.基于UWB源的二维地电模型FDTD正演模拟[J].工程地球物理学报,2006,3(6):414-426.
    [51]李廷军,周正欧.探地雷达中双曲线的提取及在波速估计中的应用[J].电波科学学报,2008,23(1): 123-128.
    [52]Tomislaw GOLEBIOWSKI.3D GPR measurements for archaeological application with interpretation aided by numerical modeling[J].Acta Geophysica,2006,54(4):414-429.
    [53]David A.NOON,Glen F.STICKLEY,Dennis LONGSTAFF.A frequency-independent characterisation of GPR penetration and resolution performance[J].Journal of Applied Geophysics,1998(40):127-137.
    [54]MAL(?) GeoScience AB.Centre frequency and lateral resolution[R].Sweden:MAL(?) GeoScience,2007.
    [55]Richard G.PLUMB,David A.NOON,I.Dennis LONGSTAFF,Glen F.STICKLEY.A waveform-range performance diagram for ground-penetrating radar[J].Journal of Applied Geophysics,1998(40):117-126.
    [56]甘露,甘良才,田茂,等.高分辨率探地雷达步进系统的研究与实现[J].电波科学学报,2008,23(3):555-559.
    [57]苏茂鑫.减少吸收衰减影响的高分辨率探地雷达技术研究[D][博士学位论文].长春:吉林大学,2007.
    [58]M.B.WIDESS.How thin is a thin bed?[J].Geophysics,1973,38(6):1176-1180.
    [59]张中兆,沙学军,张乃通,等.超带宽无线电技术[M].北京:电子工业出版社,2005.
    [60]孔令讲,周正欧.浅地表探地雷达中改善成像分辨力的一种有效方法[J].信号处理,2002,18(6):505-508.
    [61]廖立坚,杨新安,黄凯,等.小波域KL变换用于去除探地雷达直耦波[J].工程勘察,2008(6):72-75.
    [62]余志雄,薛桂玉,周创兵.复信号分析技术及其在地质雷达数字处理中的应用[J].岩石力学与工程学报,2005,24(5):798-802.
    [63]张立国,周正欧.浅地层探地雷达回波倒相的自适应处理[J].电子科技大学学报,2004,33(5):514-522.
    [64]刘立业,粟毅,黄春琳,等.采用阻抗匹配抑制探地雷达中的地面杂波[J].现代雷达,2006,28(1):55-58.
    [65]Pedro Xavier NETO,Walter Eug(?)nio de MEDEIROS.A practical approach to correct attenuation effects in GPR data[J].Journal of Applied Geophysics,2006,59(2):140-151.
    [66]Lev KOFMAN,Amit RONEN,Sam FRYDMAN.Detection of model voids by identifying reverberation phenomena in GPR records[J].Journal of Applied Geophysics,2006,59(4):283-299.
    [67]李建勋,肖艳军.超宽带探地雷达信号处理[J].上海交通大学学报,2005,39(9):1513-1517.
    [68]戴景民,汪子君.红外热成像无损检测技术及其应用现状[J].自动化技术与应用,2007,26(1):1-7.
    [69]C.K.HSIEH,X.A.WANG,S.L.YANG.Infrared scanning thermography for a quantitative detection of cavities in a plane slab and a rectangular prism[J].Journal of Nondestructive Evaluation,1982,3(2):94-109.
    [70]陈珏.复合材料内部脱粘的红外检测及理论分析[J].电子器件,1991,14(2):56-62.
    [71]C.K.HSIEH,Zhao-zhuang LIN,S.L.YANG.An inverse problem technique for detecting irregular cavities in circular cylinders by infrared scanning[J].Journal of Nondestructive Evaluation,1984,4(4-4):134-140.
    [72]王艳武,杨立,孙丰瑞.材料内部热阻热容型缺陷的红外检测模拟研究[J].激光与红外,2006,36(8):657-660.
    [73]C.K.HSIEH,Chang-yong CHOI,K.M.LIU.A domain-extension method for quantitative detection of cavities by infrared scanning[J].Journal of Nondestructive Evaluation,1989,8(3):195-211.
    [74]陈珏,耿健.单面法红外无损检测的数学分析与计算机模拟[J].激光与红外,2001,31(3):174-176.
    [75]杨锐玲.红外热成像法探测混凝土缺陷的实验及理论研究[D][硕士学位论文].武汉:武汉大学,2004.
    [76]黄红梅.物体内部孔洞的红外无损检测[D][硕士学位论文].天津:天津理工大学,2006.
    [77]袁仁续.恒定热流持续加热红外热像检测数值模拟及实验研究[D][硕士学位论文].上海:同济大学,2007.
    [78]白渭雄,付全喜,焦光龙.对NETD表达的红外热像仪探测距离的讨论[J].激光与红外,2007,37(12): 1270-1273.
    [79]邢素霞.非制冷红外热成像系统研究[D][博士学位论文].南京:南京理工大学,2005.
    [80]刘晔.非制冷红外焦平面热成像测温系统的研究[D][硕士学位论文].南京:南京理工大学,2003.
    [81]邢向华.非制冷红外热成像测温技术与系统研究[D][硕士学位论文].南京:南京理工大学,2004.
    [82]黄文浩.建筑物外饰层缺陷红外热成像检测方法研究[D][硕士学位论文].南京:南京航空航天大学,2006.
    [83]杨强生,浦保荣.高等传热学[M].上海:上海交通大学出版社,1996.pp14-15,pp88.
    [84]梅林,王裕文,薛锦.红外热成像无损检测缺陷的一种新方法[J].红外与毫米波学报,2000,19(6):457-459.
    [85]蒋淑芳.红外热波无损检测用于材料表面下缺陷类型识别[D][硕士学位论文].北京:首都师范大学,2006.
    [86]李国华,吴立新,吴淼,等.红外热像技术及其应用的研究进展[J].红外与激光工程,2004,33(3):227-230.
    [87]李云红,孙晓刚,杨幸芳,等.红外热像仪测温精度的理论分析[J].西安工程科技学院学报,2007,21(5):635-639.
    [88]裴建新.衰减介质中地质雷达数据正演模拟和叠前偏移方法研究[D][硕士学位论文].青岛:中国海洋大学,2004.pp30-32.
    [89]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2007.pp15-18.
    [90]底青云,许琨,王妙月.衰减雷达波有限元偏移[J].地球物理学报,2000,43(2):257-263.
    [91]雷少刚,卞正富.探地雷达测定土壤含水率研究综述[J].土壤通报,2008,39(5):1174-1183.
    [92]杨建广.高频电磁波数字信号处理研究--在层状介质雷达信号处理中的应用[D][硕士学位论文].长沙:中南大学,2002.pp1-6.
    [93]翟波,杨峰,孙水明,等.地质雷达信号去除水平噪声算法[J].辽宁工程技术大学学报,2006,25(增):88-91.
    [94]许卫锴.用振动红外热像法检测层合结构脱层的初步研究[D][硕士学位论文].武汉:武汉理工大学,2004.
    [95]栗建军.井间电磁测井原理、方法及套管对井间电磁测井影响规律的研究[D][博士学位论文].青岛:中国海洋大学,2004.pp1-14.
    [96]陈微熙.青海气田疏松砂岩浅层气藏出砂规律研究[D][硕士学位论文].北京:中国石油大学,2005.
    [97]孔令讲.浅地层探地雷达信号处理算法的研究[D][博士学位论文].成都:电子科技大学,2003.pp52-63.
    [98]陆群,王成道.基于小波包分析的探地雷达信号处理[J].计算机应用与软件,2003(10):4-5.
    [99]吴建斌,周辉林,田茂.基于小波包的去噪方法在地雷识别中的应用[J].计算机工程与应用,2008,44(18):147-149.
    [100]葛哲学,沙威.小波分析理论与MATLAB R2007实现[M].北京:电子工业出版社,2007.
    [101]陆群.小波包分析和高阶累积量方法在探地雷达信号处理中的应用--目标检测、定位和识别方法研究[D][硕士学位论文].上海:华东师范大学,2001.
    [102]肖志俊.多小波变换对探地雷达信号的去噪处理及工程应用研究[D][硕士学位论文].重庆:重庆大学,2006.
    [103]赵安兴,蒋延生,汪文秉.独立分量分析在探地雷达信号处理中的应用初探[J].煤田地质与勘探,2005,33(6):63-67.
    [104]高倩,吴仁彪,米琦.基于核ICA的探地雷达地杂波抑制[J].现代雷达,2007,29(3):24-27.pp21-23.
    [105]王法松,李宏伟,沈远彤.非线性盲源分离的原理及算法综述[J],信号处理,2005,21(3):282-288.
    [106]李昂,蒋延生,张安学,等.自适应对消在去除探地雷达信号直达波的应用[J].电波科学学报,2004, 19(2):224-227.
    [107]刘家学,汪卫民,吴仁彪.探地雷达中目标的自适应检测与跟踪[J].中国民航学院学报,2003,21(4):5-9.
    [108]吴建斌,俞林,李太全.基于自适应滤波器的地雷背景噪声抑制[J].电子测量技术,2008,31(7):155-158.
    [109]高守传,黄春琳,粟毅.基于RLS横向滤波自适应抵消法的直达波抑制[J].信号处理,2004,20(6):566-571.
    [110]林耀荣.自适应滤波理论及其在回波消除中的应用研究[D][博士学位论文].广州:华南理工大学,1999.
    [111]肖艳军,李建勋.基于小波变换的信号滤波在探地雷达中的应用[J].电波科学学报,2006,21(1):140-146.
    [112]蔡鹏.超宽带带通滤波器的设计理论及其小型化研究[D][博士学位论文].上海:上海大学,2006.
    [113]李禹,黄春琳,粟毅.小波变换域的空间选通滤波算法抑制雷达RFI[J].信号处理,2005,21(3):252-256.
    [114]Nathan BUTLER,曾山,骆明刚.扬声器处理器设置规则[J].扬声器与传声器,2005(2):13-19.
    [115]李太全,田茂,徐继生.复镜像法分析探地雷达天线阻抗特性[J].电波科学学报,2003,18(4):424-427.
    [116]吴小平,何继善,柳建新.电磁波的阻抗变换作用对地质雷达探测效果的影响[J].地球物理学进展,2006,21(1):251-255.
    [117]贾力,方肇港,钱兴华.高等传热学[M].北京:高等教育出版社,2003.
    [118]游伯坤,阚家钜,江兆章.温度测量与仪表--热电偶和热电阻[M].北京:科学技术文献出版社,1990.
    [119]王魁汉.温度测量技术[M].东北工学院出版社,1991.
    [120]钟丽.大尺寸测量中温度测量与控制关键技术研究[D][博士学位论文].哈尔滨:哈尔滨工业大学,2007.
    [121]黄少良.热电偶与红外测温方法比较研究[J].电子质量,2008(6):91-93.
    [122]陈衡.红外物理学[M].北京:国防工业出版社,1985.
    [123]高翔.混凝土路面脱空红外成像检测及有限元数值模拟研究[D][硕士学位论文].武汉:武汉理工大学,2005.
    [124]齐文娟.发射率对红外测温精度的影响[D][硕士学位论文].长春:长春理工大学,2006.
    [125]FLIR Systems.User's manual of ThermaCAM~(TM) Researcher[M].http://www.flirthermography.com,2003.pp105-109.
    [126]汪谋.公路隧道衬砌地质雷达正演数值模拟和室内模型试验的研究[D][硕士学位论文].上海:同济大学,2007.pp1-4,pp14-20.
    [127]陈建勋,李建安.公路隧道二次衬砌厚度的优化[J].交通运输工程学报,2006,6(3):68-72.
    [128]杨建宏,高新强,吴剑.隧道衬砌厚度的分布规律和结构可靠性分析[J].四川建筑,2003,23(1):28-29.
    [129]杨建宏.隧道二次衬砌厚度概率分布特征与可靠度分析[D][硕士学位论文].成都:西南交通大学,2002.
    [130]吴剑,仇文革.隧道衬砌厚度分布规律及结构可靠性分析[J].现代隧道技术,2004,41(1):22-25.
    [131]沈中其,关宝树.铁路隧道围岩分级方法[M].成都:西南交通大学出版社,2000.
    [132]朱栋梁,李成学,徐干成,等.别岩槽隧道注浆加固圈及二次衬砌厚度的确定[J].铁道建筑,2006(11):70-72.
    [133]薛书文,雷雨,陈习权,等.脉冲红外热成像无损检测的物理检测机理[J].电子科技大学学报,2005,34(3):320-322.
    [134]汪子君,刘俊岩,戴景民,等.相位法红外无损检测的传热学分析与有限元仿真[J].红外与毫米波学报,2008,27(5):361-364.
    [135]刘波,李艳红,张小川,等.锁相红外热成像技术在无损检测领域的应用[J].无损探伤,2006,30(3):12-15.
    [136]穆玉伟.基于ANSYS的锁相红外无损检测数值模拟及分析[D][硕士学位论文].大连:大连理工大学,2007.
    [137]张瑜.电磁波空间传播[M].西安:西安电子科技大学出版社,2007.
    [138]刘云浦,宋世谟,王正烈.物理化学[M].北京:高等教育出版社,2006.
    [139]郭成超,王复明.探地雷达电磁波正演模拟研究[J].公路交通科技,2008,25(8):37-41.
    [140]许福永,赵克玉.电磁场与电磁波[M].北京:科学出版社,2005.pp270-273,pp278.
    [141]吴建斌,田茂.基于AD603的时变增益放大器的实现[J].电子测量技术,2008,31(4):29-33.
    [142]中国地质大学(北京)化学分析室.硅酸盐岩石和矿物分析[M].北京:地质出版社,1989.
    [143]单家增,李继亮,等.岩石与矿物的物理性质[M].北京:石油工业出版社,1990.
    [144]MAL(?) GeoScience AB.Rules of thumb[R].Sweden:MAL(?) GeoScience,2003.
    [145]吴群,宋朝晖.微波技术[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [146]赵姚同,周希朗.微波技术与天线[M].南京:东南大学出版社,2003.
    [147]Qing ZHANG,Xue-min CHEN,Xiu-han JIANG,et al.A multi-frequency electromagnetic image system[J].Computer-Aided Civil and Infrastructure Engineering,2003(18):113-120.
    [148]Donatienne LEPAROUX,Dominique GIBERT,Philippe C(?)TE.Adaptation of prestack migration to multi-offset ground-penetrating radar(GPR) data[J].Geophysical Prospecting,2001(49):374-386.
    [149]J.M.CARCIONE,G.SERIANI.An electromagnetic modelling tool for the detection of hydrocarbons in the subsoil[J].Geophysical Prospecting,2000(48):231-256.
    [150]S.E.CHEN,C.K.ONG,C.K.GALLOWAY,et al.Application of surface wave testing for stability determination of earth-bound structures[J].Experimental Techniques,2007(4):20-24.
    [151]Luciana ORLANDO.Detection and analysis of LNAPL using the instantaneous amplitude and frequency of ground-penetrating radar data[J].Geophysical Prospecting,2002(50):27-41.
    [152]T.J.MOSER,C.B.HOWARD.Diffraction imaging in depth[J].Geophysical Prospecting,2007,doi:10.1111/j.1365-2478.2007.00718.x.
    [153]J.M.CARCIONE,G.LENZI,S.VALLE.GPR modelling by the Fourier method:improvement of the algorithm[J].Geophysical Prospecting,1999(47):1015-1029.
    [154]Mohamed RASHED,Koichi NAKAGAWA.High-resolution shallow seismic and ground penetrating radar investigations revealing the evolution of the Uemachi Fault system,Osaka,Japan[J].The Island Arc,2004(13):144-156.
    [155]Isabelle LECOMTE,Svein-Erik HAMRAN,Leiv-J.GELIUS.Improving Kirchhoff migration with repeated local plane-wave imaging:A SAR-inspired signal-processing approach in prestack depth imaging[J].Geophysical Prospecting,2005(53):767-785.
    [156]Raymond H.JOHNSON,Eileen P.POETER.Interpreting DNAPL saturations in a laboratory-scale injection using one- and two-dimensional modeling of GPR data[J].Ground Water Monitoring and Remediation,2005,25(1):159-169.
    [157]S.DARAYAN,C.LIU,L.C.SHEN,et al.Measurement of electrical properties of contaminated soil[J].Geophysical Prospecting,1998(46):477-488.
    [158]J.SCHLEICHER,A.NOVAIS,F.P.MUNERATO.Migration velocity analysis by depth image-wave remigration:first results[J].Geophysical Prospecting,2004(52):559-573.
    [159]Kimberly BELLI,Sara WADIA-FASCETTI,Carey RAPPAPORT.Model based evaluation of bridge decks using ground penetrating radar[J].Computer-Aided Civil and Infrastructure Engineering,2008(23):3-16.
    [160]Maksim BANO.Modelling of GPR waves for lossy media obeying a complex power law of frequency for dielectric permittivity[J]. Geophysical Prospecting, 2004(52): 11-26.
    [161] Julia ARMESTO, Pedro ARIAS, Javier ROCA, et al. Monitoring and assessing structural damage in historic buildings[J]. The Photogrammetric Record, 2008, 23(121): 36-50.
    [162] M.G HOLMES. Monitoring vegetation in the future: radar[J]. Botanical Journal of the Linnean Society, 1992(108): 93-109.
    [163] Kees WAPENAAR, Evert SLOB, Roel SNIEDER. Seismic and electromagnetic controlled-source interferometry in dissipative media[J]. Geophysical Prospecting, 2008(56): 419-434.
    [164] A. DASIOS, C. MCCANN, T.R. ASTIN, et al. Seismic imaging of the shallow subsurface: shear-wave case histories[J]. Geophysical Prospecting, 1999(47): 565-591.
    [165] Gian Piero DEIDDA, Gaetano RANIERI. Some SH-wave seismic reflections from depths of less than three metres[J]. Geophysical Prospecting, 2001(49): 499-508.
    [166] Jeffrey E. PATTERSON, Frederick A. COOK. Successful application of ground-penetrating radar in the exploration of gem tourmaline pegmatites of southern California[J]. Geophysical Prospecting, 2002(50): 107-117.
    [167] H.M. PEDLEY, I. HILL, P. DENTON, et al. Three-dimensional modelling of a Holocene tufa system in the Lathkill Valley, north Derbyshire, using ground-penetrating radar[J]. Sedimentology, 2000(4): 721-737.
    [168] Shivprakash R. LYER, Sunil K. SINHA, Andrea J. SCHOKKER. Ultrasonic C-scan imaging of post-tensioned concrete bridge structures for detecion of corrosion and voids[J]. Computer-Aided Civil and Infrastructure Engineering, 2005(20): 79-94.
    [169] M. PIPAN, L. BARADELLO, E. FORTE. 2-D and 3-D processing and interpretation of multi-fold ground penetrating radar data: a case history from an archaeological site[J]. Journal of Applied Geophysics, 1999(41): 271-292.
    [170] N.S. DUXBURY, S.S. ABYZOV, V.E. ROMANOVSKY, et al. A combination of radar and thermal approaches to search for methane clathrate in the Martian subsurface[J]. Planetary and Space Science, 2004(52): 109-115.
    [171] James A. DOOLITTLE, Mary E. COLLINS. Acomparison of EM induction and GPR methods in areas of karst[J]. Geoderma, 1998(85): 83-102.
    [172] M. SCOTT, A. REZAIZADEH, A. DELAHAZA, et al. A comparison of nondestructive evaluation methods for bridge deck assessment[J]. NDT&E International, 2003(36): 245-255.
    [173] Burak POLAT, Peter MEINCHE. A forward model for ground penetrating radar imaging of buried perfect electric conductors within the physical optics approximation[J]. International Journal of Electronics and Communications, 2004(58): 362-366.
    [174] Irene C. PEDEN, John BREW. A laboratory scale model for the study of subsurface scattering in low-loss media with applications to ground penetrating radar[J]. Journal of Applied Geophysics, 1995(33): 109-118.
    [175] William A. SAUCK. A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments[J]. Journal of Applied Geophysics, 2000(44): 151-165.
    [176] Faezeh Sh.A. GHASEMI, M.S. ABRISHAMIAN. A novel method for FDTD numerical GPR imaging of arbitrary shapes based on Fourier transform[J]. NDT&E International, 2007(40): 140-146.
    [177] Andreas LOIZOS, Christina PLATI. Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches[J]. NDT&E International, 2007(40): 147-157.
    [178] H. STOFFREGEN, U. YARAMANCI, T. ZENKER, et al. Accuracy of soil water content measurements using ground penetrating radar: comparison of ground penetrating radar and lysimeter data[J]. Journal of Hydrology, 2002(267): 201-206.
    [179] B. SCHMALZ, B. LENNARTZ, D. WACHSMUTH. Analyses of soil water content variations and GPR attribute distributions[J]. Journal of Hydrology, 2002(267): 217-226.
    [180] N. FARNOOSH, A. SHOORY, R. MOINI, et al. Analysis of thin-wire ground penetrating radar systems for buried target detection, using a hybrid MoM-FDTD technique[J]. NDT&E International, 2008(41): 265-272.
    [181] Oliver Sass. Bedrock detection and talus thickness assessment in the European Alps using geophysical methods[J]. Journal of Applied Geophysics, 2007, doi: 10.1016/j.jappgeo.2006.12.003.
    [182] Andrew T. CHAMBERLAIN, William SELLERS, Chris PROCTOR, et al. Cave detection in limestone using ground penetrating radar[J]. Journal of Archaeological Science, 2007(27): 957-964.
    [183] Anicet BEAUVAIS, Michel RITZ, Jean-Claude PARISOT, et al. Combined ERT and GPR methods for investigating two-stepped lateritic weathering systems[J]. 2004(119): 121-132.
    [184] Vincent CHAPLOT, Christian WALTER, Pierre CURMI, et al. Combining geophysical methods to estimate the spatial distribution of soils affected by water saturation[J]. Comptes Rendus Geosciences, 2004(336): 553-560.
    [185] J. HUGENSCHMIDT. Concrete bridge inspection with a mobile GPR system[J]. Construction and Building Materials, 2002(16): 147-154.
    [186] Giovanni LEUCCI. Contribution of ground penetrating radar and electrical resistivity tomography to identify the cavity and fractures under the main Church in Botrugno (Lecce, Italy)[J]. Journal of Archaeological Science, 2006(33): 1194-1204.
    [187] Dora CARREON-FREYRE, Mariano CERCA, Martin HERNANDEZ-MARIN. Correlation of near-surface stratigraphy and physical properties of clayey sediments from Chalco Basin, Mexico, using Ground Penetrating Radar[J]. Journal of Applied Geophysics, 2003(53): 121-136.
    [188] L. PAJEWSKI, G. SCHETTINI, F. FREZZA. Cylindrical-wave approach for the electromagnetic scattering problem by buried two-dimensional objects[J]. Journal of Applied Geophysics, 2008, doi: 10.1016/j.jappgeo.2008.03.001.
    [189] Philip M. REPPERT, F. Dale MORGAN, M. Nafi TOKSOZ. Dielectric constant determination using ground-penetrating radar reflection coefficients[J]. Journal of Applied Geophysics, 2000(43): 189-197.
    [190] Timo SAARENKETO. Electrical properties of water in clay and silty soils[J]. Journal of Applied Geophysics, 1998(40): 73-88.
    [191] Yuichi NAKASHIMA, Hui ZHOU, Motoyuki SATO. Estimation of groundwater level by GPR in an area with multiple ambiguous reflections[J]. Journal of Applied Geophysics, 2001(47): 241-249.
    [192] E. CARDARELLI, C. MARRONE, L. ORLANDO. Evaluation of tunnel stability using integrated geophysical methods[J]. Journal of Applied Geophysics, 2003(52): 93-102.
    [193] M. BERNABINI, E. PETTINELLI, N. PIERDICCA, et al. Field experiments for characterization of GPR antenna and pulse propagation[J]. Journal of Applied Geophysics, 1995(33): 63-76.
    [194] L.W. GALAGEDARA, G.W. PARKIN, J.D. REDMAN, et al. Field studies of the GPR ground wave method for estimating soil water content during irrigation and drainage[J]. Journal of Hydrology, 2005(301): 182-197.
    [195] Stanislav VITEBSKIY. Short-pulse, ultra-wideband ground penetrating radar[Ph. D. thesis]. New York: Polytechnic University (Polytechnic Institute of New York University), 1996.
    
    [196] Steven D. SLOAN, Georgios P. TSOFLIAS, Don W. STEEPLES, et al. High-resolution ultra-shallow subsurface imaging by integrating near-surface seismic reflection and ground-penetrating radar data in the depth domain[J]. Journal of Applied Geophysics, 2007, doi: 10.1016/j.jappgeo.2007.01.001.
    [197] Lars Magne HALDORSEN. Thermoelastic stress analysis system developed for industrial applications [Ph. D. thesis]. Denmark: Aalborg University, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700