不同经营类型毛竹林土壤活性有机碳的差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在庙山坞自然保护区选择粗放和集约两种经营类型的毛竹(Phyllostachys pubescens)林作为研究对象,通过设置典型样地,采用土壤分层取样和化学分析等方法研究了不同经营类型毛竹林土壤各种活性有机碳的差异,探讨了不同经营类型毛竹林土壤总有机碳和各种活性有机碳的季节动态,为改善毛竹林土壤质量和毛竹林的可持续经营提供理论指导。研究结果表明:
     ( 1 )集约经营后毛竹林0~10和10~20 cm土层土壤总有机碳含量分别下降了7.01%和18.90%,易氧化碳含量分别下降了31.22%和46.03%,水溶性有机碳分别下降了11.89%和11.50%,0~20 cm土层轻组有机质含量下降了19.87%。
     ( 2 )两种毛竹林的土壤有机碳在剖面上,整体均随土层深度的增加而呈下降趋势,但下降幅度不同。两种毛竹林土壤易氧化碳剖面特征与总有机碳相似。两种毛竹林水溶性有机碳在剖面上下降幅度波动大,且水溶性有机碳含量表层与下层相差不大。轻组有机质具有表聚性,主要分布在土壤表层(0~20 cm)。
     ( 3 )集约经营后,毛竹林水溶性有机碳碳素有效率与粗放经营的大小关系并不明显。而毛竹林0~10 cm土层土壤易氧化碳碳素有效率和土壤碳库活度则分别下降了26.01%和50.52%,差异达到显著水平(p < 0.05);10~20 cm分别下降了35.51%和54.41%。因此,施加适当配比的有机肥和无机肥,有利于土壤各种有机碳的积累,也可改善土壤生物化学活性。
     ( 4 )土壤总有机碳、易氧化碳、水溶性有机碳、轻组有机质与土壤养分之间的相关性均达到显著或极显著水平,除水溶性有机碳与速效磷相关性不显著。
     ( 5 )集约经营毛竹林土壤总有机碳、水溶性有机碳和水溶性有机碳碳素有效率的季节动态规律与粗放经营的一致。但两种经营类型下的毛竹林土壤易氧化碳、易氧化碳碳素有效率和碳库活度季节动态规律不同,分别为:
     a:两种毛竹林土壤易氧化碳季节动态均呈现先下降后上升再下降的变化趋势,集约经营毛竹林土壤易氧化碳含量最大值15.77 g·kg~(-1)(0~10 cm)出现在秋季,冬季最小值12.15g·kg~(-1)(0~10 cm)。而粗放经营毛竹林春季达到最大值21.11 g·kg~(-1)(0~10 cm),夏季最小值10.69 g·kg~(-1)(0~10 cm)。
     b:两种经营类型下的毛竹林土壤碳库活度季节动态趋势与易氧化碳碳素有效率相同,集约经营毛竹林土壤碳库活度先上升,夏季达到最大值1.28(0~10 cm)后下降(最小值出现在冬季,0~10 cm碳库活度为0.87);粗放经营毛竹林该值四季动态呈现先下降至后上升又下降的趋势,最大值1.92(0~10 cm)出现在春季,最小值0.64(0~10 cm)出现在冬季。
     总之,集约经营后,毛竹林总有机碳和各种活性有机碳下降。两种经营类型毛竹林土壤各种有机碳指标季节动态不尽相同。
Bamboo stands under intensive management(IM) and extensive management(EM) in Miaoshanwu Nature Reserve in Zhejiang were studied. Based on soil samples, chemical analysis and otherwise in intensively and extensively managed bamboo stands, the changes in lablie organic carbon(LOC) under different management types were researched, on other hand, dynamics of total organic carbon(TOC) and LOC with seasons were discussed. It provided a theoretical foundation for sustainable management and improvement of the soil fertility. The results were as follows:
     (1)Under IM, TOC were decreased by 7.01% and 18.90%, readily oxidized carbon (ROC) decreased by 31.22% and 46.03% and Water soluble organic carbon(WSOC) decreased by 11.89% and 11.50% in 0~10 and 10~20 cm soil layers, respectively. And light fraction organic matter (LFOM) was decreased 19.87% in the 0~20 cm soil layer.
     (2)Under the two types of management, SOC were decreased with increasing of soil depths, but both of the drop ranges were different. The vertical distribution of ROC under IM and EM paralleled that of TOC. The drop ranges of WSOC under the two types of management were showed fluctuation, and the WSOC content in an underlying soil layers were not much lower in surface layer. LFOM tended to accumulate in surface layer (0~20 cm).
     (3) There were not apparent differences between IM and EM in the percentage of WSOC to TOC. While after IM, the percentage of ROC to TOC and activity of carbon pool significantly dropped by 26.01% and 50.52%(p < 0.05) respectively in the 0~10 cm soil layer and dropped by 35.51% and 54.41% respectively in the 10~20 cm soil layer. Therefore, a mixture of organic and inorganic manures with the proper ratio should be applied to promote SOC and improve biological and chemical soil activity.
     (4)TOC, ROC, WSOC and LFOM were strongly correlated with soil nutrients(p < 0.01 or p < 0.05), but WSOC was not significantly related to available P.
     (5)The yearly dynamics of TOC, WSOC, and the percentage of WSOC to TOC under IM were the same as EM. But the yearly dynamics of ROC, the percentage of ROC to TOC and activity of C pool under two management types of bamboo stands were different, as follows:
     a: Dynamics of ROC under both IM and EM were decreased firstly, increased, and then decreased. Two peaks, which under EM in spring and summer, were measured in autumn and winter under IM.
     b: Dynamics of activity of C pool under two management types of bamboo stands were the same as the percentage of ROC to TOC. Activity of C pool under IM was decreased firstly and reached a minimum in winter, which was increased and reached a maximum in summer. That under EM was the same as ROC, which was at a maximum level in spring and reached a minimum in winter.
     In conclusion, IM causes TOC and various LOC to decline. Dynamics of various LOC under two management types of bamboo stands don't quite hang together.
引文
[1] IPCC (Intergovernmental Panel on Climate Change).Climate Change 2007: the Science of Climate Change(R). Cambridge University Press, Cambridge
    [2] Woodwell G M, Whitaker R H, Reiners W A, et al. The biota and the world carbon budget[J]. Science, 1978, 199: 141-146
    [3]肖洋,碳责任与碳实力:后哥本哈根时代的国际秩序与中国碳外交[J].国际论坛, 2011, 13(1): 40-44
    [4] Post W M, Emanuel W R, Zinke P J, et al. Soil pools and world life zones[J]. Nature, 1982, 298: 156-159
    [5]周国模,刘恩斌,佘光辉.森林土壤碳库研究方法进展[J].浙江林学院学报, 2006, 23(2): 207-216
    [6]肖复明.毛竹林生态系统碳平衡特征的研究[D].中国林科院博士论文. 2007, 2-12
    [7]郭起荣,杨光耀,杜天真等.中国竹林的碳素特征[J].世界竹藤通讯2005, 3(3): 25-28
    [8]周国模,姜培坤.毛竹林的含碳率和碳贮量及其空间分布[J].林业科学, 2004, 40(6): 20-24
    [9]周国模,吴家森,姜培坤.不同管理模式对毛竹林碳贮量的影响[J].北京林业大学学报, 2006, 28(6): 51-55
    [10]王燕.江西大岗山毛竹林生态系统碳平衡研究[D].中国林业科学研究院硕士论文, 2008,3-4
    [11]张国防,缪碧华.毛竹经营管理的研究进展[J].福建林学院学报, 2000, 20(4): 375-379
    [12]楼一平,我国毛竹林长期立地生产力问题及其研究展望[C].中国科协第三届青年学术年会, 1998(3)
    [13]张璐,张文菊,徐明岗等.长期施肥对中国3种典型农田土壤活性有机碳库变化的影响[J].中国农业科学, 2009, 42(5): 1646-1655
    [14]沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报, 2000, 37(2): 166-173
    [15]何艺玲.不同类型毛竹林林下植被的发育状况及其与土壤养分关系的研究[D].中国林科院硕士论文, 2000,8-9
    [16] Coleman D C, Reid C P P, Cole C V. Biological strategies of nutrient cycling in soil systems[J]. Advances in Ecological Research. 1983,13: 1-55
    [17] Wander M M, Traina S J, Stinner B R, et al. Organic and conventional management effects on biologically active soil organic matter pools[J]. Soil Sci Soc Am J,1994, 58(4): 1130-1139
    [18]杨丽霞.利用森林生态系统循环综合模型模拟土壤有机碳动态变化[D] .南京农业大学硕士论文, 2004
    [19]方晰,田大伦,项文化等.杉木人工林土壤有机碳的垂直分布特征[J].浙江林学院学报, 2004, 21(4): 418-423
    [20] Batjes N H, Dijkshoorn J A. Carbon and nitrogen stocks in the soils of the Amazon region[J]. Geoderma, 1999, 89:273-286
    [21] Post W M, King A M, Wullschleger S D. Soil organic matter models and global estimates of soil organic carbon[A].In: Powlson D S, Smith P, Smith J U. Evaluation of soil organic matter models[C].Berlin Heidelberg: Spring Verlag, 1996, 201-224
    [22] Ajtay G L, Ketner P, and Duvigneaud P. Terrestrial primary production and phytomass[J]. The Global Carbon Cycle, John Wiley&Sons, Chichester, NewYork: 1979, 129-182
    [23]朱连奇,朱小立,李秀霞.土壤有机碳研究进展.河南大学学报(自然科学版)[J], 2006, 36(3): 72-75
    [24] Dixon R K, Brown S, Houghton R A. et al. Carbon pools and flux of global forest ecosystem[J].Science, 1994, 264(14): 185-190
    [25] Houghton R A. Land-use change and the carbon cycle[J]. Global Change Biology, 1995, l: 275-287
    [26]潘根兴.中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义[J].南京农业大学学报, 1999, 22(1): 51-57
    [27]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报, 2000, 24(5): 518-522
    [28]李克让主编.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社, 2002: 1-3
    [29]方运霆,莫江明, Sandra Brown等.鼎湖山自然保护区土壤有机碳贮量和分配特征[J].生态学报, 2004, 24(l): 135-142
    [30] Zhou G Y, Liu S G, Li Z, et al. Old-growth forests can accumulate carbon in soils. Science, 2006, 314: 1417
    [31]骆士寿,陈步峰,陈永富等.海南霸王岭热带山地雨林采伐经营初期土壤碳氮储量[J].林业科研究, 2000, 13(2): 123-128
    [32]李跃林,彭少麟,赵平等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报, 2002, 20(5): 548-552
    [33]王金叶,车克钧,张学龙等.祁连山森林土壤碳的初步研究[J].甘肃农业大学学报, 1996, (4): 356-360
    [34]邵月红,潘剑君,许信旺等.长白山森林土壤有机碳库大小及周转研究[J].水土保持学报, 2006, 20(6): 99-102
    [35]杨金艳,王传宽.东北东部森林生态系统土壤碳贮量和碳通量[J].生态学报, 2005, 25(11): 2875-2882
    [36]张城,王绍强,于贵瑞等.中国东部地区典型森林类型土壤有机碳储量分析[J].资源科学, 2006, 28(2): 97-103
    [37]马少杰,李正才,周本智等.北亚热带天然次生林群落演替对土壤有机碳的影响[J].林业科学研究, 2010, 23(6): 845-849
    [38]李正才,徐德应,傅懋益等.北亚热带土地利用变化对土壤有机碳垂直分布特征及储量的影响[J].林业科学研究, 2007, 20(6): 744-749
    [39]李正才,傅懋毅,徐德应等.农田营造早竹林后土壤有机碳的变化[J].林业科学研究, 2006, 19(6): 773-777
    [40]李正才,杨校生,蔡晓郡等.竹林培育对生态系统碳储量的影响[J].南京林业大学学报:自然科学版, 2010, 34(1): 24-28
    [41]黄承才.浙江省毛竹林和茶园土壤碳库的研究[J].绍兴文理学院学报,2001,21(1):55-57
    [42]沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志, 1999, 18(3): 32-38
    [43] Oades J M, and Ladd, J N. Biochemical properties: carbon and nitrogen metabolism[J]. Soil Factors in Crop Production in a Semi - arid Environment, 1977, 127-160
    [44] Christensen B T. Physical fractionation of soil and organic matter in primary particle size and density separates[J]. Advances in Soil Science. Springer Verlag, New York, Inc. 1992, 20: 1-90
    [45]杨丽霞,潘剑君.土壤活性有机碳库测定方法研究进展[J].土壤通报, 2004, 35(4): 502-506
    [46] Dalal R C,and Mayer R J. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern queensland[J]. VI. Loss of total nitrogen from different particle size and density fraction. Australian Journal of Soil Research. 1987, 25(1): 83-93
    [47]王晶,解宏图,朱平等.土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志, 2003,22(6): 109-112
    [48] Janzen H H. Soil organic matter characteristics after long-term cropping to various spring wheat rotations[J]. Canadian Journal of Soil Science, 1987, 67: 845-856
    [49] Boone R D. Light-fraction soil organic matter:origin and contribution to net nitrogen mineralization[J]. Soil Biology and Biochemistry, 1994, 26(11): 1459-1468
    [50] Cambardella C A, Elliott E T. Particulate soil organic-matter across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777-783
    [51]吴建国,徐德应.土地利用变化对土壤有机碳的影响——理论、方法和实践[M].北京:中国林业出版社, 2004, 29-30
    [52] Balesdent J. The significance of organic separates to carbon dynamics and its modelling in some cultivated soils[J]. Europ. J. Soil Sci.,1996, 47(4):485-493
    [53] Bernoux M, Arrouays D, Cerrir C C et al. Modeling vertical distribution of carbon in oxisols of the western Brazilian amazon(Rondonia)[J]. Soil Science, 1998, 163: 941-951
    [54] Solomon D, Lehmann J, Zech W L. Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania:carbon, nitrogen, lignin and carbonhydrates[J]. Agriculture Ecosystems and Environment, 2000, 78: 203-213
    [55] Motavalli P P, Discekici H , Kuhn J. The impact of land clearing and agricultural practices on soil organic C fractions and CO2 efflux in the Northern Guam aquifer [J]. Agriculture Ecosystems and Environment, 2000, 79(1): 17-27
    [56]吴建国,张小全,王彦辉等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学, 2002, 38(4): 19-29
    [57] Blair G J, Lefroy R D, and Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Aus. J. Agric.Res., 1995, 46(7): 1459-1466
    [58] Biederbeck B O and Zentner R P. Labile soil organic matter as influenced by cropping practices in a nared environment[J]. Soil Biol. Biochem., 1994, 26(12): 1647-1656
    [59] Loginow W, Wisniewski W, Gonet S S et al. Fractionation of organic carbon based on susceptibility to oxidation[J]. Polish Journal of Soil Science, 1987, 20(1): 47-52
    [60]于容.长期施肥土壤活性有机碳的变化及其与土壤性质的关系[D].中国农业科学院硕士论文,2001, 18-19
    [61] Polglase P J, Jokela E J, Comerford N B. Phosphorus, nitrogen, and carbon fractions in litter and soil of southern pine plantations[J]. Soil Sci.Soc. Am.J., 1992, 56(2): 566-573
    [62]周国模.毛竹林生态系统中碳储量、固定及其分配与分布的研究[D].浙江大学博士论文,2006,25-93
    [63] Jenkinson D S. Microbial biomass in soil: Measurement and turnover[J]. Soil biochemistry, 1981, 5: 415-472
    [64] Okano S, Nisho M, Sawada Y. Turnover rate of soil biomass nitrogen in the root mat layer of pasture. [J]. Soil Sci.Plant Nutr., 1987, 33(3): 373-386
    [65] Henrot J, Philip G R. Vegetation removal in two soils of the humid tropics: effect on microbial biomass[J]. Soil Biol. Biochem., 1994, 26(1):111-116
    [66] Vance E D, Brookes P C, Jenkinson D C. An extraction method for measuring soil microbial biomass C[J]. Soil Biol. Biocherm., 1987, 19(6): 703-707
    [67] West A W, Sparling G P, Speir T W. Microbial activity in gradually dried or rewetted soils as governed by water and substrate availability[J]. Australian Journal of Soil Research, 1989, 27: 747-757
    [68]徐秋芳.森林土壤活性有机碳库的研究[D].浙江大学博士论文, 2003, 20-27
    [69] Bolan N S, Baskaran S, Thiagarajan S. An evaluation of the methods of measurement of dissolved organic carbon in soils, manures, sludges and stream water[J]. Communications in Soil Science and Plant Analysis, 1996, 27(13/14):2723-2737
    [70] McDowell W H, Likens G E. Origin, composition and flux of dissolved organic carbon in the Hubbard Brook Valley[J]. Ecol.Monogr, 1988, 58(3): 177-195.
    [71]曹建华,潘根兴,袁道先等.岩溶地区土壤溶解有机碳的季节动态及环境效应[J].生态环境, 2005, 14(2): 224-229
    [72]王连峰,潘根兴.酸沉降影响下庐山森林生态系统土壤溶液溶解有机碳分布[J].植物营养与肥料学报, 2002, 8(1): 29-34
    [73] Mcdowell W H. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils[J]. J, 1998, 105(1/2): 175-182
    [74] Moore T R, Souza W D, Koprivnjak J F. Controls on the sorption of dissolved organic carbon by soils[J]. Soil Science, 1992, 154(2): 120-129
    [75] McInerney M, Bolger T. Temperature, wetting cycles and soil texture effects on carbon and nitrogen dynamics in stabilized earthworm casts[J]. Soil Biol.& Biochem., 2000, 32(3): 335-349
    [76] Drury C F, Stone J A, Findlay W I. Microbial biomass and soil structure associated with corn, grasses and legumes[J]. Soil Sci. Soc. Am. J., 1991, 55(3): 805-811
    [77] Whitbread A M, Lefroy R D B, Blair G J. A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales[J]. Australian Journal of soil Research, 1998, 36: 669-681
    [78] Hassink J. Relationship between the amount and the activity of the microbial biomass in Dutch grassland soils: Comparison of the fumigation-incubation method and the substrate-induced respiration method[J]. Soil Biol.Biochem., 1993, 25(5): 533-538
    [79] Chang F H, Alexander M.. Effects of simulated acid precipitation on decomposition and leaching of organic carbon in forest soils[J]. Soil Sci., 1984, 138(3): 226-234
    [80] Cronan C S. Comparative effects of precipitation acidity on three forest soils: carbon cycling responses[J]. Plant and Soil, 1985, 88(1):101-112
    [81] Andersson S, Nilsson S I, Saetre P. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH[J]. Soil Boil. & Biochem., 2000, 32(1): 1-10
    [82] Whitehead D C, Dibb H, Hartley R D. Extractant pH and the release of phenolic compounds from soils, plant roots and leaf litter[J]. Soil Biol.& Biochem., 1981, 13(5):343-348
    [83] Jardine P M, Weber N L, McCarthy J F. Mechanism of dissolved organic carbon adsorption on soil[J]. Soil Sci. Soc. Am. J. 1989, 53(5): 1378-1385
    [84] Guggenberger G, Zech W, Schulten H R. Formation and mobilization pathways of dissolved organic matter: Evidence from chemical structural studies of organic matter fractions in acid forest floor solutions[J]. Org. Geochem. 1994, 21(1): 51-66
    [85]张甲坤,陶澎,曹军,等.土壤中水溶性有机碳测定中的样品保存与前处理方法[J].土壤通报, 2000, 31(4): 174-176
    [86] Wang F L, Bettany J R. Influence of freeze-thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil[J]. J. Environ. Qua1., 1993, 22(4): 709-714
    [87] Christ M J, David M B. Dynamics of extractable organic carbon in spodosol forest floors[J]. SoilBiology and Biochemistry, 1996, 28(9): 1171-1179
    [88] Dosskey M G, Bertsch P M. Transport of dissolved organic matter through a sandy forest soil[J]. Soil Sci. Soc. Am. J., 1997, 61(3): 920-927
    [89] Lundquist E J, Jackson L E, Scow K M. Wet±dry cycles affect dissolved organic carbon in two California agricultural soils. Soil Biol. Biochem., 1999, 31:1031-1038
    [90] Nelson P N, Cotsaris E, Oades J M.. Nitrogen, phosphorus, and organic carbon in streams draining two grazed catchments[J]. J. Environ. Qual., 1996, 25(6):1221-1229
    [91] Sharpley A N, Chapra S C, Wedepohl R, et al. Managing agricultural phosphorus for protection of surface waters: issues and options[J]. J. Environ. Qual., 1994, 23(3): 437-451
    [92] Mazzarino M J, Jiménez-Burgos J M, Szott L T. Dynamics of soil total C and N, microbial biomass, and water-soluble C in tropical agroecosystems[J]. Soil Biol. Biochem., 1993, 25(2): 205-214
    [93] Sparling G P, West A W. Importance of soil water content when estimating soil microbial C, N and P by the fumigation-extraction methods[J]. Soil Biology and Biochemistry, 1989, 21(2): 245-253
    [94] Boone R D. Light-fraction soil organic matter: origin and contribution to net nitrogen mineralization[J]. Soil Biology and Biochemistry, 1994, 26(11): 1459-1468
    [95]谢锦升,杨玉盛,杨智杰等.退化红壤植被恢复后土壤轻组有机质的季节动态[J].应用生态学报, 2008, 19(3): 557-563
    [96] Crow S E, Swanston C W, Lajtha K, et a1. Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context[J]. Biogeochemistry, 2007, 85: 69-90
    [97]姜培坤,徐秋芳.施肥对雷竹林土壤活性有机碳的影响[J].应用生态学报, 2005, 16(2): 253-256
    [98] Gregorich E G, Liang B C, Ellert B H, et a1. Fertilization effects on soil organic matter turnover and corn residue C storage[J]. Soil Sci. Soc. Am. J., 1996, 60(2): 472-476
    [99]倪进治,徐建民,谢正苗等.不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究[J].土壤学报, 2003, 40(5): 724-730
    [100]魏朝富,高明.有机肥对紫色水稻土水稳性团聚体的影响[J].土壤通报, 1995, 26(3): 114-116
    [101]张付申.长期施肥条件下蝼土和黄绵土有机质氧化稳定性研究[J].土壤肥料, 1996, 6: 32-34
    [102]王晶,朱平,张男等.施肥对黑土活性有机碳和碳库管理指数的影响[J].土壤通报, 2003, 34(5): 394-397
    [103] Gregorich E G, Ellert B H, C M Monreal. Tumover of soil organic matter and storage of corn residue carbon estimated from natural 13C abundance[J]. Canadian Journal of Soil Science, 1995, 75(2):161-167
    [104] Cronan C S, Lakshman S, Patterson H H. Effects of disturbance and soil amendments on dissolved organic carbon and organic acidity in red pine forest floors[J]. Journal of Environmental Quality, 1992, 21(3): 457-463
    [105]曹建华,潘根兴,袁道先等.不同植物凋落物对土壤有机碳淋的影响及岩溶效应[J].第四纪研究, 2000, 20(4): 151-155
    [106]李淑芬,俞元春,何晟.土壤溶解有机碳的研究进展[J].土壤与环境, 2002, 11(4): 422-429
    [107] Franzluebbers A J, Hons F M, Zuberer D A. Soil organic carbon, microbial biomasss, and mineralizable carbon and nitrogen in sorghum[J]. Soil Science Society of America Journal, 1995, 59(2): 460-466
    [108]张金波,宋长春,杨文燕. 2005.土地利用方式对土壤水溶性有机碳的影响[J].中国环境科学, 25(3): 343-347
    [109]高云超,朱文珊,陈文新.土壤微生物生物量周转的估算.生态学杂志, 1993, 12(6): 6-10
    [110] Dalal R C, Henry R J. Cultivation effects on carbohydrate contents of soil and soil fractions[J]. Soil Science Society of America Journal, 1998, 52(5): 1361-1365
    [111] Trouve C, Mariotti A, Schwartz D. Soil organic carbon dynamics under Eucalyptus and Pinus planted on savannas in the Congo[J]. Soil Biochem, 1994, 26(2):287-295
    [112]姜培坤,徐秋芳,杨芳.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报, 2003, 20(1): 8-11
    [113] Dawson H J, Ugolini F C, Hrutfiord B F, et al. Role of soluble organics in the soil processes of a podzol, central Cascades, Washington[J]. Soil Sci, 1978, 126(5): 290-296
    [114] Balesdent J, Mariott A. Natural 13C abundance as a tracer for studies of soil organic matter dynamics[J]. Soil Biol Biochem, 1987, 19(1): 25-30
    [115] Janzen H H, Campbell C A, Brandt S A, et a1. Light-fration organic matter in soils from long-term crop rotations[J]. Soil Science Society of America Journal, 1992, 56(6):1799-1806
    [116]杨玉盛,刘艳丽,陈光水等.格氏栲天然林与人工林土壤非保护性有机碳研究[J].生态学报, 2004, 24(1): 1-8
    [117]徐秋芳,徐建明,姜培坤.集约经营毛竹林土壤活性有机碳库研究[J].水土保持学报, 2003, 17(4): 15-17
    [118] Johnson C E, Johnson A H, Huntington T G, et a1. Whole-tree clear-cutting effects on soil horizons and organic-matter polls[J]. Soil Sci. Soc. Am. J., 1991, 55(2): 497-502
    [119] Moore T R. Dynamics of dissolved organic carbon in forested and disturbed catchment Westland, New Zealand: 1. Maimai[J]. Water Resources Research, 1989, 25(6):1331-1339
    [120] Meyer J L, Edwards R T, Risley R. Bacterial growth on dissolved organic carbon from blackwater river[J]. Microb.Eco., 1987, 13:13-29
    [121] Heyes A, Moore T R. 1992. The influence of dissolved organic carbon and anaerobic conditions on mineral weathering[J]. Soil Sci., 154(3): 226-236
    [122] Quideau S A, Bockheim J G. Biogeochemical cycling following planting to red pine on a sandy prairie soil[J]. Journal of environmental quality, 1997, 26(4): 1167-1175
    [123] Collier K J, Jackson R J, Winterbourn M J. Dissolved organic carbon dynamics of developed and undeveloped catchments in Westland, New Zealand[J]. Arch Hydrobiol., 1989, 117(1): 21-38
    [124]周国模,徐建明,吴家森等.毛竹林集约经营过程中土壤活性有机碳库的演变[J].林业科学, 2006, 42(6): 124-128
    [125] LY/T 1237-1999.森林土壤有机质的测定及碳氮比的计算[S].1999
    [126] Besnard E, Chenu C, Balesdent J, et al. Fate of particulate organic matter in soil aggregates during cultivation[J]. European Journal of Soil Science, 1996, 47(4): 495-503
    [127] Spycher G, Sollins P, and Rose S. Carbon and nitrogen in the light fraction of a forest soil: vertical distribution and seasonal patterns[J]. Soil Science, 1983, 135(2): 79-87
    [128] Kalbitz K., Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: A review[J]. Soil Science, 2000, 165(4): 277-304
    [129]任天志, Grego S.持续农业中的土壤生物指标研究[J].中国农业科学, 2000, 33 (1): 68-75
    [130]姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学, 2005, 41(1): 10-13
    [131]赵鑫,宇万太,李建东等.不同经营管理条件下土壤有机碳及其组分研究进展[J].应用生态学报, 2006, 17(11): 2203-2209
    [132]徐秋芳,俞益武,钱新标等.湖州市材用笋用毛竹林土壤理化性质比较分析[J].浙江林学院学报, 2003, 20(1): 102-105
    [133]张海林,秦耀东,朱文珊.耕作措施对土壤物理性状的影响[J].土壤, 2003, 35(2): 140-144
    [134]谢锦升,杨玉盛,解明曙等.植被恢复对退化红壤轻组有机质的影响[J].土壤学报, 2008, 45(1): 170-175
    [135]魏朝富,谢德体,陈世正.紫色水稻土有机无机复合与土粒团聚的关系[J].土壤学报, 1996, 33(1): 70-77
    [136] Sierra J. Nitrogen mineralization and its error of estimation under field conditions related to the light-fraction soil organic matter. Australian Journal of Soil Research, 1996, 34,755-767
    [137]魏朝富,陈世正,谢德体.长期施用有机肥料对紫色水稻土有机无机复合性状的影响[J].土壤学报, 1995, 32(2): 159-166
    [138]俞元春,赵永艳,曾曙才.苏南丘陵不同林分类型土壤养分的动态特性[[J].浙江林学院学报, 1998, 15(1): 32-36
    [139]王连峰,潘根兴,石盛莉等.酸沉降影响下庐山森林生态系统土壤溶液溶解有机碳分布[J].植物营养于肥料学报, 2002, 8(1): 29-34
    [140]Huang Z Q, Xu Z H, Chen C R, and Sue Boyd. Changes in soil carbon during the establishment of a hardwood plantation in subtropical Australia[J]. Forest Ecology and Management, 2008, 254(1): 46-55
    [141]Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson D W, Minkkinen K, and Byrne K A. How strongly can forest management influence soil carbon sequestration[J]. Geoderma, 2007,137(3-4):253-268
    [142] Alvarez R, Alvarez C R, Daniel P E, et a1. Nitrogen distribution in soil density fractions and its relation to nitrogen mineralization under different tillage systems[J]. Australia Journal Soil Research, 1998, 36(2): 247-256

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700