水曲柳和落叶松细根生产、死亡和周转及其对长期施肥的反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林细根的生产和周转作为陆地生态系统中碳和养分循环的重要组成部分已得到广泛认可。目前,大气N沉降在全球范围内持续增加,这将会对树木的细根动态和生长产生重大影响。因此,细根动态与土壤N有效性的关系也越来越受到生态学家的关注。本研究以18年生水曲柳(Fraxinus mandshurica)和落叶松(Larix gmelinii)人工林为例,施肥处理同时运用微根管对两树种进行连续五年的动态观测,结果表明:
     两树种的细根生产和死亡在施肥样地和对照样地均表现出明显季节动态。细根生产主要发生在夏季(6月-7月);细根死亡主要发生在夏末和秋季(8月-10月)。相关分析表明,大气温度变化可以解释水曲柳细根生产量55%和落叶松细根生产量66%的变异,降雨量变化可以解释水曲柳细根生产量28%和落叶松细根生产量27%的变异。施肥后,使水曲柳细根生产和大气温度的相关性增加14%,降雨量相关性增加21%,落叶松变化很小。细根的死亡受环境因子影响较小,仅水曲柳在施肥后细根的死亡量与大气温度指数负相关。
     水曲柳细根生长量和死亡量均大于落叶松。随着观测时间的增加,两树种细根生产量和死亡呈逐年减低的趋势。综合5年平均生产量和死亡量发现,施肥使水曲柳生产量增加,死亡量降低;均降低了落叶松的细根生产量和死亡量,但是差异不显著(P>0.05)。在不同年际间,施肥降低了两树种2004年的细根生产量,有增加两树种2005-2008年细根生产量趋势。死亡量变化不同于生产量,施肥降低了两树种2004-2006年细根死亡量,增加了水曲柳2007-2008年细根死亡量和落叶松2007年细根死亡量。
     两树种细根生长和死亡均集中在0-20 cm土壤中,综合5年不同土层的细根平均生产量和死亡量发现,水曲柳0-20 cm细根生产量占年细根生产量的62%左右,死亡量占72%左右;落叶松0-20 cm细根生产量占年细根生产量的65%左右,死亡量占64%左右。施肥后,使水曲柳0-20 mm细根生产量和死亡量降低,30-40 cm细根生产量和死亡量增加。而落叶松0-20 mm和30-40 cm的细根生产量和死亡量均降低。在不同年际间,随着施肥时间的延长,水曲柳0-20 cm细根生产量和死亡量占年生产量比例均呈先减小后增加的趋势。2005年达到最小,而落叶松这种比例在5年内逐年减小。
     落叶松的细根周转率要明显大于水曲柳的细根周转率(P<0.05)。综合5年平均周转率发现,施肥降低了两树种细根周转率,但差异不显著(P>0.05)。在不同年际间,2004年,施肥使水曲柳细根周转加快,落叶松细根周转降低,但在2006-2008年均降低了两树种细根周转。
     直径大小影响细根生产、死亡和周转。0-0.5 mm细根生产量和死亡量以及周转率大于0.5-2.0 mm的细根。从细根5年平均生产量和死亡量以及周转率来看,施肥使两树种0-0.5 mm的细根生产量和死亡量降低,0.5-2.0 mm的细根生产量和死亡量增加。同时,施肥增加了水曲柳0-0.5 mm细根周转率,对0.5-2.0 mm细根没有影响;降低了落叶松0-0.5 mm细根5年的平均周转率,增加了0.5-2.0 mm细根5年的平均周转率。
     综合分析表明:两树种细根的生产、死亡和周转可能受树种内在因素和外在环境因素的相互作用控制。
Root production and turnover is an important component of the C and nutrient budget in the terrestrial ecosystems. N deposition continue increasing all over the world, which have an important effect on root dynamic and growth. So the relationship between root dynamic and soil available nitrogen is a major issue of ecologist. In the study, manchurican ash (Fraxinus mandshurica) and davurian larch (Larix gmelinii), two of the important forest trees in northeastern China, were used as the experimental materials. Fine root dynamic was monitored in situ by minirhizotron technique across five years. The main results were below:
     Root production and turnover showed obvious seasonal dynamic in control and N fertilization plots in the two plantations. Root production occurred in June and July primarily, root death occurred from August to October. Correlation analysis showed the change of atmosphere temperature accounted for 55% and 66% of root production in ash and larch plantation. The change of rainfall accounted for 28% and 27% of root production in ash and larch plantation. The relationship between root production and atmosphere temperature were increased by 14% by N fertilization in ash plantation. The relationship between root production and rainfall were increased by 21% by N fertilization in ash plantation. The changes is tiny in larch plantation. The environmental factors have little effect on root death. There were significant negative correlation between root mortality and the atmosphere temperature.
     Root production and mortality in ash plantation was higher than in larch plantation. Root production and mortality were declining year by year across five years. N fertilization increased mean root production of five years, and decreased the root mortality in ash plantation. N fertilization have no significant effect on root production and mortality in larch plantation. N fertilization decreased root production in 2004, and increased root production in 2005-2008 in the two plantations. The changes of root mortality were differ from root production. N fertilization decreased root mortality in 2004-2006 in the two plantations, increased root mortality in 2007-2008 in ash plantation and in 2007 in larch plantation. Root production and mortality were foucus in 0-20cm of the soil in the two plantations. Root production accounted for 62% in 0-20cm of the soil, root mortality accounted for 72% in ash plantation of the five years.
     Root production accounted for 65% in 0-20cm of the soil, root mortality accounted for 64% in larch plantation. N fertilization root production and mortality decreased in 0-20cm of the soil in ash plantation, while increased in 30-40cm of the soil. N fertilization root production and mortality decreased in 0-40cm of the soil in larch plantation. The percent of root production and mortality in 0-20cm of the soil decreased across fertilization time. Root turnover rate was higher in larch plantation than in ash plantation. N fertilization decreased root turnover rate in the two plantations. N fertilization increased root turnover rate in 2004 in ash plantation, while decreased in larch plantation. N fertilization decreased root turnover rate in 2006-2008 in the two plantations.
     Root diameter effect root production, death and turniver. Root production, death and turniver was higher of 0-0.5 mm diameter than 0.5-2.0 mm. N fertilization decreased root production and death of 0-0.5 mm in the two plantations, while 0.5-2.0mm increased. N fertilization increased root turniver rate of 0-0.5 mm, have no effect on 0.5-2.0 mm root in ash plantation. N fertilization decreased root turniver rate of 0-0.5 mm, increased 0.5-2.0 mm root in larch plantation.
     As a whole, root production, death and turnover were controled by intermediate factor and experimental factor.
引文
[1]张小全,吴可红.树木细根生产与周转研究方法评述.生态学报,2000(5):875~882
    [2]单建平,陶大立.国外对材木细根的研究动态.生态学杂志,1992,(4):46~49.
    [3]Vogt, K.A., D.J. Vogt, P.A. Palmiotto, P. Boon, J.O. Hara, H. Asbjornsen. Review of root dynamics in forest ecosystems grouped by climate, climatic for-est type and species. Plant and Soil,1996,187:159~219
    [4]张小全.森林细根生产和周转研究.林业科学,2001,(3):126~138
    [5]Arthur, M.A., T.J. Fahey. Biomass and Nutrients in an Engelmann Spruce Subalpine Fir Frost in North Central Colorad:Pool, Annual Production and Internal Cycling. Can. J. For. Res,1992,22:315~325
    [6]Vogt, K.A., C.C. Grier, D.J. Vogt. Production, turnover and nutrient dynamics of above~ and belowground detritus of world forests,Adv. Ecol. Res,1986,15:303~377
    [7]Norby, R.J., R.B. Jackson. Root Dynamics and Global Change:Seeking an Ecosystem Perspective. New Phytologist,2000,147:3~12
    [8]Glinski, D.S., H.A. Mills, K.J. Karnok, R.N. Carrow. Nitrogen Form Influences Root Growth of Sodded Creeping Bentgrass. Hortscience,1990,25(8):932~933
    [9]Vogt, K.A., D.A. Publicover, Bloomfield J, Pereza JM, Vogta DJ, Silver WL. Belowground responses as indicators of environmental change. Environ Exp Bot,1993,33:189~205
    [10]Schlesinger W.H. Biogeochemistry:an Analysis of Global Change. San Diego, California, USA:Academic Press,1997
    [11]Nadelhoffer, K.J., J.D. Aber, J.M. Melillo. Fine roots, Net primary Production, and Soil Nitrogen Availability:a New Hypothesis. Ecology.1985,66:1377~1390
    [12]Aerts, R., F.S. Chapin. The Mineral Nutrition of Wild Plants Revisited:a Reevaluation of Processes and Patterns. Adv Ecol Res,2000,30:1-67
    [13]郭大立,范萍萍.关于氮有效性影响细根生产量和周转率的四个假说.应用生态学报,2007,18(10):2354~2360
    [14]Pregitzer. K.S., J.A. Deforest, A.J. Burton, M.F. Allen, R.W. Ruess, R.L. Hendrick. Fine Root Architecture of Nine North American Trees. Ecological Monographs,2002,72: 293-309
    [15]程云环,韩有志,王庆成,王政权.落叶松人工林细根动态与土壤资源有效性关系研究.植物生态学报,2005,29(3):403~410
    [16]梅莉,韩有志,于水强,史建伟,王政权.水曲柳人工林细根季节动态及其影响因素.林业科学,2006,42(9):7~12
    [17]王向荣,王政权,韩有志,谷加存,郭大立,梅莉.水曲柳和落叶松不同根序之间细 根直径的变异研究.植物生态学报,2005,29(6):871~877
    [18]徐文静,王政权,范志强,孙海龙,贾淑霞,吴楚.遮荫对水曲柳幼苗细根衰老的影响.植物生态学报,2006,30(1):104-111
    [19]于水强,王政权,史建伟,全先奎,梅莉,孙玥,贾淑霞,于立忠.水曲柳和落叶松细根寿命的估计.植物生态学报,2007,31(1):102~109
    [20]全先奎,于水强,史建伟,于立忠,王政权.微根管法和同位素法在细根寿命研究中的应用及比较.生态学杂志,2007,26(3):428~434
    [21]史建伟,王政权,于水强,全先奎,孙玥,贾淑霞,梅莉.落叶松和水曲柳人工林细根生长、死亡和周转.植物生态学报,2007,31(2):333~342
    [22]张秀娟,吴楚,梅莉,韩有志,王政权.水曲柳和落叶松人工林根系分解与养分释放.应用生态学报,2006,17(8):1370~1376.
    [23]宋森,谷加存,全先奎,郭大立,王政权.水曲柳和兴安落叶松人工林细根分解研究.植物生态学报,2008,32(6):1227~1237
    [24]Harris, W.F., R.S. Kinerson, N.T. Edwards. Comparison of belowground biomass in natural deciduous forests and loblolly pine plantations. Pedobiologia,1977,17:369~381
    [25]张其水,俞新妥.连栽杉木林的根系研究.植物生态与地植物学报,1991,15:374~379
    [26]杨玉盛,林先富,俞新妥,邹双全.杉木套种山苍子模式的结构与生物量初步研究.福建林学院学报,1991,11(4):341~348
    [27]李凌浩,林鹏,邢雪荣.武夷山甜槠林细根生物量和生长量研究.应用生态学报,1998,9(4):337~341
    [28]单建平,陶大立,王淼,赵士洞.长白山阔叶红松林细根周转的研究.应用生态学报,1993,4(3):241~245
    [29]杨玉盛,陈光水,何宗明,陈银秀,谢锦升.杉木观光木混交林群落细根净生产力及周转.林业科学,2001,37(专刊1):35~41
    [30]Zogg, G.P., D.R. Zak, A.J. Burton. Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability. Tree Physiol,1996,16(8):719~725
    [31]Santantonio, D., J.C. Grace. Estimating Fine-root Production and Turnover from Biomass and Decomposition Data:a Compartment-flow Model. Canadian Journal of Forest Research,1987,17:900~908
    [32]张小全.环境因子对树木细根生物量、生产与周转的影响.林业科学研究,2001,14(5):566~573
    [33]李俊英,王孟本,史建伟.应用微根管法测定细根指标方法评述.生态学杂志,2007,26(11):1842~1848
    [34]Kavenagh, T., M. Kellman. Seasonal Pattern of Fine Root Proliferation in a Tropical Dry Forest. Biotropica,1992,24:157~165
    [35]Chapin, F.S., P.A. Matson, H.A. Mooney. Principles of terrestrial ecosystem ecology. Alaska:Department of Biological Sciences,2002
    [36]Burke, M.K., D.J. Raynal. Fine Root Growth Phenology, Production, and Turnover in a Northern Hardwood Forest Ecosystems. Plant and Soil,1994,162:135~146
    [37]Hendrick. R.L., K.S. Pregitzer. The Dynamics of Fine Root. Length, Biomass, and Nitrogen Content in two Northern Hardwood Ecosystems. Can J, For.Res.1993,23: 2507~2520
    [38]Steele. S.J., S.T. Gower, J.G. Vogel, J.M. Norman. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiology,1997,17:577~587
    [39]Arunachalam, J., H. Emons, B. Krasnodebska, C. Mohl. Sequential extraction studies on homogenized forest soil samples. Science of the Total Environment,1996,181(2): 147~159
    [40]Hendrick, R.L., K.S. Pregitzer. The Demography of Fine Roots in a Northern Hardwood Forest. Ecologi,1992,73:1094~1104
    [41]周本智,傅懋毅.庙山坞自然保护区毛竹林细根生产和周转研究.江西农业大学学报,2008,30:239~245
    [42]Hendrick, R.L., K.S. Pregitzer. Applications of Minirhizotrons to Understand Root Function in Forests and other Natural Ecosystems. Plant and Soil,1996,185:293~304
    [43]Ruess, R.W., K.V. Geve, J. Yarie, L.A. Viereck. Contributions of Fine Root Production and Turnover to the Carbon and Nitrogen Cycling in Taiga Forests of the Alaskan Interior. Can. J. For. Res,1996,26:1326~1336
    [44]史建伟,于水强,于立忠,韩有志,王政权,郭大立.微根管在细根研究中的应用.应用生态学报,2006,17(4):715~719
    [45]Gill, R.A., R.B. Jackson. Global patterns of root turnover for terrestrial ecosystems. New Phytologist,2000,147:13~31
    [46]Lawson, G.J., Roots in Tropical Agroforestry System (Appendix 1), In:Cannell M.G.R., N.M.J.Crout, R.C.Ikwar, et al (eds), Annual Report June 1993-June 1994 of Agroforestry Modelling and Research Coordination, ODA Forestry Research Programme RS651.1995: 1-25
    [47]杨丽韫,李文华.长白山原始阔叶红松林细根分布及其周转的研究.北京林业大学学报,2005,27(2):1~5
    [48]Eissenstat. D.M., R.D. Yanai. The Ecology of Root Lifespan. Advances in Ecological Research,1997,27:1-60
    [49]Baddeley, J.A., C.A. Watson. Influences of Root Diameter, Tree Age, Soil Depth and Season on Fine Root Survivorship in Prunus avium. Plant and Soil,2005,276:15~22
    [50]Wells, C.E., D.M. Eissenstat. Marked Differences in Survivorship among Apple Roots of Different Diameters. Ecology,2001,82:882~892
    [51]Pregitzer, K.S., M.J. Laskowski, A.J. Burton, V.C. Lessard, D.R. ZaK. Variation in Sugar Maple Root Respiration with Root Diameter and Soil Depth. Tree Physiology,1998,18: 665~670
    [52]Black, K.E., C.G. Harbron, M. Franklin, D. Atkinson, J.E. Hooker. Differences in Root Longevity of Some Tree Species. Tree Physiol,1998,18:259~264
    [53]Kosola, K.R. D.M. Eissenstat, J.H. Graham. Root Demography of Mature Citrus Trees:the Influence of Phytophthora Nicotianae. Plant and Soil,1995,171:283~288
    [54]King, J.S., T.J. Albaugh, L.H. Allen, L.W. Kress. Stand-level Allometry in Pinus taeda as Affected by Irrigation and Fertilization. Tree Physiology.1999,19:769~778
    [55]Majdi, H. Changes in Fine Root Production and Longevity in Relation to Water and Nutrient Availability in a Norway spruce Stand in Northern Sweden. Tree Physiology,2001, 21:1057~1061
    [56]Tingey, D.T., D.L. Phillips, J M.G. ohnson. Elevated CO2 and Conifer Roots:Effects on Growth, Life Span and Turnover. New Phytol,2000,147:87~103
    [57]Bowen, G.D. Soil temperature, root growth, and plant function [A]. In:Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots:The Hidden Half. New Yok:Marcel Dekker Inc,1991, 309~330
    [58]Ryan, M.G., A simple method for estimating gross carbon budgets for vegetation in forest ecosystems. Tree Physiology,1991,9(1-2):255-266
    [59]Sutton, R.F. Soil Properties and Root Development in Forest Trees:a Review. Information Report O-X-413, Ministry of Natural Resources, Ontario, Canada,1991
    [60]Tryon, P.R., F.S. Chapin. Temperature Control over Root Growth and Root Biomass in Taiga Forest Trees. Can J For Res,1983,13:827~833
    [61]Pregitzer, K.S., R.L. Hendrick, R. Fogel. The Demography of Fine Roots in Response to Patches of Water and Nitrogen. New Phytologist,1993,125:575~580
    [62]Shaver, G.R., F.S. Chapin. Long-term responses to factorial, NPK fertilizer treatment by Alaskan wet and moist tundra sedge species,1995,18:259~275
    [63]Joslin J.D., M.H. Wolfe, P.J. Hanson. Factors Controlling the Timing of Root Elongation Intensity in a Mature Upland Oak Stand. Plant and Soil.2001,228:201~212
    [64]Kaetterer, T., A. Fabiao, M. Madeira, C. Ribeiroc, E. Steen. Fine-root Dynamics, Soil Moisture and Soil Carbon Content in Eucalyptus globules Plantation under Different Irrigation and Fertilization Regimes. For Ecol Manage,1995,74:1-12
    [65]Leuschner C., D. Hertel, I. Schmid, O. Koch, A. Muhs, D. Holscher. Stand Fine Root Biomass and Fine Root Morphology in Old-growth Beech Forests as a Function of Precepitation and Soil Fertility. Plant and Soil.2004,258(1):43~56
    [66]Fabiao A., M. Madeira, E. Steen. Development of Root Biomass in Eucalyptus globules Plantation under Different Water and Nutrient Regimes. Plant and Soil.1995,168/169: 215~223
    [67]West, J.B., J.F. Espeleta, L.A. Donovan. Fine root production and comples edaphic gradint of a Pinus palustris-Aristida stricta savanna ecosystem. Forest Ecology and Management, 2004,189:397~406
    [68]Marshall, J.D., R.H. Waring. Predieting fine root Produetion and turnover bymoni-toring root starch and soil temPerature. Can.J. For.Res.1985,15:751~800,
    [69]Sword, M.A., D.A. Gravatt, P.L. Faulkner, J.L. Chambers. Seasonal Branch and Fine Root Growth of Juvenile Loblolly Pine five Growing Seasons after Fertilization. Tree Physiology,1996,16:899~904
    [70]Espeleta, J.F., D.M. Eissenstat. Responses of Citrus Fine Roots to Localized Soil Drying:a Comparison of Seedlings with Adult Fruiting Trees. Tree Physiology,1998,18:113~119
    [71]Hallgren, S.W., G.G. Tauer, J.E. Lock. Fine Root Carbohydrate Dynamics of Loblolly Pine Seedlings Grown under Contrasting Levels of Soil Moisture. For Sci,1991,37:766-780
    [72]Teskey RO, Hinckley TM. Influence of Temperature and Water Potential on Root Growth of White Oak. Physiol Plant.1981,52:363~369
    [73]Huang, B., P.S. Nobel. Hydraulic Conductivity and Anatomy for Lateral Roots of Agave Deserti during Root Growth and Drought Induced Abscission. J Exp Bot.1992,43: 1441~1449
    [74]Espeleta, J.F., D.M. Eissenstat, J.H. Graham. Citrus Root Responses to Localized Drying Soil:a New Approach to Study Mycorrhizal Effects on the Roots of Mature Trees. Plant and Soil,1999,206:1~10
    [75]Espeleta, J.F. The fate of citrus roots in surface dry soil:effects of tree juvenility and mycorrhizal status. MS. Thrsis, University of Florida, Gainesville.1995
    [76]Hendricks. J.J., K.J. Nadelhoffer, J.D. Aber. Assessing the Role of Fine Roots in Carbon and Nitrogen Cycling. Trees,1993,8:174~178
    [77]Linkohr, B.I., L.C. Williamson, A.H. Fitter, Leyser, HMO. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant Journal,2002,29 (6):751~760
    [78]Gower, S.T., K.A. Vogt, C.C. Grier. Carbon Dynamics of Rocky Mountain Douglas-fir: Influence of Water and Nutrient Availability. Ecological Monographs,1992,62:43~65
    [79]Majdi H. Changes in Fine Root Production and Longevity in Relation to Water and Nutrient Availability in a Norway spruce Stand in Northern Sweden. Tree Physiology.2001, 21:1057~1061
    [80]Johnson, M.G., D.L. Phillips, D.T. Tingey.Effects of elevated CO2, N2 fertilizati on, and season onsurvival of ponder osapine fine roots. Canadian Journal of Forest Research,2000, 30:220~228
    [81]Albaugh, T.J., H.L. Allen, P.M. Dougherty, et al. Leaf area and above and bel owground growth res ponses of loblolly pine to nutrient and water additi ons. ForestScience,1998, 44:317~328
    [82]King, J.S., T.J. Albaugh, H.L. Allen, M. Buford, B.R. Strain, Dougherty p. Belowground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist,2002,154(3):389~398
    [83]Alexander, I.J. R.I. Fairley. Effects of N fertilization on populations of fine roots and mycorrhizae in spruce humus. Plant and Soil,1983,71:49~53
    [84]Majdi, H., J.E. Nylund. Does Liquid Fertilization Affect Fine Root Dynamics and Lifespan of Mycorrhizal Short Roots Plant and Soil,1996,185:305~309
    [85]Nadelhoffer, K.J. The Potential Effects of Nitrogen Deposition on Fine-root Production in Forest Ecosystems,2000,147:131~139
    [86]Burton, A.J., K.S. Pregitzer, R.L. Hendrick. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia,2000,125(3): 389~399
    [87]Ostertag, R. Effects of Phosphorus and Nitrogen Availability in Fine Root Dynamics in Hawaiian Montane Forests. Ecology,2001,82:485~499
    [88]Vogt, K.A., H. Persson. Measuring Growth and Development of Roots. In Techniques and Approaches in Forest Tree Ecophysiology (ed. Lassoie J.P. and T.M. Hinckley), CRC Press, Boca Raton, Florida,1991,477~501
    [89]Mcclaugherty, C.A., J.D. Aber, J.M. Melillo. Decompision dynamics of fine roots in forested ecosystems. Oikos,1984,42:378~386
    [90]Persson, H.A., Root dynamics in a young Scots pine stand in central Sweden. Oikos,1978, 30:508~519
    [91]Fairley, R.I., I.J. Alexander. Methods of calculating fine root production in forests. Irish Naturalists' Journal,1985,4:37~42
    [92]Vogt, K.A., D.J. Vogt, J. Bloomfield. Analysis of Some Direct and Indirect Methods for Estimating Root Biomass and Production of Forests at an Ecosystem Level. Plant and Soil, 1998,200:71~89
    [93]Coleman, M.D., R.E. Dickson, J.G. Isebrands, D.F. Kamosky. Root growth and physiology of potted and field-grown trembling aspen exposed to tropispheric ozone. Tree Physiology, 1996,16:145~152
    [94]George, E., H. Marschner. Nutrient and Water Uptake by Roots of Forest Trees.Zeitschrift fur Pflanzenernahrung und Bodenkulture,1996,159:11~21
    [95]Fahey, T.J., J.W. Hughes. Fine Root Dynamics in a Northern Hardwood Forest Ecosystem, Hubbard Brook Experimental Forest, NH.J.Ecol,1994,82:533~548
    [96]Majdi, H., P. Kangas. Demography of Fine Roots in Response to Nutrient Applications in a Norway spruce Stand in Southwestern Sweden. Ecoscience,1997,4:199~205
    [97]Joslin, J.D., G.S. Henderson. Organic Matter and Nutrients Associated with Fine Root Turnover in a White Oak Stand. For. Sci,1987,33:330~346
    [98]黄建辉,韩兴国,陈灵芝.森林生态系统根系生物量研究进展.生态学报,1999,19(2):270~277
    [99]McMichael, B.L., H.M. Taylor. Applications and limitations of rhizotrons and minirhizotrons. In:Taylor H.M.edMinirhizotron Observation Tubes:Methods and Applications for Measuring Rhizosphere Dynamics. Madison:ASA Spec. Publ.no.50. ASA, CSSA, SSSA, Inc,1987,1~13
    [100]Majdi, H., J.E. Nylund. Does Liquid Fertilization Affect Fine Root Dynamics and Lifespan of Mycorrhizal Short Roots Plant and Soil,1996,185:305~309
    [101]Pregitzer, K.S., D. Zak, P. Curtis, M. Kubiske, J. Teeri, C Vogel. Atmospheric CO2, Soil Nitrogen and Turnover of Fine Roots. New Phytol,1995,129:579-585
    [102]Wells, C.E., D.M. Glenn, D.M. Eissenstat. Soil Insects Alter Fine Root Demography in Peach (Prunus persica). Plant, Cell and Environment,2002,25:431~439
    [103]Parker, C.J., M.K.V. Carr, N.J. Jarvis, B.O. Puplampu, V.H. Lee. An evaluation of the minirhizotron technique for estimating root distribution in potatoes. J. Agric.Sci,1991,116: 341~345
    [104]史建伟.施肥对水曲柳和落叶松细根动态影响研究.博士论文,东北林业大学,2006
    [105]Joslin, J.D., M.H. Wolfe. Disturbances during Minirhizotron Installation can Affect Root Observation Data. Soil Science Society of America Journal,1999,63:218~221
    [106]Johnson, M.G., D.T. Tingey, D.L. Phillips, M.J. Storm. Advancing Fine Root Research with Minirhizotrons. Environmental and Experimental Botany,2001,45:263~289
    [107]Bazzaz, F.A. The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics,1990,21:167~196
    [108]Steinaker, D.F., S.D. Wilson. Belowground litter contributions to nitrogen cycling at anorthern grassland forest boundary. Ecology,2005,86(10):2825~2833
    [109]Janssens, I.A., D.A. Sampson, Y.J. Curiel, A. Carrara, R. Ceulemans. The carbon cost of fine root turnover in a Scots pine forest. Forest Ecology and Management,2002,168: 231-240
    [110]陈光水,何宗明,谢锦升,杨玉盛,蒋宗垲.福建柏和杉木人工林细根生产力、分布及周转的比较.林业科学,2004,40(4):15~21
    [111]廖利平,陈楚莹.杉木、火力楠纯林及混交林细根周转的研究.应用生态学报,1995, 6(1):7-10
    [112]McMichael, B.L., J.J. Burke. Temperature Effect on Root Growth. In:Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots:The Hidden Half (second edition, revised and expanded). New York:Marcel Dekker Inc,1996,383~396
    [113]Pregitzer, K.S., J.S. King, A.J. Burton, S.E. Brown. Responses of tree fine roots to temperature. New Phytologist,2000,147(1):105~115
    [114]荀俊杰,李俊英,陈建文,史建伟,王孟本.幼龄柠条细根现存量与环境因子的关系.植物生态学报,2009,33(4):764~771
    [115]Hendricks, J.J., R.L. Hendrick, C.A. Wilson, R.J. Mitchell, S.D. Pecot, D.L. Guo. Assessing the patterns and controls of fine root dynamics an empirical test and methodological review. Journal of Ecology,2006,94:40~57
    [116]武维华,植物生理学.北京:科学出版社,2003
    [117]Gholz, H.L., L.C. Hendry, W.P. Cropper. Organic matter dynamics of fine roots in plantations of slash pine (Pinus elliottii) in north Florida. Canadian Journal of Forest Research,1986,16(3):529~538
    [118]吴楚,范志强,王政权.磷胁迫对水曲柳幼苗叶绿素合成、光合作用和生物量分配格局的影响.应用生态学报,2004,15(6):935~940
    [119]于立忠,丁国泉,朱教君,史建伟,于水强,王政权.施肥对日本落叶松人工林细根生物量的影响.应用生态学报,2007,18(4):713~720
    [120]于立忠,丁国泉,史建伟,于水强,朱教君,赵连富.施肥对日本落叶松人工林细根直径、根长和比根长的影响.应用生态学报,2007,18(5):957~962
    [121]Pritchard, S.G., A.E. Strand, M.L.McCormack, M.A. Davis, A.C. Finzi, R.B. Jackson, R. Matamala, H.H. R. Rogers, Oren. Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2-enrichment:a six-year-minirhizotron study. Global Change Biology,2008,14:1~15
    [122]于水强,王政权,史建伟,于立忠,全先奎.N肥对水曲柳和落叶松细根的影响.应用生态学报,2009,20(10):1~8
    [123]Hendricks, J.J., J.D. Aber, K.J. Nadelhoffer, R.D. Hallett. Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems,2000,3:57-69
    [124]Pregitzer, K.S., D.R. Zak, A.J. Burton, J.A. Ashby, N.W. MacDonald. Chronic nitrate additions dramatically increase the export of car-bon and nitrogen from northern hardwood ecosystems. Biogeochemistry,2004.68:179~197
    [125]Majdi, H., P. Anderson. Fine Root Production and Turnover in a Norway spruce Stand in Northern Sweden:Effects of Nitrogen and Water Manipulateion. Ecosystems,2005,8: 191~199
    [126]Albaugh, T.J., H.L. Allen, P.M. Dougherty, L.W. Kress, J.S. King. Leaf Area and Above- and Belowground Growth Responses of Loblolly Pine to Nutrient and Water Additions. Forest Science,1998,44(2):317~328
    [127]Pregitzer, K.S., M.E. Kubiske, C.K. Yu, R.L. Hendrick. Relationships among Root Branch Order, Carbon, and Nitrogen in four Temperate Species. Oecologia,1997,111: 302~308
    [128]Kosola K.R., D.M. Eissenstat, J.H. Graham. Root Demography of Mature Citrus Trees: the Influence of Phytophthora Nicotianae. Plant and Soil,1995,171:283~288
    [129]Zobel, R. Fine Roots-Discarding Flawed Assumptions. New Phytologist,2003,160: 276~278
    [130]梅莉,王政权,程云环,郭大立.林木细根寿命及其影响因子研究进展.植物生态学报,2004,28(4):704~710
    [131]Ford, E.D., J.D. Deans. Growth of a Sitka spruce plantation:Spatial distribution and seasonal fluctuations of lengths, weights and carbohydrate concentrations of fine roots. Plant and Soil,1977,47:463~485
    [132]Schmid, I., M. Kazda. Root distribution of Norway spruce in monospecific and mixed stands on different soils. Forest Ecology and Management,2002,159:37~47
    [133]Powell, S.W., F.P. Day, Jr. Root Production in Four Communities in the Great Dismal Swamp. American Journal of Botany,1991,78:288~297
    [134]韦兰英,上官周平.黄土高原不同演替阶段草地植被细根垂直分布特征与土壤环境的关系.生态学报,2006,26(11):3740-3748
    [135]Canadell, J.G., L.F. Pitelka, J.S.I. Ingram. The Effects of Elevated CO2 on Plant-soil Carbon Belowground:a Synthesis. Plant and Soil,1996,187:391~400
    [136]燕辉,苏印泉,李吉平,朱昱燕,季志平.秦岭北坡刺槐人工林细根垂直分布及其与土壤养分的关系.水土保持研究,2008,15(3):65~73
    [137]Persson T., A. Rudebeck, M. Jussy, M.C. Belgrand, A. Prieme, E. Dambrine, P.S. Karlsson, R.M. Sjoberg. Soil Nitrogen Turnover-Mineralisation, Nitrification and Denitrification in European Soils. In:Carbon and Nitrogen Cycling in European Forest Ecosystems (Eds E.-D. Shulze). Ecological Studies 142, Springer-Verlag, Berlin,2000, pp: 297~331.
    [138]Fujimaki R., R. Tateno, M. Hirobe, N. Tokuchi, H. Takeda. Fine Root Mass in Relation to Soil N Supply in a Cool Temperate Forest. Ecological Research.2004,19:559~562
    [139]范世华,李培芝,王力华,许思明.杨树人工林下根系的N素循环与动态特征.应用生态学报,2004,15(3):387~390
    [140]卫星,张国珍.树木细根主要研究领域及展望.中国农学通报,2008,24(5):143~147
    [141]Schoettle, A.W., T.J. Fahey. Foliare and fine root longevity of pines. Ecological Bulletins, 1994,43:136~153
    [142]Rytter, R.M., A.C. Hansson. Seasonal amount, growth and depth distribution of fine roots in an irrigated and fertilizedSalixviminalisL. Plantation. Biomass and Bioenergy,1996, 11(2-3):129~137
    [143]Tierney, G.L., T.J. Fahey. Fine Root Turnover in a Northern Hardwood Forest:a Direct Comparison of the Radiocarbon and Minirhizotron Methods. Can. J. For. Res,2002,32: 1692~1697

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700