庙山坞自然保护区典型森林类型水文生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在庙山坞自然保护区选择我国亚热带地区分布较典型的天然次生林和人工毛竹林两种森林类型,从森林植被冠层、林下灌木层、凋落物层等多层次研究了林内降雨分配规律和森林的水土保持功能,以及森林生态系统各个层次对水质的影响改善作用,同时探讨了林内降雨各分量与林外降雨量的关系,并进行了方程拟合,为不同森林类型涵养水源和水土保持等功能的客观评价提供了基础数据,同时也为天然林和人工林的可持续经营和改造提供了理论基础,具有十分重要的理论和现实意义。研究结果表明:
     (1)森林植被对降雨再分配具有显著效果,森林植被冠层、林下灌木层、凋落物层可有效截留降雨。其中人工毛竹林植被冠层截留率平均达14.5%,凋落物每次降水最大蓄水潜力0.98 mm;天然次生林植被冠层截留率平均达33.8%,林下灌木层截留率平均达7.0%,总截留率平均高达40.8%,凋落物每次降水最大蓄水潜力1.58 mm。天然次生林林冠截留降雨、凋落物蓄水潜力均大于人工毛竹林。
     (2)森林生态系统具有较好的水土保持功能,对减少产流量和产沙量具有较好效果。天然次生林和人工毛竹林地表径流系数分别为0.10%和0.20%,产生地表径流的最小降雨量分别是10.1 mm和7.0 mm;天然次生林和人工毛竹林径流泥沙量仅分别为0.262 kg/(hm~2·mm)、1.034 kg/(hm~2·mm),几乎没有泥沙流失。天然次生林水土保持功能较人工毛竹林更好。
     (3)天然次生林、人工毛竹林林内降雨各分量与林外降雨量的关系均可用数学方程拟合,具有较高的相关性与显著性水平。其中穿透雨量、树干流量、地表径流量与林外降雨量用线性方程拟合最佳,而穿透雨率、树干茎流率、地表径流系数与林外降雨量用对数方程拟合最佳。林冠截留量/率与林外降雨量呈幂函数关系。树干茎流与树木胸径正相关。
     (4)森林生态系统植被冠层、凋落物层、森林土壤和岩石改变了降雨的化学成分,对水质有一定的改善作用。从大气降雨到地表径流,除pH值外,几乎所有检测指标都呈上升趋势,这主要体现大气降雨对林冠层和凋落物层的淋溶作用。到流域出口,NO_3~-、NH_4~+、K~+、Na~+浓度大幅降低,说明森林土壤在保持NO_3~-、NH_4~+、K~+、Na~+方面有“调蓄库”的作用。Ca~(2+)、Mg~(2+)浓度升高,可能主要是土壤、岩石中Ca、Mg的溶解引起。
     总之,天然次生林和人工毛竹林在截留降雨、涵养水源、保持水土、改善水质等方面发挥着十分重要的作用。但相比较而言,天然次生林林内降雨分配效果更好,水土保持功能更强。
The precipitation partition of two subtropical typical forests (natural secondary forest and artificial bamboo forest) in Miaoshanwu Nature Reserve in Zhejiang was studied. The rainfall interception of varied layers of the tree canopy, shrub and litter was measured, with the function of soil and water conservation, and the effects of different components of the forest ecosystem on water quality discussed. The equations were established to simulate the relationship between the precipitation partitioning and the atmosphere precipitation. This study is of great theoretical and practical significance, as it provides the basic data for the objective evaluations on the function of water resources conservancy, as well as soil and water conservation of different forest types, and also it provides a theoretical foundation for sustainable management and improvement of natural forests and plantations. The results are as follows:
     (1) The forests are effective on precipitation partitioning, with the forest vegetation canopy, understory shrub layer and litter layer intercepting rainfall to a varied extent. The artificial bamboo forest canopy interception rate is 14.5%, and the litter maximum water-holding capacity is 0.98 mm; while the natural secondary forest canopy interception rate is 33.8%, understory shrub layer interception rate is 7.0%, with the total interception rate reaching 40.8%, and the litter maximum water-holding capacity is 1.58 mm. It can be seen that the canopy interception and the litter water-holding capacity of natural secondary forest are better than that of artificial bamboo forest.
     (2) The surface runoff and erosion sediment of forest ecosystems are very low, implying that the function of soil and water conservation is pretty good. The runoff coefficients of natural secondary forest and artificial bamboo forest are only 0.10% and 0.20%, and the minimum precipitation generating the surface runoff are 10.1 mm and 7.0 mm respectively. The erosion sediment of natural secondary forest and artificial bamboo forest are as low as 0.262 kg/(hm~2·mm) and 1.034 kg/(hm~2·mm) respectively. The function of soil and water conservation of natural secondary forest is better than that of artificial bamboo forest.
     (3) The relationship can be perfectly simulated by mathematical equations between the precipitation partitioning and the atmosphere precipitation either for natural secondary forest or artificial bamboo forest with a high relevance and significance level. The linear equation is the best to simulate the relationship between the throughfall, stem flow as well as surface runoff and the atmosphere precipitation, while the throughfall ratio, stem flow ratio and runoff coefficient with the atmosphere precipitation are best fit by logarithmic equation. A power regression exist between the canopy interception/ratio and precipitation; the stemflow is positively correlated with tree diameter at breast height.
     (4) Vegetation canopy, litter layer, soil and rock in forest ecosystems have changed the chemical composition of precipitation and certainly improved water quality. All Indexes for water quality tend to increase from the atmosphere precipitation to the surface runoff except pH value, which mainly reflect the leaching of precipitation on the forest canopy and litter layer. NO_3~-, NH_4~+, K~+, and Na~+ significantly decrease, indicating that forest soil has "Storage tank" role in maintaining NO_3~-, NH_4~+, K~+, and Na~+, while Ca~(2+) and Mg~(2+) content in outlet flow increase due to the dissolution of Ca and Mg in soil and rock.
     In conlcusion, natural secondary forest and artificial bamboo forest play an important role in precipitation interception, waer resources conservancy, soil and water conservation, and water quality improvment. The hydrological effect of natural secondary forest is better than that of artificial bamboo forest, and the function of soil and water conservation of natural secondary forest is also more powerful.
引文
[1]刘霞,谢宝元.水源保护林生态服务功能及其评价.河北林果研究, 2002, 17(2): 100~105
    [2]周晓峰.中国森林与生态环境.北京:科学出版社, 1999, 102~l04
    [3]高成德,余新晓.水源涵养林研究综述.北京林业大学学报, 2000, 22(5): 78~82
    [4]辛颖,赵雨森.水源涵养林水文生态效应研究进展.防护林科技, 2004, 59(2): 56~62
    [5]刘永宏,梁海荣,张文才.森林水文研究综述.内蒙古林业科技, 2000, S1: 67~73
    [6]王礼先,张志强.森林植被变化的水文生态效应研究进展.世界林业研究, 1998, 11(6): 14~23
    [7] Hombeek J.W, Adams. et al. Long-term impacts of forest treatments on water yield: a summary of northeastern United States. Hydrol. 1993, 150: 323~344
    [8]祝志勇,季永华.我国森林水文研究现状及发展趋势概述.江苏林业科技, 2001, 28(2): 42~45
    [9] Smith R. E, Parlange J. Y. A parameter efficient hydrologic model.Water Res R, 1978, 14(3): 533~538
    [10] Moiseer B. N. Streamflow and forest coverage in watershed in northwest USSR and along Upper Volga River. Forestry(RV), I984, 5: 4~8
    [11]范世香,蒋德明,阿拉木萨等.论森林在水源涵养中的作用.辽宁林业科技, 2001(5): 22~25
    [12]范志平,余新晓.中国水源保护林生态系统功能评价与营建技术体系.世界林业研究, 2000, 13(1): 51~58
    [13]银春台,陈国春.流域生态经济与防护林体系.成都:四川科学技术出版社, 1990, 45~54
    [14] Crockford R. H, Richardson D. P. Partitioning of rainfall into throughfall,stemflow and interception: effect of forest type, ground cover and climate. Hydrological Processes, 2000, 14: 2903~2920
    [15] Cash J. H. C. An analytical model of rainfall interception by forests Puarterly. Journal of Foyal Meteorological Sicuety, 1979, 105 (44): 43~45
    [16]张一平,王馨,刘文杰.热带森林林冠对降水再分配作用的研究综述.福建林学院学报, 2004, 24 (3): 274~282
    [17]周光益.中国热带森林水文生态功能.生态学杂志, 1997, 16 (5): 47~50
    [18] Sobiera J. A, Elsenbeer R. H, Coelho R M, et al. Spatial variability of soil hydraulic conductivity along a tropical rainforest catena. Geoderma, 2002, 108: 79~90
    [19] Gomez J. A, Giraldez J. V, Fereres E. Rainfall interception by olive trees in relation to leaf area.Agricultural Water Management, 2001, 49: 65~76
    [20] Domingo F, Sanchez G, Moro M. J, et al. Measurement and modelling of rainfall interception by three semi-arid canopies. Agricultureand Forest Meteorology, 1998, 91: 275~292
    [21]温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析.林业科学, 1995, 31(4): 289~298
    [22]刘世荣,温远光,王兵等.中国森林生态系统水文生态功能规律.北京:中国林业出版社, 1996, 85~89
    [23]张立恭.岷江上游水源涵养林涵水能力综合评价.四川林勘设计, 1999(4): 27~33
    [24]秦钟,周兆德.森林与水资源的可持续利用.热带农业科学, 2001(3): 49~55
    [25]袁春明,朗南军,盂广涛等.长江上游云南松水土保持生态效益研究.水土保持学报, 2002, 16(2): 87~90
    [26]于志民,王礼先.水源涵养林效益研究.北京:中国林业出版社, 1999, 47~58
    [27]刘向东,吴钦孝,赵鸿雁.森林植被垂直截留作用与水土保持.水土保持研究, 1994, 1(3): 8~13
    [28]汪有科,吴钦孝,韩冰.森林植被水土保持功能评价.水土保持研究, 1994, 1(3): 24~30
    [29]王佑民.中国林地枯落物持水保土作用研究概况.水土保持学报, 2000, 14(4): 108~113
    [30] Li Linghao, Lin Peng, Wang Qibing, et al. Hydrological observation in an evergreen broad leaved forest in the Wuyi mountains. Acta Phytoecologica Sinica, 1997, 21(5): 393~402
    [31]刘世荣,孙鹏森,温远光.中国主要森林生态系统水文功能的比较研究.植物生态学报, 2003, 27(1): 16~22
    [32] Liu Guangquan, Wang Hao, Qin Dayong, et al. Hydrological and ecological functions of litter layers for main forest types in Qinling Mts.of Yellow Rive. Journal of Natural Resources, 2002, 17(1): 55~61
    [33]周光益,曾庆波,黄全等.热带山地雨林林冠对降雨的影响分析.植物生态学报, 1995, 19:201~207
    [34] Cheng J. D, Lin L. L, Luhs. Influences of forests on water flows from headwater watersheds in Taiwan. Forest Ecology and Management, 2002, 165: 11~28
    [35] Liu Shirong, Sun Pengsen, Wen Yuanguang. Comparative analysis of hydrological functions of major forest ecosystems in China. Acta Phytoecologica Sinica, 2003, 27(1): 16~22
    [36]余新晓,赵玉涛,张志强,等.长江上游亚高山暗针叶林土壤水分入渗特征研究.应用生态学报, 2003, 14(1): 15~19
    [37] Dunne T. Field studies of hillslopo flow processes. In: Kirkby(editor), Hillslopo Hydrology. John Wiley and Sons, 1978, 227~294
    [38] Wilson G. V. Hydrology of a forested watershed during storm events. Goodevam, 1990, 26(2): 352~355
    [39]张劲松,孟平,尹昌君.植物蒸散耗水量计算方法综述.世界林业研究, 2001, 14(2): 23~28
    [40] Wilson K. B, Hanson P. J, Mulholland P. J, et al. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agriculture and Forest Meteorology, 2001, 106: 153~168
    [41] Calderl T. P. T. W, Prasaqnna K. T, Parameswrappa S. Eucalyptus water use greater than rainfall input a possible explanation from southern India. Hydrology and Earth System Sciences, 1997, 1: 249~258
    [42]李洪建,柴宝峰,王孟本.北京杨水分生理生态特性研究.生态学报, 2000, 20(3): 417~422
    [43] Calder I. A. Water use by forests at the plot and catchment scale. Commonwealth Forestry Review, 1996, 75: 19~30
    [44] Dao M. T, Liem T. T, Thomas W. G, et al. Transpiration in a small tropical forest patches. Agriculture and Forest Meteorology, 2003, 117: 1~22
    [45] Vertessy R. A, Watson F. G. R, O’sullivan S. K. Factors determining relations between stand age and catchment water yield in mountain ash forests. Forest Ecology and Management, 2000, 143: 13~26
    [46] Flerchinger G. N, Cooley K. R. A ten-year water balance of a mountainous semiarid watershed. Journal of Hydrology, 2001, 237: 86~99
    [47] Lewis D, Singel M. J, Dahlgren R. A, et al. Hydrology in a California oak woodland watershed: a 17-year study. Journal of Hydrology, 2000, 240: 106~117
    [48]范军祥,程庆荣,薛涛.水源涵养林的效益及其计量.广东林业科技, 1999, 15(1): 38~41
    [49] Bormann F. H, Likens G. E. Pattern and processes in a forested ecosystem. New York: Springer Verlag, 1979, 1~120
    [50] Mitche U. D. J. The use of vegetation and land use parameters in modeling catchment sediment yield. In: Thomes J B. Vegetation and erosion. New York: John Wiley and Sons, 1990, 289~316
    [51] Viles H. A. The Agency of Organic beings: A selective review of recent work in biogeomorpholngy. In: JB Thomes (editor), Vegetation and erosion. John Wiley and Sons, 1990, 5~24
    [52]李志忠,武胜利,王晓峰等.新疆和田河流域柽柳沙堆的生物地貌发育过程.地理学报, 2007, 62(5): 462-470
    [53] Bornann F. H, Likens G. E. Pattern and processes in a forested ecosystem. Springer-Verlag, NewYork, 1979, 78~85
    [54]许静仪.人类活动对径流的影响.工程水文及水利计算, 1981, (13): 20~23
    [55]马雪华.岷江上游森林采伐对河流流量和泥沙悬移物质的影响.自然资源, 1981, (3): 29~33
    [56]袁建平,蒋定生,甘淑.不同治理度下小流域正态整体模型试验林草措施对小流域径流泥沙的影响.自然资源学报, 2000, 15(1): 91~96
    [57]马雪华.森林与水质.北京:测绘出版社, 1989, 31~35
    [58] Skash M. G. Storm runoff-generation in humid headwater catchments. Water Res R, 1986, (22): 1273~1282
    [59]曹云,欧阳志云,黄志刚等.中亚热带红壤区油桐(Vernicia fordii)林冠水文效应特征.生态学报, 2007, 27(5): 1740~1747
    [60]徐小牛,王勤,平田永二.亚热带常绿阔叶林的水文生态特征.应用生态学报, 2006, 17(9): 1570~1574
    [61]赵辉,郭索彦,解明曙等.南方花岗岩红壤区不同土地利用类型坡地产流与侵蚀产沙研究.水土保持通报, 2008, 28(2): 6~10
    [62]黄进,胡海波,张家洋等.北亚热带毛竹林林冠截留特征的研究.南京林业大学学报:自然科学版, 2009, 33(2): 31~34
    [63]蒋俊明,费世民,余英.长宁竹海主要林分林冠降雨分配格局.四川林业科技, 2007, 28(1): 13~18
    [64]杨茂瑞.亚热带杉木、马尾松人工林的林内降雨、林冠截持和树干茎流.林业科学研究, 1992, 5(2): 158~162
    [65]常志勇,包维楷,何丙辉等.岷江上游油松与华山松人工混交林对降雨的截留分配效应.水土保持学报, 2006, 20(6): 37~40
    [66]陈双林,萧江华,薛建辉.竹林水文生态效应研究综述.林业科学研究, 2004, 17(3): 399~404
    [67]周云龙.植物生物学.北京:高等教育出版社, 2004, 503~504
    [68]任引,薛建辉.武夷山甜槠常绿阔叶林林分降水分量特征.林业科学, 2008, 44(2): 23~27
    [69]韩永刚,杨玉盛.森林水文效应的研究进展.亚热带水土保持, 2007, 19(2): 20~25
    [70]张建军,贺康宁,朱金兆.晋西黄土区水土保持林林冠截留的研究.北京林业大学学报, 1995, 17(2): 27~31
    [71]张建军,毕华兴,张宝颖.坡面水土保持林地地表径流挟沙能力研究.北京林业大学学报, 2003,25(5): 25~28
    [72]张洪江,孙艳红,程云等.重庆缙云山不同植被类型对地表径流系数的影响.水土保持学报,2006,20(6): 11~14
    [73]张建军,纳磊,方家强.晋西黄土区坡面糙率的研究.北京林业大学学报, 2007, 29(1): 108~113
    [74]金雁海,柴建华,朱智红等.内蒙古黄土丘陵区坡面径流及其影响因素研究.水土保持研究, 2006, 13(5): 292~298
    [75]李云岚,李春华,魏晶等.辽西5种人工林水土保持效应研究.水土保持应用技术, 2007, 5: 4~6
    [76]纳磊,张建军,朱金兆等.晋西黄土区不同土地利用类型小流域径流产沙研究.中国水土保持科学, 2008, 6(2): 49~54
    [77]张志强,王盛萍,孙阁等.流域径流泥沙多尺度植被变化响应研究进展.生态学报, 2006, 26(7): 2356~2364
    [78]宋玉芝,秦伯强,杨龙元等.太湖北部典型乔木冠层对酸性降雨的中合作用.湖泊科学, 2005, 17(2): 157~161
    [79]张西林,曾光明,蒋益民等.酸雨作用下中亚带森林冠层淋溶规律研究.环境科学与技术, 2006, 29(8): 31~33
    [80]周光益,徐义刚,吴仲民等.广州市酸雨对不同森林冠层淋溶规律的研究.林业科学研究, 2000, l3(6): 598~607
    [81] Neal Colin, Reynolds Brian, Neal Margaret, et a1. Soluble reactive phosphorus level in rainfall, cloud water, throughfall, soil water, stroam waters and groundwaters for the Upper River Seven area, Plynlimon, mid Wales. The Science of the Total Environment, 2003, 14(3): 99~120
    [82] Polkowska Zaneta, Astel Aleksander, Walna Barbara,et a1. Chemometric analysis of rainwater and throughfall at several sites in Poland. Atmospheric Environment, 2005, 39(5): 837~855
    [83] Chiwa M , Crossley A, Sheppard L J, et a1. Throughfall chemistry and canopy interactions in a Sitka spruce plan tation sprayed with six different simulated polluted mist treatments. Environmental Po11ution, 2004, 127(1): 57~64
    [84]方运霆,莫江明, Gundersen Per等.森林土壤氮素转换及其对氮沉降的响应.生态学报, 2004, 24(7): 1523~1531
    [85]王青山,何利平.土壤有机质与氮素供应的相关关系.山西林业科技, 2003, (9)增刊: 25~27
    [86] Avila Anna, Rodrigo Anselm. Trace metal fluxes in bulk deosition, throughfall and stemflow at twoevergreen oak stands in NE Spain subject to different exposure to the industrial environment. Atmospheric Environment, 2004, 38(2): 171~180
    [87]张西林,蒋益民,张龚等.酸雨区亚热带针阔混交林冠层淋溶特征.林业科学, 2007, 43(7): 1~4
    [88]彭培好,王金锡,胡振宇等.人工桤柏混交林中降雨对养分物质的淋溶影响.生态学杂志, 1996, 15(5): 12~15
    [89] Balestrini Rafaella, Tagliaferri Antonio. Atmospheric deposition and canopy exchange process in alpine forest ecosystems (North Italy). Atmospheric Environment, 2001, 35(36): 6421~6433
    [90]张胜利,李光录.秦岭火地塘森林生态系统不同层次的水质效应.生态学报, 2007, 27(5): 1838~1844
    [91]张胜利,李靖,韩创举等.南水北调中线工程水源林生态系统对水质的影响——以秦岭南坡中山地带火地塘林区为例.水科学进展, 2006, l7(4): 559~565
    [92]蒋益民,曾光明,张龚等.酸雨作用下的森林冠层盐基离子淋洗.热带亚热带植物学报, 2004, 12(5): 425~430
    [93]张胜利.秦岭火地塘森林水质的季节性变化特征.环境科学, 2008, 29(2): 316~321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700