毛竹土壤—植物—大气连续体(SPAC)水分特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在浙江庙山坞自然保护区,运用Dynamax茎秆液流测量系统监测毛竹茎秆液流的日变化,采用型号为CI-340手持式光合仪和型号为EQ-15的土壤水势仪分别监测毛竹叶片的光合蒸腾速率和0~100 cm土层的土壤水势,利用自动气象站同步监测各气象因子。通过相关数据分析,初步弄清了毛竹SPAC的水分运动特征,旨为指导节水灌溉和调控林分密度提供理论依据。主要结果如下:
     毛竹主要生长期内(2009年3月1日~2010年2月28日)共观测到降雨97次,总降雨量1816mm。其中,穿透雨量、秆茎流量和林冠截留量分别是1436.6mm、122.30和257.1 mm,穿透雨率、秆茎流率和截留率分别为79.11%、6.73%和14.16%。幂函数方程能较好地拟合林冠截留量、秆茎流量与总降雨量之间的关系,而线性方程能较好地拟合穿透雨量和总降雨量之间的关系。林地枯枝落叶层现存量平均为6.660t·hm-2,最大持水率为269.4%。毛竹林地表径流31.61mm,占总降雨量0.22%。
     冬春两季,毛竹叶片的净光合速率和蒸腾速率的日变化均呈“单峰”曲线。冬季毛竹光合速率均值为2.62μmol·m-2·s-1,春季的光合速率均值下降为1.24μmol·m-2·s-1。春季的平均蒸腾速率0.3113mmol·m-2·s-1,冬季的平均蒸腾速率为0.2742mmol·m-2·s-1。
     竹茎秆液流的日变化与天气状况关系密切。在晴朗天气条件下毛竹茎秆液流的日变化过程呈现单峰曲线,而在阴雨天气时毛竹茎秆液流日变化过程呈双峰或多峰曲线,而且日均液流速率和日液流量均低于晴朗天气;不同径阶毛竹茎秆液流速率波动规律相似,但径级较大的日均液流速率和液流量较大一些。当0~100 cm土层土壤水势在-13~-10 kPa时,毛竹茎秆液流速率与土壤水势相关性不显著,但当土壤水势低于-200 kPa左右时,液流速率和土壤水势呈正相关,土壤水分含量成为限制茎秆液流速率的主要因子之一;毛竹茎秆液流与气象因子的相关性分析表明,毛竹茎秆液流速率与空气温度、空气相对湿度、光合有效辐射、总辐射、水蒸气压亏缺呈极显著正相关,与空气相对湿度呈极显著负相关。
Dynamax Sap Flow Measuring System and CI-340 Portable Photosynthesis Pystem were used to monitor the sap flow velocity (SFV) and photosynthetic rate(Pn),transpiration rate (Tr) of the Phyllostachys pubescens stands in Miaoshanwu Nature Reserve, Zhejiang respectively. The soil water potential at 0-100 cm layer were measured with Equitensiometer-15 that is an instrument for measuring soil water potential.The total solar radiation, air temperature, air relative humidity, wind speed were also measured with an automatic weather station.By analysis water transportation patterns and scales in SPAC,it was aimed at to provide a theoretical foundation for instructing water Saving irrigation and controlling stand dencity.The main results indicated as follows:
     From march 1th in 2009 to february 28th in 2010,the total precipitation was 1816mm in main growth period of Phyllostachys pubescens ,consisted of throughfall,1436.6mm(79.11%); stemflow122.3mm(6.73%);and canopy interception,257.1mm(14.16%).The relationships between canopy interception,stemflow and total rainfall could be described significantly by a power function ,while the relationship between throughfall and total rainfall is linear.The amount of litter layer on forest floor was 6.660 t·hm-2. Maximum water retention ratio and water-holding capacity of litter were 269.4%. The surface run off from plot was low and only 31.61 mm, accounting for 0.22% of the total precipitation.
     The diurnal varitation of net photosynthetic rate(Pn) and transpiration rate(Tr) for Phyllostachys pubescens change with single peak curve in winter and spring.The mean of Pn in winter was 2.62μmol·m-2·s-1,which decresed to 1.24μmol·m-2·s-1 in spring.The mean of Tr in winter and spring were 0.3113mmol·m-2·s-1 and 0.2742mmol·m-2·s-1 respectively.
     The diurnal variations of SFV exhibited mono-peak curve with a distinct diurnal course in clear days and multi-peak pattern in cloudy or rainy days. Moreover, the average daily sap flow rate and diurnal sap flux in cloudy or rainy days were lower than that in sunny days. Magnitude of sap flow changed considerably between sunny and rainy days. The daily sap flux of Phyllostachys pubescens with different diameter followed similar pattern, the bigger ones had faster SFV and higher daily sap flux than the smaller. When the average soil water potential in 0-100 cm layer was between -13 to -10 kPa, no obvious correlation was found between SFV and the average soil water potential. But SFV was positively correlated with the soil water potential as the average soil water potential less than -200 kPa. So soil moisture became one of the main limiting factors for SFV. SFV had significant positive correlations with solar radiation, air temperature, vapor pressure deficit (VPD) and wind speed, but negative correlation with air relative humidity.
引文
[1]刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996:3~7
    [2] Domingo F,Snchez G,Moro MJ,et al.Measurement and modeling of rainfall interception by three semiarid canopies.Agriculture and Forest Meteorology,1998,91:275~292
    [3]祝志勇,季永华.我国森林水文研究现状及发展趋势概述.江苏林业科技,2001,28(2):42~45
    [4]刘世荣,孙鹏森,温远光.中国主要森林生态系统水文功能的比较研究.植物生态报,2003, 27(1):16~22
    [5]孙鹏森.京北水源保护林格局及不同尺度树种耗水特性的研究.北京:北京林业大学,2003,4~18
    [6]熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应.林业科学,2003,39(2):1~7
    [7]王华田,马履一.利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究.植物生态学报,2002,26(6):661~667
    [8]向成华,蒋俊明,陈祖铭.平通河流域的森林水文效益.南京林业大学学报,1999,23(3):79~82
    [9]翟洪波,李吉跃,聂立水.油松栓皮栋混交林林地蒸散和水量平衡研究.2004.北京林业大学学报,22(6):48~51
    [10]王克勤.集水造林与水分生态.北京:中国林业出版社,2002.
    [11]岳广阳,张铜会,刘新平,等.热技术方法测算树木茎流的发展及应用.林业科学,2006,42(8):102~108
    [12] Granier A.Evaluation of transpiration in a Douglas fir stand by means of sap flow measurements[J]. Tree Physiology,1987,7:309~320
    [13] Granier A,Anfodillo T,et a1.Axial and radial water flow in the trunks of oak trees:a quantitative and qualitative analysis.Tree Physiology,1994,14(12):1383~1396
    [14] Allen S J,Grime V L.Measurements of transpiration from savanna shrubs using sap flow gauges.Agri- cultural and Forest Meteorology,1995,75:23~41
    [15] Grimes V L,Morison J I L,Simmonds L P.Including t he heat storage term in sap flow measurements with the stem heat balance method.Agricultural and Forest Meteorology,1995,74:1~25
    [16]李国臣,于海业,马成林,等.作物茎流变化规律的分析及其在作物水分亏缺诊断中的应用.吉林大学学报(工学版).2004,4(34):573~577
    [17] Steinberg S,Vanbawel C H M,Mcfarland M J.A gauge to measure mass flow rate of sap in stems and trunks of woody plants.J Am Soc Hort Sci,1989,114:466~472
    [18]孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展.应用生态学报,2004,15(6):1074~1078
    [19]孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究.北京林业大学学报,2000,22(5):1~6
    [20] Hatton T J,Wu H I.Scaling theory to extrapolate individual tree water use to stand water use. Hydrologic Processes,1995,9:527~540
    [21]赵平,饶兴权,马玲,等.马占相思林冠层气孔导度对环境驱动因子的响应.应用生态学报,2006, 17(7):1149~1156
    [22] Hinckley T M,Brooks J R,Cermak J,et al.Water flux in a hybrid poplar stand.Tree Physiology,1994, 14:1005~1018
    [23] Cienciala E,Kucerab J,Malmer A.Tree sap flow and stand transpiration of two Acacia mangium plantations Sabah,Borneo.Journal of Hydrology,2000,236:109~120
    [24] Stan D W, Anthony W K.Radial variation in sap velocity as a function of stem diameter and sapwoodthickness in yellow-poplar trees.Tree Physiology,2000,20:511~518
    [25] Delzon S,Sartore M,Granier A,et al.Radial profiles of sap flow with increasing tree size in maritime pine.Tree Physiology,2004,24(11):1285~1293
    [26]马履一,王华田,林平.北京地区几个造林树种耗水性比较研究.北京林业大学学报,2003,25(2):2~7
    [27]李吉跃,翟洪波,刘晓燕.树木水力结构特征的昼夜变化规律.北京林业大学学报,2002,24(4):39~44
    [28] Martin T A.Winter season tree sap flow and stand transpiration in an intensively managed loblolly and slash pine plantation.Journal of Sustainable Forest,2000,(10):155~163
    [29] Oren R,Diane E,Pataki.Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests.Oecologia,2001,127(22):549~559
    [30] Nadezhdina N.Sap flow index as an indicator of plant water status.Tree Physiology,1999,19:885~891
    [31] Wang KaiYun,Kellomaki S,Zha T,et al.Annual and seasonal variation of sap flow and conductance of pine trees grown in elevated carbon dioxide and temperature.Journal of Experimental Botany,2005, 409(56):155~165
    [32]严昌荣,Alec Downey,韩兴国,等.北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究.生态学报,1999,19(6):793~797
    [33] Chu C R,Hsieh C I,Wu S Y,et al.Phillips.Transient response of sap flow to wind speed.Journal of Experimental Botany,2009,60(1):249~255
    [34]茹桃勤,李吉跃,孔令省等.刺槐耗水研究进展.水土保持研究,2005,12(2):135~140
    [35]解婷婷,张希明,梁少民,等.不同灌溉量对塔克拉玛干沙漠腹地梭梭水分生理特性的影响.应用生态学报,2008,19(4):711~716
    [36] Bovard B D,Curtis P S,Vogel C S,et al.Environmental controls on sap flow in a northern hardwood forest.Tree Physiology,2005,25(1):31~38
    [37]王华田,赵文飞,马履一.侧柏树干边材液流的空间变化规律及其相关因子.林业科学,2006,42(7):21~27
    [38] Cochard H,Rodolphe M,Patrick G,et al.Temperature effects on hydraulic conductance and water relations of Quercus robur L.Journal of Experimental Botany,2000,51(348):1255~1259
    [39]王华田,马履一,孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究.林业科学,2002,38(5): 31~37
    [40]马玲,赵平,饶兴权,等.马占相思树干液流特征及其与环境因子的关系.生态学报,2005,25(9): 2145~2151
    [41]孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究.生态学报,2002,22(9):1387~1391
    [42]张小由,龚家栋,周茂先,等.应用热脉冲技术对胡杨和柽柳树干液流的研究.冰川冻土,2003,25(5): 585~590
    [43]康绍忠,刘晓明等.土壤一植物一大气连续体水分传输理论及其应用.水力电力出版社,1994,1~27
    [44] Daley M,Phillips N G.Interspecific variation in nighttime transpiration and stomatal conductance in a mixed new England deciduous forest.Tree Physiology,2006,26:411~419
    [45]张小由,龚家栋.利用热脉冲技术对梭梭液流的研究.西北植物学报,2004,24(12):2250~2254
    [46]尹光彩,周国逸,王旭,等.应用热脉冲系统对桉树人工林树液流通量的研究.生态学报,2003,23(10): 1984~1990
    [47] Nadezhdina N,Cermak J and Ceulemans R.Radial patterns of sap flow in woody stems of dominant and understory species scaling errors associated with positioning of sensors.Tree Physiology,2002, 22:907~918
    [48] James S A,Clearwater M J,Meinzer F C,et al.Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.Tree Physiology,2002,22(4):277~283
    [49] Ford C R,Goranson C E,Mitchell R J,et al.Diurnal and seasonal variability in the radial distribution of sap flow:predicting total stem flow in Pinus taeda trees.Tree Physiology,2004,24(9):951~960
    [50]高岩,张汝民,刘静.应用热脉冲技术对小美旱杨树干液流的研究.西北植物学报,2001,21(4):644~649
    [51] Cermak J,Kucera J,Bauerle W L,et al.Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees[J].Tree Physiology,2007,27(2):181~198
    [52]王华田.北京市水源保护林区主要树种耗水性的研究.北京:北京林业大学,2002,13~27
    [53]张小由,龚家栋,周茅先,等.胡杨树干液流的时空变异性研究.中国沙漠,2004,24(4):489~492
    [54] Burgess S S O,Dawson T E.Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance:a caution.Plant Soil,2008,305(1-2):5~13
    [55]张宁南,徐大平,Morris J,et al.雷州半岛尾叶桉人工林树液茎流特征的研究.林业科学研究,2006, 16(6):661~667
    [56] Mahmood K,Morris J,Collopy J,et al.Groundwater uptake and sustainability of farm plantations on saline sites in Punjab province,Pakistan.Agricultural water management,2001,48:1~20
    [57]马李一,孙鹏森,马履一.油松刺槐单木与林分水平耗水量的尺度转换.北京林业大学学报,2001,23:2~5
    [58]王华田,邢黎峰,马履一.栓皮栎水源林林木耗水尺度扩展方法研究.林业科学,2004,40(6):170~175
    [59] Kumagai T,Aoki S,et al.Effects of tree to tree and radial variations on sap flow estimates of transpiration in Japanese cedar[J].Agricultural and Forest Meteorology,2005,135:110~116
    [60]王孟本,李洪建.晋西北黄土区人工林土壤水分动态的定量研究.生态学报,1995,15(2):179~184
    [61]康绍忠等,土壤植物大气连续体水分运移力能关系的田间试验研究.水利学报,1990,7:1~9
    [62]刘昌明,窦清晨.土壤-植物-大气连续体模拟中的蒸散发计算.水科学进展,1992,3(4):255~263
    [63]姜志林.下蜀森林生态系统定位研究论文集.北京:中国林业出版社,1992:36~41
    [64]夏桂敏,康绍忠,李王成,等.甘肃石羊河流域干旱荒漠区柠条树干液流的日季变化.生态学报,2006, 26(4):1186~1193
    [65]张文燕,马乃训,封剑文,等.毛竹代桩伤流及其控制技术研究.林业科学研究,1994,7(4):414~419
    [66]许浩,张希明,闫海龙,等.塔克拉玛干沙漠腹地多枝柽柳茎干液流及耗水量.应用生态学报,2007, 18(4):735~741
    [67]蒋有绪.中国森林生态系统结构与功能规律研究.北京:中国林业出版社,1996:23~33
    [68]黄进,胡海波,张家洋,等.北亚热带毛竹林林冠截留特征的研究.南京林业大学学报:自然科学版, 2009, 33(2):31~34
    [69] Dietz J,Hōlscher D,Leusehner C,et al.Rainfall partitioning in relation to forest structure in differently manage montane forest stands in Central Sulawesi, Indonesia.Forest Ecology and Management,2006, 237:170~l78
    [70]曹群根.毛竹林冠层对降水的截留作用.福建林学院学报,1991,11(1):37~43
    [71]蒋俊明,费世民,余英.长宁竹海主要林分林冠降雨分配格局.四川林业科技,2007,28(1):13~18
    [72]巩合德,王开运,杨万勤,等.川西亚高山原始云杉林内降雨分配研究.林业科学,2005,41(1):198~201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700