基坑冻土挡墙强度及其影响因素的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基坑支护过程中,冻土挡墙依靠自身的墙体抵抗墙后的水土压力,冻土墙设计的关键是控制其强度和稳定性。因此,墙体需要一定厚度,且其冻土墙的强度应满足强度的要求,由于土体的各向异性,冻土墙内温度分布的差异,其冻土强度也并非是均质的,因此,有必要研究冻结过程中冻土墙的强度影响因素及规律,满足墙体强度,保证支护结构安全。
     作者在分析目前人工冻结技术的基础上,做了如下研究:
     (1)分析了基坑冻土挡墙的形成机理,确立了基坑冻土挡墙强度的影响因素,并通过试验研究,分析了冻土强度随冻结温度与含水率两个主要因素之间的变化规律。通过理论分析,建立了基坑冻土墙强度与厚度的关系。
     (2)根据冻结过程中的导热原理,建立基坑冻土墙冻结温度场模型,通过ANSYS有限元数值分析不同冻结管直径、冻结管间距、冻结管的布置形式对冻土墙温度场的变化,找出不同布置形式对冻结温度的影响规律,以得出较佳的冻结管间距和布置形式。
     (3)研究与设计了冻结系统的温度控制系统,实现温度的自动采集和对冻结过程的控制。
     (4)通过模拟试验分析冻结过程中冻结时间与冻结距离、冻结温度之间的关系,找出冻土墙在径向和竖向的温度变化规律。
     本文的研究为基坑冻土挡墙支护的设计和施工以及提供依据,也可以为地下城市空间冻结法设计与施工提供相关依据。
With continuously social development, various kinds of the undergroundconstruction, the deep foundation pit of high buildings and the city subway are beingbuilt, which raises an outstanding problem to the support of deep foundation and deepfoundation pit. Based on these constructions, the frozen wall of deep foundation pit,as an effective support way, is being paid more and more attention to because of itshigh strength, no pollution and great sealing.
     The frozen wall of foundation pit refers that making use of the artificiallyrefrigeration technology to freeze the soil surrounding the foundation pit, the soilwater is frozen to solid and improves the soil’s strength and rigidity, which builds acontinuous and close frozen curtain wall surrounding the expected excavating site.This wall maintains the pit’s stability and cuts the connection between groundwaterand the pit inside until the permanent buildings are built, which provides a safe, dryand convenient construction environment and minimizes the influence on surroundingbuildings.
     In the supporting process of foundation pit, the frozen wall resists the pressure ofsoil and water by itself. The key to design frozen wall is to control its strength andstability. Therefore, the wall needs to be thick and its thickness should meet therequirement of strength. Because the soil’s individual characteristics and the wall’stemperature differences, the frozen soil’s strength is not homogeneous. Therefore, it isnecessary to study the influencing factors and regularity of the frozen wall’s strengthto meet the requirement of wall’s strength and protect the supporting construction.
     Aiming at the fact that the frozen soil’s strength of foundation pit changes with thefreezing time, the paper based on theoretical analysis builds the connection betweenthe strength and thickness of frozen soil. Based on the experimental study on influencing factors of frozen soil’s strength, its basic changing regularity is studied.Constructing theoretical model to analyze the temperature field during freezing andapplying the ANSYS, the finite element analysis, the distributing regularity of thetemperature field is analyzed. Through the indoor experimental study on frozen wall,the temperature’s distributing regularity during the freezing process is verified. Thefrozen system is controlled by designing the temperature controlling equipment,which improves the freezing efficiency and provides the basis for the frozen wall’sdesigning and construction of the foundation pit. The following are conclusions indetail.
     First, Through the experiment of frozen soil’s strength with different water ratiosand freezing temperatures, when the water content is between13%and27%, and thetemperature is between-1oC~-26oC, the general trend is that the homotaxial’s pressivestrength of frozen soil gradually increases as the temperature falls; when thetemperature is-20oC, the pressive strength decreases; when the temperaturecontinuously falls, the pressive strength increases again. When the water content isbetween14%and25%, and the temperature is between0oC~-20oC, the tensilestrength of frozen soil tend to increase as the temperature falls; when the temperatureis-20oC, the tensile strength reaches its peak value; when the temperature is below-20oC, the tensile strength decreases as the temperature falls; when the freezingtemperature is fixed, the tensile strength decreases as the water content increases.
     Second, according to the persistent boundless line-heat-inflow mode, themonotube’s freezing mode is built and the analytic solution is offered. The position offreezing facies-change surface is s(t)=2δast.
     Third, through the ANSYS of temperature field simulation, the temperature fielddistributions of different monotube’s calibers are analyzed when the ektexine’stemperature is constant. It is thought that the freezing pipe’s caliber has littletemperature influence on freezing pipes with same distance. When the freezing pipesare distributed in single row tube, the freezing speed clearly falls as the freezing spaceincreases; when the single row freezing pipes are frozen, their temperature field is not in circular distribution but in irregular ellipse distribution. When the freezing pipesare distributed in double row tube, the quincunx distribution of freezing holes, whichis compared with the parallel distribution, has slower freezing speed and in the sametime the center temperature of holes in quincunx distribution is lower than that inparallel distribution.
     Forth, with AT89C52as a core, a set of intelligent temperature control system isdesigned, which can automatically record and store the temperature data and controlthe refrigerating fluid driving pump. The temperature control system applies themicrocomputer technique to the flow control of driving pump, which solves theproblem of controlling the refrigerating fluid driving pump. Thus, the freezingtemperature in the wall can be known at any time and according to this temperature,the refrigerating fluid recycle pump is opened and closed, which control thesoil-freezing temperature of the foundation pit’s frozen wall and decrease unnecessaryenergy consumption during the freezing.
     Fifth, through the simulation experiment of freezing system, when the watercontent of silty clay are10%、15%、20%、25%、27%, the radial distances (10cm,20cm,30cm) in5cm,25cm,50cm of the freezing depth, and the freezing time is prolonged,the changing law of freezing temperature is analyzed. When freezing time is fixed, thefreezing temperature of foundation pit’s freezing inner wall falls considerably as itincreases towards parallel direction; meanwhile, with the increase of water ratio, thefreezing temperature falls and freezing range extends. Applying ANSYS to simulatechanging of the temperature field, it is reached that the simulating result is similar tothe experimental result and they closely tally with each other.
     Sixth, through the simulating experiment of freezing system, it is reached that thefreezing temperature changes little in the vertical direction of frozen wall. Therefore,when designing the experiment, it can be ignored that the temperature changing in thevertical direction of frozen wall is able to influence the frozen wall’s strength, whichmeans that only the influence of temperature changes in the radical direction isconsidered.
引文
[1]汪仁和,郁楚候等.冻土挡墙稳定性的模型试验研究[J].岩土工程学报,1996(5):52-57.
    [2]王衍森等.某深基坑冻土墙应力与变形的数值计算[J].中国矿业大学学报,2002(3):286-288.
    [3]翁家杰.井巷特殊施工[M].北京:煤炭工业出版社,1991:4-5.
    [4]程桦.城市地下工程人工地层冻结技术现状及展望[J].淮南工业学院学报,2000(2):17-22.
    [5]杨平.冻结法用于深基坑坑壁维护的可行性研究[J].山东矿业学院学报,1996(15):12-16.
    [6]曹光保,周芳.冻结法施工软土深基坑的可行性研究[J].淮南工业学院学报,2000(2):23-26.
    [7]黄建华.深基坑冻结止水帷幕冻胀变形模拟分析与试验测试[J].岩石力学与工程学报,2009,28(12):2554-2560.
    [8]龚晓南等.深基坑工程设计施工手册[M].北京:中国建筑工业出版社,1998:483-494.
    [9]崔安杰.高水压富水地层深基坑开挖的新型冻土复合结构支护技术研究[D].北京:北京交通大学硕士论文,2007:28-37.
    [10]黄峰.含盐土层人工冻土帷幕计算方法研究[D].上海:同济大学硕士论文,2008:1-25.
    [11]马巍,吴紫汪,张长庆.冻土的强度与屈服准则[J].自然科学进展,1994(4):319-322.
    [12]邱凡.人工冻土强制解冻基本理论和技术研究[D].上海:同济大学硕士论文,2007:16-21.
    [13]肖朝昀.人工地层冻结冻土帷幕形成与解冻规律研究[D].上海:同济大学博士论文,2007:1-3.
    [14]张玉娟.人工土冻结法在天津地铁工程中的应用[D].天津:天津大学硕士论文,2006:2-6.
    [15]崔亚男.广州某地铁隧道人工冻结法施工冻结壁厚度及冻结周期计算[D].北京:北京交通大学硕士论文,2007:6-16.
    [16]苏立凡,张云利,周晓敏.人工地层冻结法在基坑工程中的应用[J].岩土工程师,2001(2):15-19.
    [17]李明.高压富水地层盾构隧道联络通道冻结法施工时隧道结构的支护方式研究[D].北京:北京交通大学硕士论文,2008:2-6.
    [18]杨平.冻结法用于深基坑坑壁维护的可行性分析[J].安徽建筑工业学报(自然科学学版),1996(3):41-45.
    [19]木下诚一著.王异,张志权译.冻土物理学[M].长春:吉林科学技术出版社,1985:5-6.
    [20]RajJL,NovilloA,Aloeen J R.Soil freezing for the Valeneia underground railway work.GroundFreezingg9l.Rotterdam:balkema,1997.
    [21]JosePh A Sopko Tr, John A shster,et al.Frozen earth cofferdam design, In:Ground Freezing91.Rotterdam:balkema,1997.
    [22]Peter Jodan,Helmut Hab.Use of artificial gound freezing in three section of the Dusseld ofsubway.In:Ground Freezing.Proe7ISGF,1994.
    [23]Rebhan D.New experience and Problems with LIN ground freezing.In:Ground Freezing91.Rotterdsm:Balkema,1991.
    [24]中国矿业学院主编.特殊凿井[M].北京:煤炭工业出版社,1980.
    [25]鲁先龙.深基坑中冻土墙与内衬相互作用的数值模拟研究[J].岩石力学与工程学报,2004,23(13):2286-2293.
    [26]周晓敏,苏立凡,贺长俊,关继发.北京地铁隧道水平冻结法施工[J].岩土工程学报,1999(3):319-322.
    [27]高树峰.冻结加固技术在城市深基坑工程中的应用[J].西部探矿工程,2000(4):39-41.
    [28]鲍永亮,郑七振,唐建忠.上海地铁10号线某旁通道冻结法施工技术[J].施工技术,2009(9):8-10.
    [29]陈瑞杰,程国栋,李述训等.人地层冻结应用研究进展和展望[J].岩土工程学报,2000,22(1):40-44.
    [30]Kunieda T, Sato T, Ido S. Numerical case studies of ground freezing for the construction ofdrain pumpchambers.In:Ground Freezing91.Rotterdam:Balkema,1991.
    [31]John S Hajrris.Ground Freezing in Practice.Thomas[M].Telford Pubishing,1995.
    [32]王连花,杨更社,李宝花,张全胜.冻土墙围护深基坑开挖的蠕变有限元数值模拟[J].西安科技学院学报,2003,23(2):147-150.
    [33]金永军,杨维好.冻土直墙用于基坑支护的研究[J].岩石力学与工程学报,2004,23(13):2280-2285.
    [34]Chen Ruijie, Zhu Linnan. On the heat exchange of freeze pipe with liquid nitrogen in groundfreezing.In:Int Symp on Ground Freezing97. Rotterdam,Sweden:Balkema,1997.
    [35]Zhu Linnan, Chen Ruijie. Large-scale model test on the artificial freezing of foundation withLiquid Nitrogen.In:Int Symp on Ground Freezing97. Rotterdam, Sweden:Balkema,1997.
    [36]金永军,杨维好,蒋武军.直线形冻土墙用于深基坑支护的试验研究[J].中国矿业大学学报,2002,31(3):124-128.
    [37]董金梅.人工冻结支护结构模型分析[J].天津城市建设学院学报,2001,7(1):53-55.
    [38]东兆星,崔广心.深基坑支护中冻土墙力学特性研究综述[J].岩土力学,2002,23(5):622-626.
    [39]张晶,杨更社.深基坑维护中冻土墙厚度的计算[J].岩石力学与工程学报,2000,9(6):799-801.
    [40]金永军,杨维好.冻土墙用于基坑支护的力学设计方法探讨[J].中国矿业大学学报.2003,2(2):123-27.
    [41]Sweanum Soo. DESIGN METHOD FOR FROZEN-SOIL RETAINING WALL[J]. Journalof Cold Regions Engineering, Vol.6, No.2, June1992, pp.73-89.
    [42]徐泽亚.冻结法施工在润扬大桥南锚碇基础工程中的应用[J].公路,2002(11):39-41.
    [43]王继献.排桩冻结技术在润扬大桥南锚碇基础中的应用与体会[J].公路,2003(10):76-78.
    [44]李小利.青岛隆基汇源基坑冻结法支护方案分析[J].北京工业职业技术学院学报,2007,6(2):55-57.
    [45]欧阳振华,刘德安,欧阳志文,樊少武.冻结加固法在砂土地基加固中的应用[J].施工技术,2003,32(8):29-31.
    [46]徐伟,黄建华,钟建驰.深基坑冻结排桩围护结构体系变形分析和应用[J].建筑技术,2003,34(11):808-811.
    [47]陈瑞杰,程国栋,李述训等.人工地层冻结应用研究进展和展望[J].岩石力学与工程学报,2000,22(1):40-44.
    [48]杨平.冻结技术在基础及地下工程中的应用[J].淮南矿业学院学报,1993,13(4):22-29.
    [49]Г.П.马祖罗夫(Г.П.Мазуров)著.梁惠生,伍期建译.冻土物理力学性质[M].北京:煤炭工业出版社,1980.
    [50]H.A崔托维奇著.张长庆,朱元林译.冻土力学[M].北京:科学出版社,1985.
    [51]铁道部第三勘测设计院编著.冻土工程[M].北京:中国铁道出版社,1994.
    [52]何平,程国栋,杨成松,赵淑萍.非饱和冻土的强度分析[J].冰川冻土,2002,24(3):260-262.
    [53]中华人民共和国水利电力部.《土工试验方法标准》[S].北京:中国计划出版社,2002:3-42.
    [54]彭万巍,沈忠言,张长庆.简析确定冻土抗拉强度的几种试验方法[J].冻土工程国家重点实验室年报,1994:25.
    [55]崔广心,杨维好,吕恒林.深厚表土层中的冻结壁和井壁[M].徐州:中国矿业大学出版社,1998.
    [56]顾孟寒.冻结法在深基坑工程中的应用[J].岩土工程技术,2000(2):80-83.
    [57]欧阳振华.砂土地基基坑的冻结施工设计[J].岩土工程技术,2003(5):258-260.
    [58]金永军,杨维好.冻土直墙用于基坑支护的研究[J].岩石力学与工程学报,2004,23(13):2280-2285.
    [59]马芹永.人工冻结法的理论与施工技术[M].北京:人民交通出版社,2007.
    [60]东兆星,崔广心.深基坑支护中冻土墙力学特性研究综述[J].岩土力学,2002,23(5):622-626.
    [61]杨平.平面冻土墙变形计算的理论分析[J].阜新矿业学院学报,1997,16(4):499-503.
    [62]刘明虎,王继献.人工地层冻结技术及其在桥梁基础中的应用[J].公路,2000(5):21-25
    [64]张晶,杨更社.深基坑围护中冻土墙变形的解析计算[J].长安大学学报(自然科学版),2002,22(2):14-16.
    [65]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001.
    [66]涂川.地铁冻结法施工地表融沉位移影响研究[D].西安:西安理工大学硕士论文,2010:16-21.
    [67]程形燕.地铁隧道冻结法施工冻结壁温度场及地表冻胀位移数值试验研究[D].兰州:兰州理工大学硕士论文,2009:13-16.
    [68]费里德曼.冻土温度状况计算方法[M].北京:科学出版社,1982.
    [69]汪仁和,李晓军.冻结温度场的叠加计算与计算机方法[J].安徽理工大学学报(自然科学版),2003,23(1):25-29.
    [70]赖远明,吴紫汪,朱元林等.寒区隧道温度场、渗流场和应力场祸合问题的非线性分析[J].岩土工程学报,1999,21(5):529-533.
    [71]王补宣.工程传热传质学[M].北京:科学出版社,1998.
    [72]毛良根.任意冻结管分布下冻土温度场计算方法研究[D].上海:同济大学硕士论文,2007:24-31.
    [73]朱谷君.工程传热传质学[M].北京:航空工业出版社,1989.
    [74]侯镇冰等.固体热传导[M].上海:上海科学技术出版社,1984.
    [75]兰州冰川冻土研究所,煤炭工业部特殊凿井公司冻土壁研究组合编.冻结凿井冻土壁的工程性质[M].兰州大学出版社,1988.
    [76]American Society of Heating,Refrigerating and Air-Conditioning Engineers, Inc. ASHRAEHandbook[M].2005.
    [77]贾力,方肇洪,钱兴华.高等传热学[M].北京:高等教育出版社,2003.
    [78]蒋斌松,王金鸽,周国庆.单管冻结温度场解析计算[J].中国矿业大学学报,2009,38(4):463-466.
    [79]蒋斌松,沈春儒,冯强.外壁恒温条件下单管冻结温度场解析计算[J].煤炭学报,2010,35(6):923-926.
    [80]李继宏.冷冻法在广州地铁基坑施工中的应用[J].隧道建设,2002,22(2):40-42.
    [81]Trupak N G. Ground Freezing in Shaft Sinking[M].Mos-cow:Ugletehizdat,1954.[Трупак НГ.Замораживание горных пород при проходке стволов]. Москва Углетехиздат,1954.
    [82]Бахолдин Б В.Вь бор оптимальното ре има замора ивания рунтов в строительныхцелях[M].Моква: Госстройиздат,1963.
    [83]邹进,黄素逸.相变热传导的计算[J].能源技术,2000(1):11-14.
    [84]李宝花.冻土墙围护深基坑温度场和应力场祸合有限元分析[D].西安:西安科技大学硕士论文,2003:11-14.
    [85]余晓英.人工冻结壁力学特性的数值研究[D].兰州:兰州大学硕士论文,2006:10-13.
    [86]程有凯,常琳,张文虎,赵然.两级压缩与复叠式制冷方式的比较[J].制冷与空调,2004,4(3):66-69.
    [87]吴业正.制冷原理与设备[M].西安:西安交通大学出版社,1997.
    [88]杜垲,廖开蒙.自然复叠制冷系统初探[J].低温工程,2002(3):29-33.
    [89]贡征峰.CO2为低温级的自然工质复叠式制冷循环替代研究[D].天津:天津大学硕士论文,2007:6-10.
    [90]焦炬若.浅谈冻结法施工工艺与监理质量控制[J].中国市政工程,2003(5):59-61.
    [91]刘佼.地铁隧道水平冻结法施工技术[J].工程科技,2008(2):36-43.
    [92]郭庆堂,吴进发.实用制冷工程设计手册[M].北京:中国建筑工业出版社,1994:51-124.
    [93]吴玉勇,姚俊,姜晨竞,沈东升.冷冻盐水系统腐蚀研究进展[J].科技通报,2010,26(3):421-425.
    [94]王志敏.乙二醇溶液制冷制热系统的设计与应用[J].医药工程设计杂志,2003,24(2):28-31.
    [95]方江华,张志红,张景钰.人工冻结法在上海轨道交通四号线修复工程中的应用[J].土木工程学报,2009,42(8):124-128.
    [96]刘铁军,李慧英,刘宇徽.冻结法在湖口大桥桩基施工中的应用[J].湖南交通科技,2004,30(3):67-69.
    [97]任启利,王显理,董金水.冻结法在东平铁矿主副竖井掘砌施工中的研究与应用[J].莱钢科技,2007(1):32-35.
    [98]周存伟,贾培军,李建民.冻结法在苏州庞山湖特大桥桥基事故处理中的应用[J].煤,2007,16(8):50-51.
    [99]万援朝.千米立井大冻深快速凿井施工技术[J].煤炭科学技术,2010,38(12):43-46.
    [100]经来旺,程三友,郭奕娣.冻结管断裂位置的确定[J].西安科技学院学报,2000,20(2):113-116.
    [101]经来旺,经来盛.冻结管破坏应力分析[J].中国矿业,2000,9(2):23-29.
    [102]刘瑾,谢绍颖.冻结管断裂因素分析及防破裂措施[J].煤矿安全,2003,34(6):18-21.
    [103]范钦珊等.材料力学(第二版)[M].北京:高等教育出版社,2007.
    [104]防冻结管断裂科研组.冻结管的(低温与室温下)物理力学性质测试[J].淮南矿业学院学报,1986:15~22
    [105]黄贤武,郑筱霞,传感器原理与应用[M].成都:电子科技大学出版社,2005:76-108.
    [106]王幸之,钟爱琴,王雷,王闪.AT89系列单片机原理及接口技术[M].北京:北京航天大学出版社,2004:489-504.
    [107]电子报编辑部.电子报合订本[M].北京:电子科技大学出版社,2005.
    [108]奚建荣.基于51单片机的多点温度控制系统设计[J].现代电子技术,2009,289(2):186-188.
    [109]康华光,陈大钦.模拟电子电路[M].北京:高教育出版社,2004:335-336.
    [110]清源计算机工作室.rotel99SE原理图与PCB及仿真[M].北京:机械工业出版社,2005:113-122.
    [111]赵茂泰.智能仪器原理及应用[M].北京:电子工业出版社,2006:130-132.
    [112]焦生.深表土层冻结壁可靠性设计理论与方法体系研究[D].青岛:山东科技大学硕士论文,2004:9-19.
    [113](苏)纳斯诺夫(И.Д.Hacoнов),(苏)苏普利克(M.H.Шyгплик).立井冻结壁形成规律[M].北京:煤炭工业出版社,1981.
    [114]胡向东,白楠,余锋.单排管冻结温度场Tpyпaк和Бахолдин公式的适用性[J].同济大学学报(自然科学版).2008,36(7):906-910.
    [115]胡传鹏,胡向东,朱合华.单排管冻结巴霍尔金温度场控制参数敏感度分析[J].煤炭学报.2011,36(6):938-944.
    [116]林璋璋,杨俊杰.3排冻结管冻土壁温度场分析[J].建井技术.2003,24(3):21-24.
    [117]王瑞更.高精度多点温度数据采集系统[J].河北工业科技.2008,25(5):312-314.
    [118]杨维好,黄家会.外壁恒温条件下冻结管壁热流密度变化规律数值计算研究[J].冰川冻土,2006,28(3):401-404.
    [119]芮易,尹玫,李晓军.软土地层单排管冻土帷幕温度场分析[J].地下空间与工程学报,2010,6(2):260-265.
    [120]付文会,胥刚,储凤春.冻结造孔施工工艺探讨[J].淮南职业技术学院学报,2006,6(1):28-31.
    [121]周伟.深圳地铁5号线民五区间盾构始发冻结法施工技术[J].铁道建设,2010(2):35-40.
    [122]Roman Lackner, Andreas Amon, Hannes Lagger. Artificial Ground Freezing of FullySaturated Soil: Thermal Problem[J].JOURNAL OF ENGINEERINGMECHANICS,2005(131):210-220.
    [123] Giuseppe Colombo, Pietro Lunardi, Bruno Cavagna, Giovanna Cassani, Vittorio Manassero.The artificial ground freezing technique application for the Naples underground[J].World TunnelCongress2008-Underground Facilities for Better Environment and Safety-India,910-920.
    [124]F.Cavuoto, G.Colombo, F.Giannelli. An alternative tunneling approach to accelerate urbanunderground excavation under water[J].Tailor Made Concrete Structures-Walraven&Stoelhorst(eds),2008Taylor&Francis Group,London:993-999.
    [125] E. Pimentela, S. Papakonstantinou, G. Anagnostoua. Numerical interpretation of temperaturedistributions from three groundfreezingapplications in urban tunnelling[J]. Tunnelling andUnderground Space Technology,2012,28:57-69.
    [126]”为保地下水位不再下降北京限制工程施工降水”.[Online] Avaliable.http://bj.house.sina.com.cn/news/2007-11-20/1122224896.html.(2007/11/20).
    [127]R.lackener, E.Aigner, A.kloiber.”Artificial Ground Freezing as Temporary Support inUnderground Excavation”.
    [Online].Avaliable.http://www.imws.tuwien.ac.at/forschung/forschungsprojekte/alte-projekte/artificial-ground-freezing.html.
    [128]蒋凡涌,钱臻贽.冻结法基坑围护型式及其应用[J].低温建筑技术,2011(11):87-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700