中国小麦品种光周期和品质基因分子鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改良品种适应性和加工品质是我国小麦育种的重要目标。Ppd-D1a是位于普通小麦2D染色体上光周期非敏感基因,与小麦适应性密切相关;黄色素含量与面制品的外观色泽密切相关,我国的面条、馒头要求色白,需要低黄色素含量的小麦品种;麦谷蛋白亚基基因与面团强度密切相关。利用分子标记研究以上性状不仅可以了解控制相关性状的基因在不同麦区的分布规律,筛选含有优质基因的材料,而且有助于研究我国小麦在不同麦区的适应性机理和开展优质基因聚合育种。本研究利用分子标记检测了我国9个小麦种植区域926份品种(系)的光周期基因Ppd-D1a的分布规律,并结合系谱从分子水平上分析推导Ppd-D1a的来源;利用分子标记检测了我国4个冬麦区的374份改良品种(系)和197份核心地方种质控制黄色素含量的八氢番茄红素合成酶基因等位变异分布规律,并分析了改良品种的黄色素含量与八氢番茄红素合成酶基因之间的相关性,筛选了低黄色素含量材料。利用特异性分子标记研究了我国4个冬麦区的224和216份品种(系)的高、低分子量谷蛋白基因,明确了检测基因的分布频率及相关基因标记的有效性。主要研究结果如下:
     1.我国小麦品种光周期非敏感基因Ppd-D1a的平均分布频率为66%,其中地方品种和改良品种分别为38.6%和90.6%;除西北高纬度地区部分春小麦和甘肃、新疆等地冬小麦外,国内1970以后推广的小麦品种(系)都携带有Ppd-D1a基因;从北到南Ppd-D1a基因的分布频率逐渐升高;结合系谱分析从分子水平上推导了中国小麦品种中Ppd-D1a基因的来源,主要是日本地方品种Akagomughi和中国地方品种蚂蚱麦和蚰子麦。Ppd-D1基因标记特异性强、重复性好,可以准确地检测小麦品种Ppd-D1a基因的存在与否。
     2.控制黄色素含量的八氢番茄红素合成酶基因(Psy-A1)标记YP7A为共显性标记,在高、低黄色素含量的小麦材料中分别扩增出194 bp和231 bp片段,相应的等位基因为Psy-A1a和Psy-A1b(GenBank编号分别为EF600063和EF600064)。在374份冬小麦改良品种(系)中,含有等位基因Psy-A1a和Psy-A1b的品种(系)分别占66.8%和33.2%,二者黄色素含量平均值差异达到极显著水平(P<0.01)。其中,北方冬麦区、黄淮冬麦区、长江中下游冬麦区及西南冬麦区Psy-A1a等位基因的分布频率分别为73.8%、73.9%、25.9%和46.7%。197份核心地方种质等位基因Psy-A1a和Psy-A1b的分布频率分别为97.5%和2.5%。
     3.用分子标记可以更准确地检测小麦品种(系)的HMW-GS组成。我国224份冬小麦品种(系)HMW-GS亚基的分布频率存在很大差异。其中,55份(24.6%)材料携带有Dx5,80份(35.7%)携带有By8,没有Dx5和By8等位变异的材料无扩增带产生; 5.8%的品种(系)携带有Bx20亚基。含有Bx14+By15和Bx13+By16亚基的品种分别有1和2份; 4(1.8%)和5(2.2%)份品种分别携带有Bx6和Bx17; 106(47.3%)个品种(系)含有基因By9。分子标记检测结果与SDS-PAGE结果比较,不同亚基的符合度(一致性)有一定的差异:Bx17和Bx6符合度为100%,Dx5、By8和By9的一致率分别为90.9%、88.9%和97.2%,主要原因是SDS-PAGE不能很好区分功能不同、分子量相似的亚基。
     4. GLu-B3位点10个分子标记中8个特异性强、重复性好,可用于小麦品种LMW-GS的分子检测和辅助选择。10个标记检测我国216份冬小麦品种(系),发现8种等位变异,其中,34份材料(15.7%)携带Glu-B3g亚基;34份(15.7%)材料携带Glu-B3d亚基;15份材料(6.9%)含有Glu-B3b基因,4个品种含有Glu-B3e基因;13个品种(6.0%)携带Glu-B3f亚基;8个品种携带Glu-B3h亚基;4份材料含有Glu-B3i亚基;104份品种携带Glu-B3j亚基。分子标记检测结果与SDS-PAGE分析结果有一定差异,主要原因是SDS-PAGE技术对LMW-GS亚基的分辨率低所致。本研究明确了光周期非敏感基因Ppd-D1a、控制黄色素含量的八氢番茄红素合成酶基因Psy-A1、HMW-GS和Glu-B3位点等位基因在中国小麦品种(系)中的分布规律,并验证了其相应标记的有效性和实用性,为我国优质、高产和广适性小麦新品种选育提供了材料和方法。
Imcreasing the adaptability and the end processing quality of wheat are an important breeding goal in China. Ppd-D1a is photoperiod insensitive gene at Ppd-D1 locus on common wheat chromosome 2D and is closely associated with wide adaptability.Yellow pigment (YP) content is responsible for flour color. A bright white to creamy colour is preferred for white Chinese noodles and steamed bread in China, requiring a low YP content in wheat grains.Wheat HMW-GS and LMW-GS have a high correlation with dough strength that determines bread-making quality. Studying above characters using molecular makers can not only understand the distribution of genes for the related traits and screen good materials with desirable alleles; also help know adaptive mechanism in different wheat growing regions in China and converge good genes controlling different characteristic into only one genotype. Distribution of photoperiod insensitive gene Ppd-D1a was detected using allele-specific marker in a total of 926 Chinese wheat landraces and improved cultivars collected from nine wheat growing zones and origin of Ppd-D1a was deduced from molecular level in combination with pedigree analysis. Distributing frequency of phytoene synthease gene for yellow pigment content on chromosome 7A (Psy-A1) was studied with molecular marker YP7A in 374 improved cultivars from 4 winter wheat growing regions and 197 core landraces in China; the association was validated between YP content and Psy-A1 alleles and good cultivars with Psy-A1b for low yellow pigment content were screened. A total of 224 and 216 cultivars from 4 winter wheat zones were tested for HMW-GS and LMW-GS subunits at Glu-B3 locus, respectively, by allele-specific makers; frequencies of alleles detected and the availability of molecular markers were indicated. The main results in the present study were as follows:
     1. The molecular marker developed from Ppd-D1 gene sequence with highly specific characteristics and repeatability could discriminate the alleles Ppd-D1a and Ppd-D1b. The average frequency of the photoperiod-insensitive Ppd-D1a allele was 66.0%, with the frequencies of 38.6% and 90.6% in landraces and improved cultivars, respectively. However, the Ppd-D1a allele was present in all improved cultivars released after 1970s except for spring wheats in high latitude northwestern China, and winter wheats in Gansu and Xinjiang. The presence of the Ppd-D1a allele in landraces and improved cultivars increased gradually from north to south, illustrating the relationship between photoperiod response and environment. Ppd-D1a in Chinese wheats was derived from three sources, Japanese landrace Akagomughi and Chinese landraces Mazhamai and Youzimai.
     2. Characterization of phytoene synthease gene for yellow pigment (YP) content indicated that YP7A, a co-dominant marker of Psy-A1 gene, can amplify a 194-bp and a 231-bp fragment in the genotypes with Psy-A1a frequently for higher YP content and Psy-A1b mostly for lower YP content, respectively. Highly significant differences in YP content were detected between the genotypes with Psy-A1a and those with Psy-A1b (P<0.01). The occurrence frequencies for Psy-A1a and Psy-A1b were 66.8% and 33.2% in the 374 improved cultivars, respectively. Significant differences of allelic variations were found in improved wheat cultivars from different wheat regions of China. In the Northern Winter Wheat Region, Yellow & Huai Facultative Winter Wheat Region, Middle & Low Yangtze Valley Winter Wheat Region and Southwestern Winter Wheat Region, frequencies of the allele Psy-A1a were 73.8%、73.9%、25.9% and 46.7%, respectively. Whereas frequencies of the alleles Psy-A1a and Psy-A1b in Chinese landraces were 97.5% and 2.5%, respectively.
     3. Molecular markers can more accurately evaluate HMW-GS composition in comparison with SDS-PAGE. Distribution of detected subunits were quite different in 224 Chinese winter wheat cultivars and advanced lines tested. Of them, 55 cultivars carried Dx5 subunit with a frequency of 24.6%; whereas 80 cultivars(35.7%)produced specific band (527bp) for By8. 5.8% for Bx20 based on markers Mar and ZSBy9aF1/R3, and Bx14+By15 was present in only one genotype, followed by two cultivars with Bx13+By16 according to marker ZSBy9F2/R2. Four Genotypes (1.8%) had Bx6 and five cultivars (2.2%) contained Bx17. One hundred and six (47.3%) varieties had By9, detected by ZSBy9aF1/R3, yielding 663-bp and 708-bp PCR fragments. Compared with the results of SDS-PAGE, 5 genotypes for Dx5 subunit were different in the test with allele specific molecular marker, with a 90.9% of consistent results, followed by 88.9% for By8, 100% for Bx17 and Bx6, 97.2% for By9. The difference may be mainly due to incorrect identifications of proteins that are functionally distinct, but have the similar molecular weights and relative mobilities in the test with SDS-PAGE.
     4. 8 gene-specific markers with good repeatability could be used for marker-assisted selection in wheat breeding programs targeting for LMW-GS at Glu-B3 locus. A total of 216 Chinese winter wheat cultivars produced 8 allelic variations, out of them, 34 (15.7%) genotypes contained Glu-B3g, followed by 34 (15.7%) cultivars with Glu-B3d, 15 (6.9%) genotypes with Glu-B3b, 4 with Glu-B3e, 13 (6.0%) with Glu-B3f; 8 and 4 materials with Glu-B3h and Glu-B3i, respectively. Some differences were found between the results of SDS-PAGE and those of allele specific marker test. This was due to lower differentiation for LMW-GS subunits using SDS-PAGE .
     In this study, the distribution were clarified for photoperiod insensitive gene Ppd-D1a, phytone synthease gene for yellow pigment content and high- and low-molecular-weight subunits allelic variation. Meanwhile, the characteristics of high efficiency and reliability of tested markers were validated in evaluating related gene alleles. The research was extremely useful for new cultivars selection with high production, good quality and wide adaptability in wheat breeding programs.
引文
马传喜,徐风,程国旺.高分子量谷蛋白亚基作为面包小麦品种烘烤品质评价指标的研究.安徽农业大学学报,1995,22(2):117-122
    马传喜,徐风,谭蕴芝.在一代面包小麦杂交后代中Glu-B1控制的麦谷蛋白亚基17+18对品质性状的影响,作物学报,1995,21(1):90-94。
    王欣,范三红,阎晓华等.小麦HMW-GS 1Bx14基因特异标记体系的建立.西北植物学报,2005,25(11):2189-2192
    刘丽,阎俊,张艳,等.冬播麦区Glu-1和Glu-3位点变异及1B/1R易位与小麦加工品质性状的关系.中国农业科学2005,38(10):1944-1950
    刘丽,周阳,刘建军,等. Glu-1和Glu-3等位变异及1BL/1RS易位与面包和面条品质关系的研究.中国农业科学2004,37(9):1265-1273
    刘广田,许明辉.普通小麦胚乳谷蛋白亚基的遗传研究.中国农业科学,1988, 21(1): 56-60.
    刘玉平,李建平,兰素缺等.光周期迟钝基因对冬小麦农艺性状的影响.华北农学报2001a ,16 (4) :59~64
    刘玉平,李杏朴,赵风悟.光周期迟钝基因对冬小麦生育期的影响.河北农业科学,2001b,5(1):36-40.
    朱长甫,陈星,王英典.植物类胡萝卜素生物合成及其相关基因在基因工程中的应用.植物生理与分子生物学报,2004,30:609-618.
    朱金宝,刘广田,张树棒等.小麦籽粒高、低分子量麦谷蛋白亚基及其与品质关系的研究.中国农业科学,1996,29(1):34一39
    米国华,李文雄(1998).小麦幼穗分化过程中的光温组合效应,作物学报,4:470一474
    张立平,阎俊,夏先春,等.普通小麦籽粒黄色素含量的QTL分析,2006, 32(1): 41-45
    张玲,王宪泽,岳永生.用TOM值评价中国面条小麦品质的新方法及小麦品质对它的影响.中国粮油学报,1998,13(1):49-53.
    张学勇,董玉琛,游光霞,等.中国小麦大面积推广品种及骨干亲本的高分子量谷蛋白亚基组成分析.中国农业科学.2001,34(4):355-362.
    张学勇,庞斌双,游光霞,等.中国小麦品种资源Glu-1位点组成概况及遗传多样性分析.中国农业科学.2002,35(11):1302-1310.
    张晓科,谢惠民,付晓洁等.多种优质高分子量谷蛋白亚基的聚合育种研究.西北植物学报2003, 23 (11) : 1899—1904
    张晓科,魏益民,郭月霞,等. PCR法快速检测小麦回交后代HMW-GS Dx5基因.农业生物技术学报,2003,11(6):650-651.
    张晓科,魏益民.快速导入小麦多个优质HMW-GS基因方法和效果的研究.中国农业科学2004,38(1):208-212
    张晓科,夏先春,何中虎,等.利用STS标记检测了春化基因Vrn-A1在中国小麦中的分布. 作物学报,2006年,32(7):1038-1043
    张志清,郑有良,魏育明,等.四川主栽小麦品种遗传多样性的SSR标记研究.麦类作物学报, 2002, 22 (2) : 5—9
    李文雄,曾寒冰.春小麦穗分化的特点及期与高产栽培的关系.中国农业科学.1979,1:1一9
    李保云,刘桂芳,王岳光,等.小麦高分子量谷蛋白亚基的遗传规律研究.中国农业大学学报,2000,5(1):58-62
    李硕碧,毛建昌,王光瑞.小麦品种面包烘烤品质与其他品质性状之关系研究.西北农业学报,1996a,5(4):25-30
    李硕碧,任志龙,王光瑞.小麦品质出粉率与其它品质性状的关系研究.西北植物学报,1996b,4:392-398
    李硕碧,单明珠,李必运.陕西省小麦品种资源高分子谷蛋白亚基组成研究.西北农林科技大学学报(自然科学版),2002,(4):1-5
    杨学举,卢少源,张荣芝,等.小麦高分子量麦谷蛋白亚基在杂种后代中的品质差异.河北农业大学学报,1999,22(2):14
    杨金,张艳,何中虎,阎俊,等..小麦品质性状与面包和面条品质关系分析.作物学报,2004, 30: 739-744.
    陈东升,刘丽,董建力,等. HMW-GS和LMW-GS组成及1BL/1RS易位对春小麦品质性状的影响.2005, 31(4): 414-419.
    周阳,何中虎,张改生,等. 1BL/ 1RS易位系在我国小麦育种中的应用.作物学报,2004,30:531-535.
    金善宝.中国小麦品种及其系谱. 1997.农业出版社,北京
    金善宝.中国小麦品种及其系谱. 1986.农业出版社,北京
    赵会贤,薛秀庄,Mares D,等.麦谷蛋白亚基Glu-1和Glu-3位点基因等位变异对小麦品质特性的影响.作物学报,1997,23(6):646-654
    高庆荣,化斌,张爱民等. 1Dx5亚基特异PCR标记在小麦品质性状群体改良中的应用.作物学报, 2005,131(19): 1110 - 1114
    傅宾孝。储藏蛋白电泳分析鉴定小麦基因组及其利用.中国农业通讯,1993,9(1):44-46。
    程国旺,徐风,马传喜,等.小麦高分子量麦谷蛋白亚基组成与面包烘烤品质关系的研究.安徽农业大学学报, 2002,29(4):369-374
    葛秀秀,何中虎,杨金,等.我国冬小麦品种多酚氧化酶活性的遗传变异及其与品质性状的相关分析.作物学报. 2003. 29:125-131
    韩彬, SHEPERD KW.低分子量谷蛋白亚基与醇溶蛋白的关系及其对小麦烘烤品质的影响.中国农业科学,1991,24(4):19-25.
    雷东峰,马建岗,赵文明.小麦种子贮藏蛋白研究进展.西北植物学报,2001,21(3):584-593.
    魏良民,王福亭,范镰.普通小麦高分子谷蛋白亚基与沉降值的关系.河南农业大学学报,1999,33(1):25-28。
    戴开军,高翔,王强,等.部分小麦育种材料低分子量谷蛋白亚基等位基因变异.西北植物学报, 2006, 26 (3) : 0512—0516
    郭红,魏育明,等.应用STS—PCR标记研究新疆布顿大麦的遗传多样性.《植物学报:英文版》-2002,44(11) -1327-1332
    崔志富,林志珊,辛志勇,等.应用GISH与STS标记鉴定小-中间偃麦草抗黄矮病端体系. <<作物学报>>2006, 12
    崔国惠,倪中福,刘志勇,等.小麦杂种优势群研究? :普通小麦和斯卑尔脱小麦微卫星分子标记遗传差异的研究.农业生物技术学报, 1999, 7 (4) : 333- 338.
    梁荣奇,张义荣,刘广田,等.利用高分子量谷蛋白亚基特异PCR标记辅助选育面包小麦.农业生物技术学报,2001,9(4):322-325
    Alvarez J. B. Tritordeum: a new crop of potential importance in the food industry. Hereditas, 1992, 116:193-197
    Amiour N, Dardevet M, Khelifi D, Bouguennec A and Branlard G. Allelic variation of HMW and LMW glutenin subnits, HMW secalin subunits and 75K gamma-secalins of hexaploid triticale. Euphytica, 2002,123:179-186.
    Anderson O ,D,Yip R E,Halford N G,et al.Nucleotide sequences of two high-molecular-weight glutenin subunits sents from the D-geome of hexapliod bread wheat(Triticum aestivuml)CV cheyenne[J]. Nucleic Acides Res,1989,17:461~462
    Autran, J.C., Laignelet, B., Morel, M.H., Characterization and quantification of low molecular weight glutenins in durum wheats. Biochimie, 1987, 69, 699–711.
    Bagge M, Xia X C, Lübberstedt T. Functional markers in wheat. Current Opinion in Plant Biology, 2007, 10:211–216
    Baik B K, Czuchajowska Z, Pomeranz Y. Discoloration of dough for oriental noodles. Cereal Chemistry, 1995, 72: 198-205.
    Bartley G E, Scolnik P A. Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell, 1995, 7(7): 1027-1038
    Beales J, Turner A, Griffiths S, et al. A pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet , 2007, 115:721-733
    Beckwith, A.C., Nielsen, H.C., Wall, J.S., et al.. Isolation and characterization of a high-molecular-weight protein from wheat gliadin. Cereal Chemistry , 1966, 43, 14–28.
    Belitz H D and Grosch W. Food chemistry. Springer Verlag. Berlin. 1987
    Bietz J A, Wall J S. Isolation and characterization of gliadin-like subunits from glutenin. Soil Biology and Biochemistry, 1973, 50: 537-547.
    Bǒrner A, Worland AJ, Plaschke J, et al.. Pleiotrpic effects of genes for reduced (Rht) and day-length insensitivity (Ppd) on yield and its components for wheat grown in middle Europe. Plant Breeding , 1993, 111:204-216
    Branlard G and Dardevet M. Diversity of grain protein and bread wheat quality.Ⅱ.Correlation between high molecular weight subunits of glutenin and flour quality characteristics. Journal of Cereal Science,1985,3:345~354
    Branlard G, Dardevet R, Saccomano F, et al.. Genetics diversity of wheat storage proteins and bread wheat quality. Euphytica, 2001, 119: 59-67.
    Brites C, Carrillo J M. Influence of high and low molecular weight glutenin subunits controlled by Glu- 1 and Glu- 3 loci on durum wheat quality, cereal chemistry, 2001, 78 (1) : 59 -63.
    Bustos de A., Rubio P., Soler C., et al.. Marker assisted selection to improve HMW-glutenins in wheat. Euphytica, 2001, 119: 69–73,.
    Butow, B. J., W. Ma, K. R. Gale, et al.. Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theoretical and Applied Genetics, 2003, 107, 1524–1532.
    Butow, B. J., K. R.Gale, J. Ikea, et al, Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theoretical and Applied Genetics, 2004, 109, 1525–1535.
    Carrillo J M, Rousset M, Qualset C O, et al.. Use of recombinant imbred lines of wheat for stdying th associations of high-molecular-weight glutenin subunits alleles to quantitative traits.1. Grain yield and quality prediction tests. Theor Appl Genet, 1990, 79:321-330.
    Carrillo J M,Vazquez J F,Orellana J.Relationship between gluten strength and gluten proteins in durum wheat cultivars.Plant Breed,1990,104:325-333.
    Cassidy B.G., Dvorak J. and Anderson O.D. The wheat low-molecular-weight glutenin genes:Characterization of six new genes and progress in understanding gene family structure. Theor Appl Genel, 1998, 96:743-750
    Chen HP, Huang QM, Wei YM, et al.. Cloning of low-molecular-weight glutenin subunit gene from Sichuan wheat landrace AS1643 and its secondary structure prediction. Yi chuan, 2007 Jul;29(7):859-66
    Clarke F R, Clarke J M, Mc Caig T N, et al.. Inheritance of yellow pigment concentration in sevendurum wheat crosses. Canadian Journal of Plant Science, 2006, 86: 133-141
    Cloutier S.,Christof Rampitsch,Greg A. et al.. Cloning and expression of a LMW-i glutenin gene. Cereal Sci, 2001,33:143-154
    Cornish G B, Burridge P M, Palmer G A , et al... Mapping the origins of some HMW and LMW glutenin subunit alleles in Australian germplasm. 1993, Proc 42nd Aust Cereal Chem Conf, Sydney, pp255-260.
    D’Ovidio R, Porceddu E, Lafiandra D .PCR analysis of genes encoding allelic ariants of high-molecular-weight glutenin subunits at the Glu-D1 locus. Theor Appl Genet, 1994, 88:175-180
    D’Ovidio R,Tanzarella O A, Porceddu E. Nucleotide sequence of a low-molecular-weight glutenin from Triticum durum. Plant Mol Biol , 1992 ,18 (4) :781~784.
    D’Ovidio R, Simeone M, Masci S, et al. Molecular characterization of a LMW-GS gene located on chromosome 1B and the development of primer specific for the Glu-B3 complex locus in durum wheat. Theor Appl Genet , 1997, 95:1119–1126
    D'ovidio R, Masci S, Porceddu E. Development of a set of oligonucleotide primers specific for genes at the Glu-1 complex loci of wheat.Thero Apple Genet,1995,90:189~194
    D'Ovidio R, Marchitelli C, Ercoli CL, et al.. Sequence similarity between allelic Glu-B3 genes related to quality properties of durum wheat.Theor Appl Genet, 1999, 98:455-461
    D’Ovidio Renato, Masci Stefania. Review. The low-molecular-weight glutenin subunits of wheat gluten. Journal of Cereal Science 39, 2004, 321–339
    Donald D. K., Kell Y, M. W., Elva A. A. Resolution of high molecular weight glutenin subunits by a new SDS-PAGE system incorporating a neutral PH buffer. Cereal Chemistry, 1998, 75(1): 70
    Dong YS, Zheng DS. Wheat Genetic Resources in China. 2000. China Agriculture Press, Beijing (in Chinese)
    Dunford RP, Yano M, Kurata N, et al. Comparative mapping of the barley Ppd-H1 photoperiod response gene region, which lies close to a junction between two rice linkage segments. Genetics, 2000, 161:825-834
    Dyck JA, Matus-Cádiz MA, Hucl P, Talbert L, Hunt T, Dubuc JP, Nass H, Clayton G, Dobb J, Quick J Agronomic performance of hard red spring wheat isolines sensitive and insensitive to photoperiod. Crop Sci , 2004, 44:1976-1981
    E. Hanocq M. Niarquin E. Heumez M. et al.. Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet, 2004, 110: 106–115
    Elouafi I, Nachit M M, Martin L M. Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L.var. durum). Hereditas, 2001, 135: 255–261.
    Fiseher R A,wheat Physiology at CIMMYT and raising the yield potential. In: Increasing yield potential in wheat: Breaking the barriers CIMMYT Mexico. 1996, pp: 195一202
    Gale KR, Ma W, Zhang W, et al.. Simple high-throughput DNA markers for genotyping in wheat. In: Eastwood R, Hollamby G, Rathjen T, Gororo N (ed.), Proc 10th Australian Wheat Breeding Assembly, 2001, pp 26-31. Wheat Breeding Society of Australia
    Gervais L, Dedryver F, Morlais JY, et al.. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet , 2003,106:961–970
    Gianibelli MC,Wrigley CW, Macritchie F. Polymorphism of low Mr glutenin subunits in Triticum tauschii.Journal of Cereal Science, 2002b, 35:277-286
    Gianibelli, MC., M. Echaide, O. R arroque, et al.. Biochemical and molecular characterization of Glu-1 loci in Argentinean wheat cultivars. Euphytica, 2002, 128, 61–73.
    Goncharov, N.P. Genetics of photoperiod respose in spring common wheat in connection with breeding for earliness. Ph.D. Thesis, 1986. N. I. Vavilov Institute of Plant Industry, Leningrad, 191p(in Russian)
    Gupta R B, Paul J G, Cornish G B, et al.. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1, of common wheat.Ⅰ. Its additive and interaction effects on dough properties. Journal of Cereal Sciences, 1994, 19: 9-17.
    Gupta R B, Singh N K, and Shepherd K W. The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theor Appl Genet. 1989, 77:57-64.
    Gupta RB, Shepherd KWTwo-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin.Theor Appl Genet, 1990, 80:65-74
    Gupta R.B., BateyI.L.and MaeRitchie F. Relationships between protein composition and functional properties of wheat flour. Cereal Chem., 1992,69:125一131
    Gupta, R. B., F. Bekes, C. W. Wrigley. Prediction of physical dough properties from glutenin subunit composition in bread wheats: Correlation studies. Cereal Chemistry,1991, 68, 328–333.
    Hai Long,Yu-Ming Wei,Ze-Hong Yan,et al.. Classification of wheat low-molecular-weight glutenin subunit genes and its chromosome assignment by developing LMW-GS group-specific primers. Theor Appl Genet, 2005,111: 1251–1259
    He X Y, Zhang Y L, He Z H, et al.. Characterization of phytoene synthase 1 gene (Psy1) locatedon common wheat chromosome 7A and development of a functional marker. Theoretical and Applied Genetics, DOI 10.1007/s00122-007-0660-8.
    He ZH, Rajaram S, Xin ZY, et al.. A History of Wheat Breeding in China. CIMMYT, Mexico, DF He Zhonghu, Pena R J and Rajaram S. 1992, High molecular weight glutenin subunit composition of Chinese bread wheats. Euphytica, 2001, 64:11-20.
    He zhong hu.Wheat production and quality requirements in China. Review of China Agricultural Science and Technology. 2000,2(3): 62-68
    He, Z H, Yang J, Zhang Y, et al.. Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica, 2004, 139: 257-267.
    He, Z. H., Liu, A. H. , Pena, R. J., et al.. Suitability of Chinese wheat cultivars for productionof northern style Chinese steamed bread. Euphytica,. 2003, 131: 155-163
    Hessler T G, Thomson M J, Benscher D, et al.. Association of a lipoxygenase Locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Science, 2002, 42: 1695-1700
    Hiroyuki Tanaka, Rie Shimizu & Hisashi Tsujimoto. Genetical analysis of contribution of low-molecular-weight glutenin subunits to dough strength in common wheat (Triticum aestivum L.). Euphytica, 2005, 141: 157–162
    Hunt LA. Photoperiodic responses of winter wheats from different climatic regions. Z Pflanzenzüchtung, 1979, 82:70-80
    Islam-Faridi MN, Worland AJ, Law CN. Inhibition of ear-emergence time and sensitivity to day-length determined by the group-6 chromosomes of wheat. Heredity, 1996, 77, 572–580
    Ikeda, T.M., Nagamine, T., Fukuoka, H., et al.. Identification of new low-molecular-weight glutenin subunit genes in wheat. Theoretical and Applied Genetics,2002, 104, 680–687
    Jackson E A, Morel M H, Sontag-Strohm T, et al.. Proposal for combining the classification systems of alleles of Gli-1 and Glu-3 loci in bread wheat (Triticum aestivum L.).J genet & Breed, 1996,.50:321-326.
    Jackson EA , Holt LM , Payne PI.Characterization of high-molecular-weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localization of their controlling genes.Theor Appl Genet,1983,66:29~37
    James Cockram , Huw Jones , Fiona J. Leigh , Donal O’Sullivan et al. Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. Journal of Experimental Botany, 2007, Page: 1 -14
    Kasarda D.D. Glutenin structure in relation to wheat quality.Pages 277-302 in:Wheat is Unique.Y. Pomeranz,ed.Am.Assoc.1989.Cereal Chem.:St.Paul,MN.
    Kasarda, D.D., Tao, H.P., Evans, P.K., et al.. Sequencing of protein from a single spot of a 2-D gel pattern: Nterminal sequence of a major wheat LMW-glutenin subunit. Journal of Experimental Botany, 1988, 39, 899–906.
    Khelifi D and Branlard G. The effects of HMW and LMW subunits of glutenin and of gliadins on the technological quality of progeny from four crosses between poor breadmaking quality and strong wheat cultivars. J cereal Sci., 1992,16:195-209.
    Kolster P, Eeuwijk F A and Van Gelder W M J. Additive and epistatic effecfs of allelic variation at the high-molecular-weight glutenin subunit loci in determining the bread-making quality of breeding lines of wheat. Euphytica. 1991,55:277-285.
    Kolster P, Krechting CF, fielder WMJ van Variation in high molecular weight glutenin subunits of Triticum aestivum and T.turgidum ssp.dicoccoides. Euphytica,1988, S:141-145
    Kruger J E, Matsuo R R, Preston K. A comparison of methods for the prediction of Cantonese noodle colour. Canadian Journal of Plant Science, 1992, 72: 1021-1029
    Kuchel H, Langridge P, Mosionek L, et al.. The genetic control of milling yield, dough rheology and baking quality of wheat. Theoretical and applied genetics, 2006, 112(8): 1487-1495
    Lagudah E S, O’Brien L, Halloran G M. Influence of gliadin composition and high molecular weight subunits of glutenin on dough properties in an F3 population of a bread wheat cross. Journal of Cereal Science, 1988, 7: 33-42.
    Landrum J T, Bone R A. Lutein, zeaxanthin, and the macular pigment. Archives of Biochemistry and Biophysics, 2001, 385(1): 28-40
    Laurie DA, Pratchett N, Bezant JH, et al.. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter×spring barley (Hordeum vulgare L.) cross. Genome, 1995, 38, 575–585.
    Law CN, Suarez E, Miller TE, et al.. The influence of the group 1 chromosomes of wheat on ear-emergence times and their involvement with vernalization and day length. Heredity 1998, 80, 83–91.
    Law CN, Sutka J, Worland AJ A genetic study of day length response in wheat. Heredity, 1978, 41:185–191
    Lawrence G J and Shepherd K W. Inheritance of glutenin protein subunits of the high molecular wheat. Theor Appl Genet, 1981, 60:333-337.
    Lawrence G J, MacRitchie F and Wrigley C W. Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci. J Cereal Sci.,1988, 7:109-112.
    Lee YK, Bekes F, Gupta R, et al. .The low-molecular-weight glutenin subunit proteins of primitivewheats.I.Variation in A-genome species.Theor Appl Genet,1999, 98:119-125.
    Lei, Z. S., K .R. Gale, Z. H. He, et al.. Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. Journal of Cereal Science, 2006, 43, 94–101.
    Lew E J L, Kuzmicky D D and Kasard D D. Characterization of low molecular weight glutenin subunits by reversed-phase high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel elec- trophoresis, and N-terminal amino acid sequencing. Cereal Chem. 1992, 69: 508-515.
    LiangDan, Zhonghu H, Jianwei Tang, et al.. Characterization of CIMMYT wheats for high- and low-molecular-weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Submitted to Euphytica
    Liu, L., Z. H. He, J. Yan, et al.. Allelic variation at the Glu-1 and Glu-3 loci, presence of the 1B.1R translocation, and their effects on mixographic properties in Chinese bread wheats. Euphytica, 2005, 142, 197-204.
    Long H, Wei YM, Yan ZH, et al.. Classification of wheat low-molecular-weight glutenin subunit genes and its chromosome assignment by developing LMW-GS group-specific primers. Theor Appl Genet, 2005,111(7):1251-1259
    Luo C, Griffin W B, Brandlard G and McNeil D L. 2001, Comparison of low-and high molecular weight wheat glutenin allele effects on flour quality. Theor Appl Genet. 102:1088-1098.
    Ma W, Daggard G, Sutherland M, et al. Molecular markers for quality attributes in wheat. In ‘Proceedings of the Ninth Assembly Wheat Breeding Society of Australia’, 1999, pp. 115-117
    Ma, W., W. Zhang, K. R. Gale. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica, 2003, 134, 51-60
    Marais, G. F. Gamma irradiation induced deletions in an alien chromosome segment of the wheat ‘Indis’and their use in gene mapping. Genome. 1992. 35(2):225-229
    Mares D J, Campbell A W. Mapping components of flour and noodle colour in Australian wheat. Australian Journal of Agricultural Research, 2001, 52: 1297-1309
    Martiníc ZF. Life cycle of common wheat varieties in natural environments as related to their response to shortened photoperiod. Z Pflanzenzüchtung,1975, 75:237-251
    Masci S, Lafiandra D, Porceddu E, et al. D-glutenin subunits: N-terminal sequences and evidence for the presence of cysteine. Cereal Chemistry, 1993, 70: 581-585.
    Masci S, D′Ovidio R, Lafiandra D, et al.. A 1B-coded low-molecular-weight glutenin subunit associated with quality in durum wheats shows strong similarity to a subunit present in some bread wheat cultivars.Theor.Appl.Genet,2000,100:396-400.
    Masci S, D'Ovidio R, Lafiandra D, et al Characterization of a low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer.Plant Phvsiol,1998, 118:1147-1158
    Masci S.,Lew E.J.L.,Lafiandra D.,et al.. Characterization of low-molecular-weight glutenin subunits in durum wheat by RP-HPLC and N-terminal sequencing.Cereal Chem. ,1995,72:100-104
    Masci,S.,Rovelli,L.,Kasarda,D.D., et al.. Characterisation and chromosomal localization of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring.Theoretical and Applied Genetics 2002.104,422–428.
    Metakovskii, E.V., Wrigley, C.W., Bekes, F., et al... Gluten polypeptides as useful genetic markers of dough quality in Australian wheats. Australian Journal of Agricultural Research, 1990, 41, 289–306
    Miskelly D M. Flour components affecting paste and noodle colour. Journal of the Science of Food and Agriculture, 1984, 35: 463-471
    Miura H, Worland AJ. Genetics of vernalization response day length response and earliness per se in homoeologous group 3 chromosomes of wheat. Plant Breeding, 1994, 113, 160–172.
    Morel M H. Acid–polyacrylamide gel electrophoresis of wheat glutenins: a new tool for the separation of high and low molecular weight subunits. Cereal Chem., 1994, 71:238-242.
    Mustapha B,Louis PV,Michel P,et al.. Genetic polymorphism in low-molecular-weight glutenin genes from Triticum czestivum,variety Chinese Spring.Theor Appl Genet,2000,100:789–793
    Nehir ?zdemir and Sylvie Cloutier. Expression analysis and physical mapping of lowmolecular-weight glutenin loci in hexaploid wheat (Triticum aestivum L.). Genome, 2005, 48: 401–410
    Nieto-Taladriz M T, Perretant M R and Bouguennec A. Effect of gliadins and HMW and LMW subunits of glutenin on dough properties in the F6 recombinant inbred lines from a bread wheat cross. Theor Appl Genet, 1994, 88:81-88
    Nieto-Taladriz MT, Ruiz M, Martinet MC, et al.. Variation and classification of B-low-molecular-weight glutenin subunit alleles in durum wheat.Theor Appl Genet, 1997, 95:1155一1160
    Nikolay P. Concharov and Nobuvoshi Watanabe. Physical Mapping and Chromosomal Location of the Photoperiod Response Gene Ppd 2 in Common Wheat. Breeding Science, 2005, 55: 81-86
    Oliver, J R. Proceedings of the 38th Australian Cereal Chemistry Conference, Royal Australian Chemical Institute, Parkville, Victoria, Australia, 1988, 216-218
    Orth R A and Bushuk W.A comparative study of the wheats of diverse baking qualities.Cereal Chemistry, 1972, 49:268~275
    Ortiz Ferrara G, Mosaad MG, Mahalakshmi V, et al.. Photoperiod and vernalisation response of Mediterranean wheats, and implications for adaptation. Euphytica, 1998, 100:377-384
    Parker G D. Development of a STS marker linked to a major locus controlling flour colour in wheat. Molecular Breeding, 2000, 6: 169-174
    Parker G D. Mapping loci associated with flour color in wheat. Theoretical and Applied Genetics, 1998, 97: 238-245
    Payne P I, Corfield K G and Blackman J A. Correlation between the inheritance of certain high-molecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J Sci Food Agric, 1981, 32:51-60
    Payne P I, Holt L M, Lawrence G J et al.. The genetics of gliadin and glutenin, the major storage proteins of the wheat endosperm. Qual Plant Food Hum Nutr, 1982, 31:229-241
    Payne P I, Law C N and Mudd E E. Control by homoeologous group 1 chromosomes of the high-molercular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet, 1980, 58:113-120
    Payne P I,Hol T L,Jackson E A,etc.Wheat storage proteins:Their potential for manipulation by plant breeding[J].Pholos Trans R Soc Lond,1984,B304:359-371
    Payne P I. Genetics of wheat storage protein and the effect of allelic variation on breadmaking quality. Ann. New York Acad. Sci. 1987a, 38:141-153
    Payne P. I., Corfield K. G. Subunit composition of wheat glutenin proteins isolated by gel filtration in a dissociating medium.Planta,1979,145:84-88
    Payne P.I.,Holt L.M.,Thompson R. D.,et al. The high molecular weight subunits of glutenin:classical genetics and the relationship to bread- making quality. In: Pro 6th Int Wheat Genet Symp,Kyoto(Japan),1983,827一834
    Payne P I. 1987a, Genetics of wheat storage protein and the effect of allelic variation on breadmaking quality. Ann. New York Acad. Sci.38:141-153
    Pflüger L A, D’Ovidio R, Margiotta B, et al.. Characterisation of high- and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theor Appl Genet, 2001,103:1293-1301
    Pfluger LA,Martin LM,Alvarez JB. Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat(Triticum turgidum ssp.dicoccum Schrank.). Theor Appl Genet, 2001, 102:767-772
    Pitts E G, Rafalski J A and Hedgcoth C. Nucleotide sequence and encoded amino acid sequence ofa genomic gene region for a low molecular weight glutenin. Nucleic Acids Res, 1988, 16:11376
    Pogna N E, Mellini F, Beretta A, et al.. The high- molecular-weight glutenin subunits of common wheat cultivars grown in Italy. J Genet & Breed, 1989, 43:17-24
    Pogna N E, Autran J C, Mellini F, et al.. Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat genetics and relationship to gluten strength. J Cereal Sci,1990,11:15-34
    Pomeranz Y. Composition and functionality of wheat flour components. In:Pomeranz Y(ed) Wheat chemistry and technology. Cereal Chem, 1999, 13:219-370
    Popineau Y, Cornec M, Lefebvre J and Marchylo B. Influence of high Mr glutenin subunits and gluten sub-fractions of near-isogenic lines of wheat Sicco. J Cereal Sci, 1994,19:231-241
    Pozniak C J, Knox R E, Clarke F R, et al.. Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theoretical and Applied Genetics, 2007, 114(3): 525-537
    Pugsley AT The photoperiodic sensitivity of some spring wheats with special reference to the variety Thatcher. Aust J Agric Res, 1966, 17:591-599
    Rajaram savant Inkle..Yield Potential debate:Gemrless vs.methodology or both. In Increasing yield potential in wheat: Breaking the barriers CIMMYT Mexico. 1996,11-18
    Raja Ragupathy, Hamid A, Naeem , et al.. Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit Theor Appl Gene,DOI 10.1007/s00122-007-0666-2
    Razumov, V. I.. 1961. Environment and plant development. 2nd edn. Selkhozgiz, Moscow, Leningrad. 386p(in Russian)
    Redaelli R, Pogna N E and Ng P K W. Effects of prolamins encoded by chromosomes 1B and 1D on the rheological properties of dough in near-isogenic lines of breadwheat Cereal Chem. 1997, 74:102-107.
    R?der MS, Korzun V, Wendehake K, et al.. A microsatellite map of wheat. Genetics, 1998, 149:2007–2023
    Rodriguez-Quijano M, Nieto-Taladriz MT, Carrillo JM. Variation in B-LMW glutenin subunits in Einkorn wheats.Genetic Resources and Crop Evolution,1997, 44:539-543
    Rousset M, Carrillo J M, Qualset C O,. Use of recombinant imbred lines of wheat for study the associations of high-molecular-weight glutenin subunit alleles to quantitative traits. 2.Milling and brea-baking quality. Theor Appl Genet,1992, 83:403-412
    Ruizm,Carrillo J M. Relationship between different prolamin proteins and some quality properties in durum wheat. Plant Breeding,1995,114:40-44
    Scarth R, Law CN. The control of day-length response in wheat by the group 2 chromosomes. Z Pflanzenzuchtung,1984, 92:140-150
    Sharp P J, Johnston S, Brown G, et al.. Validation of molecular markers for wheat breeding. Australian Journal of Agricultural Research, 2001, 52: 1357-1366
    Singh NK, Shepherd KW Linkage mapping of genes controlling endosperm storage proteins in wheat. 1. Genes on the short arms of group-1 chromosomes. Theor Appl Genet, 1988, 75:628–641
    Sissons MJ,Bekes F,Skerritt JH. Isolation and Functionality testing of low molecular weight glutenin subunits.Cereal Chem, 1998, 75(1):30-36
    Slafer G A,et al. Yield composition and compensation in wheat: opportunity for further increasing yield potential. In: Increasing yield potential in wheat: Breaking the barriers CIMMYT Mexico.1996, 101-133
    Smith R L, Schw ederM E, B arnettR D . Identification of glutenin alleles in w heat and triticale using PC R–generated DNA markers. Crop Sci, 1994 34:1373-1378
    Snape JW, Butterworth K, Whitechurch E, et al.. Waiting for fine times: genetics of flowering time in wheat. Euphytica,2001, 119:185-190
    Sreeramulu G and Singh N K. Genetic and biochemical characterization of novel low molecular eight glutenin subunits in wheat (Triticum aestivum L.) Genome, 1997, 40:41-48
    Stephenson P, Bryan G, Kirby J , et al. Fifty new microsatellite loci for the wheat genetic map. Theor. App l. Genet., 1998, 97 (5—6) : 946- 949
    Strampelli, N., Early ripening wheats and the advance of Italian wheat production. 1932. Tipografia Failli, Rome pp.5-7
    Symons S J. Computer analysis of fluorescence for the measurement of flour refinement as determined by flour ash content, flour grade colour, and tristimulus colour measurements. Cereal Chemistry, 1991, 68: 454-460
    T.M. Ikeda, E. Araki, Y. Fujita, et al.. Characterization of low-molecular-weight glutenin subunit genes and their protein products in common wheats。Theor Appl Genet, 2006, 112: 327–334
    Tanio M, Kato K Development of near-isogenic lines for photoperiod-insensitive genes, Ppd-B1 and Ppd-D1, carried by the Japanese wheat cultivars and their effect on apical development. Breed Sci, 2007, 57:65-72
    Tao HP, Kasarda, DD. Two-dimensional gel mapping and N-terminal sequencing of LMW-gluteninsubunits. J.Exp.Bot, 1989, 40:1015一1020
    Terada M,Minami J, Yamamoto T. Rheological properties of dough made from flour exposed to gaseous ammonia. Cereal Chem. 1981. 58:101-105
    Thompson R, Bartels D, Harberd N P. Nucleotide sequence of a gene from chromosome 1D of wheat encoding a HMW-GS. Nucleic Acides,1985,13: 6833-6846
    Thompson S, Bishop D H L, Tatham A S, et al.. Exploring disulphide bond formation in a low molecular weight subunit of glutenin using a baculovirus expression system. In: Gluten Protein 1993. Association of cereal Research: Detmold, Germany, 1994, 345-355
    Thomson N H, miles M J, Tatham A S, et al.. Molecular images of cereal proteins by STM Ultramicroscopy, 1992, 42-44:1118-1122
    Tracewell C A, Vrettos J S, Bautista J A, et al.. Carotenoid photooxidation in photosystem II. Archives of Biochemistry and Biophysics, 2001, 385(1): 61-69
    Trethowan RM, Reynolds MP, Ortiz-Monasterio JI, et al.. The genetic basis of the green revolution in wheat production. Plant Breed Rev, 2007, 28: 39-58
    Turner A, Bearles J, Faure S, et al.. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 2005, 310:1031-1034
    Vazquez, J.F., Ruiz, M., Nieto-Taladriz, et al.. Effects on gluten strength of low Mr glutenin subunits coded by alleles at the Glu-A3 and Glu-B3 loci in durum wheat. Journal of Cereal Science, 1996, 24, 125–130
    Van Campenhout S, Vander Stappen J, Sagi L, et al.. Locus-specific primers for LMW glutenin genes on each of the group1 chromosomes of hexaploid wheat. Theor Appl Genet , 1995, 91:313–319
    Van Campenhout,S.,Vander Stappen, J.,Sagi, et al.. Locus-specific primers for LMW glutenin genes on each of the group chromosomes of hexaploid wheat.Theor.Appl.Genet,1995, 91, 313-319
    Volker Mohler, Rudy Lukman, Sophia Ortiz-Islas, et al. Genetic and physical mapping of photoperiod insensitive gene Ppd-B1 in common wheat. Euphytica, 2004, 138: 33–40
    Wang G, et al. The high-molecular-weight glutenin subunit compositions of Chinese bread wheat variaties and their relationship with bread-making quality. Euphytica,1993, 68:205-212
    Wang, L. H., Z. H. He, X. C. Xia. Characterization of low-molecular-weight glutenin subunit Glu-B3 genes and development of functional markers in common wheat (Triticum aestivum L.). 2008, Submitted to Theor Appl Genet
    Waines J G and Payne P I. Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum,T.urartu, and the A group of bread wheat (T.aestivum). Theor Appl Genet, 1987, 74:71-76
    Welsh JR, Kein DL, Pirasteh B, Richards RD. 1973.Genetic control of photoperiod response in wheat. In: Sears ER, Sears LES (ed.) Proc 4th Int Wheat Genet Symp Agric Exp Sta, pp. 879-884. University of Missouri, Columbia, USA
    Whitechurch EM, Slafer GA. Contrasting Ppd alleles in wheat: effects on sensitivity to photoperiod in different phases. Field Crop Res, 2002, 73:95-105
    Worland A.J., B?rner A., Korzun V., et al. . The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica, 1998, 100: 385–394
    Worland AJ. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica, 1996, 89:49–57
    Worland AJ. The importance of Italian wheats to worldwide varietal improvement. J Genet & Breed,1999, 53:165-173
    Worland AJ, Appendino ML, Sayers EJ The distribution, in European winter wheats, of genes that influence ecoclimatic adaptability whist determining photoperiodic insensitivity and plant height. Euphytica,1994, 80:219-228
    Worland AJ, Borner A, Korzun V, et al.. The influence of photoperiod genes on the adaptability of European winter wheats (reprinted from Wheat: prospects for global improvement, 1998). Euphytica, 1998, 100, 385–394
    Worland AJ, Korzum V, R?der MS, et al.. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet, 1998, 96: 1110-1120
    Xu H, Wang RJ, Shen X, Zhao YL, et al.. Functional properties of a new low-molecular-weight glutenin subunit gene from a bread wheat cultivar.Theor Appl Genet, 2006 Nov;113(7):1295-1303
    Zhang Pingping, He Zhonghu, Zhang Yan, et al.. Pan bread and Chinese white salted noodle qualities of Chinese winter wheat cultivars and their relationship with gluten protein fractions. Cereal Chemistry, 2007a, 84(4):370-378
    Zhang W, Gianibelli MC, Rampling LR, et al.. Characterisation and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum. L). Theor Appl Genet, 2004, 108:1409–1419
    Zhang XK, Xia XC, Xiao YG, et al.. Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 in Chinese common wheat cultivars and their association with growth habit. Crop Sci, 2008 48:458-470
    Zhang XK, Yang SJ, Zhou Y, He ZH, Xia XC (2006) Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers.Euphytica 152:109-116
    Zhang XK., Liu L. , He ZH., et al.. Development of two multiplex PCR assays targeting improvement of bread-making and noodle qualities in common wheat. Plant Breeding. doi:10.1111/j.1439-0523.2007b.01442
    Zhang W.,Gianibelli M. C.,Rampling L. R.,et al.. Characterisation and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum. L). Theor Appl Genet, 2004, 108:1409–1419
    Zhao, H., Wang, R., Guo, A., et al... Development of primers specific for LMW-GS genes located on chromosome 1D and molecular characterization of a gene from Glu-D3 complex locus in bread wheat. Hereditas, 2004, 141: 193-198
    Zhao XL, Xia XC, He ZH, et al.. Novel DNA variations to characterize low molecular weight glutenin Glu-D3 genes and develop STS markers in common wheat. Theor Appl Genet, 2007, 114(3):451-460
    Zhao XL, Xia XC, He ZH, et al.. Characterization of three low-molecular-weight Glu-D3 subunit genes in common wheat. Theor Appl Genet, 2006, 113: 1247-1259.
    Zhuang QS. Wheat Improvement and Pedigree Analysis in Chinese Wheat Cultivars. 2003. China Agriculture Press, Beijing (in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700