聚丙烯腈纤维纺丝成形机理及工艺相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在PAN基碳纤维的生产制备中,作为PAN原丝纺丝过程的第一步,纤维的凝固成形是决定碳纤维性能的关键。针对自制PAN原丝的纺丝成形过程展开基础性科学研究,深入了解PAN纤维在凝固成形过程中的物理化学变化,明确结构的演变规律,探讨成形工艺、结构及性能的相互关系,为高性能碳纤维的制备提供理论指导。本文针对PAN原丝的凝固成形过程,在PAN原丝的纺丝实验线上开展一系列的试验,利用RS75流变仪、差示扫描量热仪(DSC)、热重分析仪(TG)、傅立叶变换红外光谱仪(FTIR)、元素分析仪(EA)、X射线衍射仪(XRD)、电子探针(EMPA)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)及动态力学分析仪(DMA)等测试技术,在确定PAN纤维凝固成形工艺并制备出高性能PAN原丝的基础上,对PAN纤维的凝固成形机理、凝固条件以及热性能与断裂行为等进行全面深入的研究,并探讨了纺丝工艺对PAN纤维性能的影响。
     在对PAN纺丝溶液流变学性质的分析和研究中发现,共聚物的分子量和溶液浓度大小对溶液体系的粘性、弹性及稳定性等有明显影响。分子量越高,浓度越大,PAN溶液粘度越大,结构化程度越高,非牛顿性越强,物理稳定性越差,非牛顿指数越低,弹性模量越高,拟形成的弹性网络结构更为致密,但均未形成稳定的弹性网络结构。在实际凝固成形阶段纺丝溶液流动的温度范围(60-80℃)内,温度的变化对中低分子量的溶液粘度影响较大,而高分子量(100万)的溶液粘度对温度的变化不敏感。
     本文利用Fick定律,采用Bessel函数等求解了湿法纺丝过程中PAN/DMSO溶液体系在凝固浴(DMSO/H_2O体系)中的扩散方程,计算了扩散系数,并讨论了凝固条件对扩散过程的影响。研究发现,在湿法纺丝中,溶剂和凝固剂的扩散系数均随凝固浴温度的升高而增大,随凝固浴浓度的升高而降低,随凝固浴牵伸比的增大而增大,随原液中聚合物浓度的提高而下降。扩散缓和度随温度升高而下降,随凝固浴浓度的升高变化较小,随凝固浴牵伸比的增大而增大,随原液中聚合物浓度的提高而增大。
     利用XRD、SEM、纤维细度仪以及纤维强伸力仪等,研究了PAN初生纤维成形过程中的组织结构变化以及凝固浴条件对初生纤维的影响,获得了湿法纺丝过程中的最优凝固浴条件。随着凝固浴浓度的升高,初生纤维的横截面形状逐渐趋于规则的圆形,在浓度介于60-70wt%时,横截面形状变化不大;随着凝固浴浓度的增加,初生纤维及相应原丝的结晶度先升高后降低,在浓度为65wt%时,结晶度最大,残留溶剂含量较低。随着凝固浴温度的升高,初生纤维及相应原丝的结晶度增大,初生纤维的残留溶剂含量不断降低,在温度高于55℃后,残留溶剂含量的变化较小;凝固浴温度从50℃升高到60℃的过程中,初生纤维的横截面由腰子形逐渐变为规则的圆形,温度继续升高到70℃,圆形横截面形状崩溃,且有粘丝和并丝现象发生。随着凝固浴负牵伸的增加,初生纤维及相应原丝的结晶度不断降低,初生纤维内部的残留溶剂含量不断下降,在负牵伸增加到-20%以后,残留溶剂的含量变化较小,初生纤维的横截面形状逐渐趋于规则、均匀,初生纤维表现出更好的韧性;但是过高的负牵伸不利于高性能PAN原丝的制备,尤其是趋于0%时的牵伸会造成初生纤维的断丝现象。随着凝固浴长度的增加,在从15cm升高到90cm的过程中,初生纤维的结晶度不断增大,残留溶剂含量不断降低,在凝固浴长度升高到75cm以后,结晶度和残留溶剂含量的变化不再明显,初生纤维的横截面形状趋于圆形,直径不断降低且离散系数变小。在湿法纺丝中,采用溶液聚合,粘均分子量为16万,原液固含量为21wt%,凝固浴表观负牵伸为-10%,凝固浴温度为60℃,凝固浴浓度为65wt%时,可得到均匀性高、截面为圆形、性能优良的初生纤维,得到的原丝纤度在1.04dtex左右,强度高达7.50cN/dtex,最终碳纤维强度可达3.86GPa。
     在干喷湿纺过程中,空气层的存在改善了原液细流在凝固浴中双扩散的情况,抑制了凝固剂水和溶剂DMSO的快速扩散,有利于初生纤维均匀结构的形成,实验得到了合理的干喷湿纺工艺。随着空气层厚度的增加,凝固浴牵伸的增大,凝固浴长度的增加,初生纤维的结晶度不断增大;随着凝固浴浓度的升高,当凝固浴浓度到达80wt%时,初生纤维表现出疏松且均匀的横截面,截面形状呈现规则的圆形:随着凝固浴牵伸的增大初生纤维的直径不断减小,横截面逐步趋向致密;随着凝固浴牵伸的不断增加,初生纤维的断裂强度不断增大、断裂延伸率逐渐降低,表现出更高的密度、更低的孔隙率。在干喷湿纺中,采用水相沉淀聚合,粘均分子量为23万,原液固含量为18wt%,空气层厚度为3mm,凝固浴牵伸为+130%,凝固浴温度为20℃,凝固浴浓度为80wt%时,可得到组织均匀、横截面形状为圆形、性能优良的初生纤维,得到的原丝纤度在1.01dtex左右,强度高达7.52cN/dtex以上。
     利用DSC、TG、FTIR、EPMA等表征了初生纤维不同凝固条件下的热性能、化学结构变化和断裂行为。结果表明:随着凝固浴牵伸的增加以及干喷湿纺中空气层厚度的升高,初生纤维的放热量增大,热稳定性提高;随着凝固浴长度的增加,初生纤维表现出更高的放热量,但当长度增到一定范围(>75cm)后,初生纤维的结构趋于稳定,放热量变化微小。在湿法纺丝和干喷湿纺下,初生纤维在牵伸过程中均表现出明显的“颈缩”现象,但是湿纺纤维的组织结构较为致密并表现出难以消除的皮芯结构,干喷湿纺纤维表现出较为疏松但均匀的组织结构。在较慢的牵伸速率下,初生纤维的断口表现出明显的韧性断裂特征,在较快的牵伸速率下,初生纤维的断裂特征不明显。从化学结构上看,在波数950-1050cm~(-1)附近,DMSO中S=O的特征峰与PAN的指纹区的叠加出现明显的双峰,其中,950cm~(-1)附近的峰变化最大,是初生纤维后续处理工艺DMSO含量的变化依据。
     利用DMA、SEM以及XRD等分析了纺丝工艺对纤维结构和性能的影响,优化了工艺参数。研究发现:多级凝固浴牵伸的存在有利于纤维结构的致密和力学性能的提高;沸水牵伸和蒸汽牵伸倍数的提高,有利于PAN纤维内部结构获得稳定而巩固的取向,提高其机械性能;致密化温度的升高或时间的延长,有利于结晶度的增大。随着纺丝工艺的不断进行,PAN纤维的结晶度不断增大,残留溶剂的含量不断降低。通过对比正常水洗和直接水洗的初生纤维发现,前者残留溶剂的含量较低,在红外图谱中950cm~(-1)附近的峰不明显;后者残留溶剂含量较多且结构疏松,不利于预氧化工艺的进行。
As the first step of polyacrylonitrile spinning process, the coagulation formation process is the key factor which determine the quality of polyacrylonitrile (PAN)-based carbon fibers during the preparation of carbon fibers. In order to obtain high quality carbon fibers, it is important to carry out deeply studies on the coagulation formation process of PAN fibers. The reaserches on the physical and chemical changes, structure evolution, as well as the relationship between formation processing, structure and properties during coagulation can provide academic help for the preparation of the high-quality carbon fibers. In this work, a series of coagulation and spinning experiments were conducted on a spinning line by using home coploymers and spinning solutions as the raw material fibers. Several technologies, such as the rheometer, differential scanning calorimetry (DSC), thermal gravimetry (TG), Fourier transform infared spectroscopy (FTIR), elemental analyzer (EA), X-ray diffraction (XRD), scanning electron microscopy (SEM), electron probe micro-analyser (EPMA), high resolution transmission electron microscopy (HRTEM) and dynamic mechnics analyser (DMA) were used to systemically charaterize the structure and feature of the samples. At the same time, the influences of processsing conditions on the changes of the properties of nascent fibers and PAN fibers were also discussed.
     The investigation on the PAN spinning solution rheology indicates that the viscosity, elasticity and stability of spinning solutions depended on the molecular weight of copolymers and the spinning solution concentration at a certain extent. The molecular weight was higher, the solution concentration was bigger, the viscosity was bigger, the structure viscous index was higher, the Non-Newtonian index was smaller, the physical stability was worse, the elastic modulus was higher, the elastic network formed was more compact. During the actual spinning solution flowing temperature range from 60℃to 80℃, the effect of change of temperature on the viscosity of PAN solutions with low molecualr weight (23×10~4 and 50×10~4 ) was biggish, and it was not sensitive to temperature for spinning solutions with high molecular weight (100×10~4).
     The coagulation formation process of PAN nascent fibers is effected by the double diffusion of DMSO and H_2O. The diffusion equation of PAN/DMSO system was solved by use of Bessel funtion, and the diffusion coefficients under different coagultion conditions were received. The experimental results showed that the diffusion coefficients of solvent DMSO and precipitator H_2O hoisted with the rise of coagulation bath temperature, decreased with the rise of coagulation bath concentration, increased with the rise of coagulation drawing ratios, decrased with the rise of spinning solution concentrations. Diffusion relaxative degree descended with the rise of coagulation bath temperature, changed a little with the rise of coagulation bath concentration, increased with the rise of coagulation drawing ratios, and increased with the rise of spinning solution concentrations.
     Structure changes of PAN nascent fibers were further clarified and the excellent coagulation bath conditions for wet spinning were acquired in the forming process by use of XRD, SEM, fiber fineness and fiber strength and elongation analysers. With the increase of coagulation bath concentration, cross-sectional shapes of nascent fibers became round, and the cross-sectional shapes had little change when the concentration was 60-70wt%. With the increase of coagulation bath concentration, crystallinity of nascent fibers and corresponding PAN precursors firstly increased and then reduced, the crystallinity got the maximum when the concentration was 65wt%, and the residual solvent content got the minimusm. With the increase of the coagulation bath temperature, crystallinity of nascent fibers and corresponding PAN precursors increased, and the residual solvent content in nascent fibers became lower, and the residual solvent content hardly had any changes when the temperature was higher than 55℃. During the process of coagulation bath temperature varying from 50℃to 60℃, the cross-sectional shapes of nascent fibers gradually became from the kidney shapes to circular shapes. When the temperature was 70℃, circular cross-sectional shapes of the fibers collapsed. As the rise of minus stretch ratios, crystallinity of the nascent fibers and corresponding PAN precursors and the residual solvent contents in nascent fibers continuously reduced. When the minus stretch ratio reached -20%, the residual solvent contents had smaller changes, cross-sectional shapes of nascent fibers became regular and homogeneous, and nascent fibers showed better toughness. But higher drawing was not favorable for producing high-performance PAN precursor, especially the minus stretch ratio reached about 0%. With the increase of coagulation bath length from 15cm to 90cm, crystallinity of the nascent fiber increased, and residual solvent content reduced. When the coagulation bath length was over 75cm, changes of crystallinity and residual solvent content was no longer obvious, and cross-sectional shapes of the nascent fibers tended to become circular, whose diameters became lower and the dispersion coefficient became smaller. In wet spinning, when solution polymerization was used, viscosity-average molecular weight was 16×10~4, spinning solution concentration was 21wt%, and the drawing ratios of coagulation bath with concentration of 65wt% in 60℃was -10%, the excellent performance PAN fibers with circular cross-section were obtained, whose fineness was about 1.04dtex with strength up to 7.50cN/dtex, and the indensity of corresponding carbon fiber was about 3.86Gpa.
     The existence of air gap improved double diffusion of spinning solution droplets at the coagulation bath during dry-jet wet spinning, which inhibited the rapid diffusion of water, and it was in favor of nascent fiber formation with uniform structure. With the increase of air gap distance, coagulation bath drawing ratios and the length of coagulation bath, crystallinity of nascent fibers increased continuously. With the increase of coagulation bath concentration, especially when it reached 80wt%, the nascent fibers showed loose and symmetrical cross-section, and the cross-section shape presented regular circle. With the rise of coagulation bath drawing ratio from +5% to +105%, the diameter of nascent fiber continuous decreased and the cross section progressively tended to compact. With increase of coagulation bath drawing ratios, the fracture intensity of nascent fibers continuously increased and the fracture elongation decreased, showing a better toughness, higher density, lower porosity, and the corresponding PAN precursor fiber showed the similar rules. In dry-jet wet spinning, when aqueous precipitation polymerization was used, viscosity-average molecular weight was 23×10~4 , spinning solution concentration was 18wt%, air gap distance was 3mm, and drawing ratio of coagulation bath with concentration of 80wt% in 20℃was +130%, we could also get the excellent performance nascent fibers with circular cross-section, whose PAN fiber fineness was about 1.01 dtex with intensity up to 7.52cN/dtex.
     The thermal properties, chemical structure changes and fracture behavior of nascent fibers under different coagulation conditions were studied by use of the DSC, TG, FTIR, EPMA. The results showed that the nascent fiber heat release increased and thermal stability improved with the increase of coagulation bath drawing ratios and the air gap distance during dry-jet wet spinning. And the nascent fibers showed higher heat release with the rise of coagulation bath length, but when the length increased to a certain value (>75cm), the nascent fibers' structure stabilized and the heat release changed a little. In wet spinning and dry-jet wet spinning, the nascent fibers showed obvious necking phenomenon, but the wet-spinning fiber's structure was more dense and showed skin-core structure which is difficult to eliminate, and dry-jet wet spinning fibers showed a more loose but uniform microstructure. Nascent fibers showed obvious ductile fracture characteristics at a slower rate, and the fracture characteristics were not obvious at a faster rate. Judging from the chemical structure, the wave number near 950cm~(-1) peak was S=O characteristic peak in DMSO, which was used to indicate the changes of DMSO in the follow-up process based on nascent fibers.
     The effect of spinning process to the structure and properties of the PAN fiber was analyzed, and the parameters were optimized by the use of DMA, SEM and XRD etc. The study found that the improving of drawing was conducive to get the stable orientation of the PAN fibers' internal structure, and improved its mechanical properties. The improving of densification temperature was helpful to the rise of crystallinity. With the spinning process to be carried out, the crystallinity of PAN fiber increased, residual solvent content became lower and lower. Comparing the normal water bath fiber with the nascent fiber washed directly, the former had the lower residual solvent content and is not obvious in FTIR, the latter had the higher residual solvent content and its structure was looser, which was not conducive to the following preoxidation process.
引文
[1]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [2]张旺玺.PAN基碳纤维.上海:东华大学出版社,2004.
    [3]罗益锋.新世纪初世界碳纤维透视.高科技纤维与应用,2000,25(1):1-7.
    [4]Kobets LP,Deev IS.Carbon fibers:structure and mechanical properties.Composites Science and Technology,1997,57:1571-1580.
    [5]贺福,赵建国,王润娥.碳纤维工业的长足发展.高科技纤维与应用,2000,25(4):9-13.
    [6]赵稼祥.碳纤维的现状与新发展.材料工程,1997,(12):3-6.
    [7]郑远.碳纤维生产技术和工业应用.兰化科技,1995,13(4):255-260
    [8]柯泽豪,林菁菁.碳纤维研究发展之现状与未来.高科技纤维与应用,2000,25(6):1-4.
    [9]张兴智.PAN基高性能碳纤维的制备及其性能的研究.安徽大学学报(自然科学版),1995,(1):74-81.
    [10]Newell JA,Edie DD,Fuller EL,JR.Kinetics of carbonization and graphitization of PBO fiber.Journal of Applied Polymer Science,1996, 60:825-832.
    [11]Sudo K,Shimizu K.New carbon fiber from lignin.Journal of Applied Polymer Science,1992,44:127-134.
    [12]赵稼祥.碳纤维低成本制备技术.高科技纤维与应用,2003,28(6):12-14.
    [13]吴雪平,杨永岗,郑经掌,贺福.高性能PAN基碳纤维的原丝.高科技纤维与应用,2001,26(6):6-10.
    [14]赵根祥,邱海鹏.聚酰亚胺基碳纤维的开发.合成纤维工业,2000,23(1):75-77.
    [15]赵稼祥.迎接复合材料的挑战.航天技术与民品,1999,(2):27-31.
    [16]王德诚.PAN基及沥青基碳纤维生产现状与展望.合成纤维工业,1998,21(2):45-48.
    [17]曾凡龙,潘鼎.粘胶活性碳纤维预浸剂的热分解作用及效能评选.材料科学与工程学报,2004,22(5):688-692.
    [18]Bajaj P,Sen K,Hajir Bahrami S.Solution polymerization of acrylonitrile with vinyl acids in dimthylformamide.Journal of Applied Polymer Science,1996,59:1539-1550.
    [19]陈厚,张旺玺,蔡华甦.丙烯腈和丙烯酸的水相悬浮聚合及表征.金山油化纤,1999,(4):7-11.
    [20]上海纺织工学院.腈纶生产工艺及其原理.上海:上海人民出版社,1976.
    [21]赵稼祥.世界碳纤维的需求.高科技纤维与应用,2005,30(2):7-11.
    [22]罗益锋.不断扩大的碳纤维需求及其对策.高科技纤维与应用,2005,30(3):1-4.
    [23]李青山,沈新元,孟庆财,冯云生.腈纶生产工学.北京:中国纺织出版社,2000.
    [24]马向军,张裕卿.提高PAN基碳纤维原丝质量的研究进展.合成纤维,2005,34(11):28-32.
    [25]贺福,杨永岗.攻坚碳纤维原丝瓶颈势在必行.化工新型材料,2001,29(1):3-6.
    [26]陈光大.碳纤维用PAN原丝的生产和研究.吉化科技,1994,(1):17-21.
    [27]徐梁华.突破原丝瓶颈效应加速我国PAN碳纤维技术的发展.炭素科技,2001,11(3):3-5.
    [28]贺福.优质原丝是制取高性能碳纤维的基础.化工新型材料,1993,21(2):9-14.
    [29]Zhang WX,Liu J,Wu G.Evolution of structure and properties of PAN precursors during their conversion to carbon fibers.Carbon,2003,41:2805-2811.
    [30]Ji MX,Wang CG,Bai YJ,Yu MJ,Wang YX.Structural evolution of polyacrylonitrile precursor fibers during reoxidation and carbonization.Polymer Bulletin,2007,59:527-536.
    [31]Xu Q,Xu L,Cao W,Wu S.A study on the orientation structure and mechanical properties of polyacrylonitrile precursors.Polymers for Advanced Technologies,2005,16:642-645.
    [32]Tsai JS,Lin CH.The effect of the side chain of acrylate comonomers on the orientation,pore-size,and properties of polyacrylnitrile precursor and resulting carbon fiber.Journal of Applied Polymer Science,1991,42:3039-3044.
    [33]Gupta DC,Agrawal JP.Effect of comonomers on thermal degradation of polyacrylonitrile.Journal of Applied Polymer Science,1989,38:265-270.
    [34]Mittal J,Bahl OP,Mathur RB.Single step carbonization and graphitization of highly stabilized PAN fibers.Carbon,1997,35:1196-1197.
    [35]Bahrami SH,Bajaj P,Sen K.Thermal behavior of acrylonitrile carboxylic acid copolymers.Journal of Applied Polymer Science,2003,88:685-698.
    [36]Bajaj P,Bahrami SH,Sen K,Sreekumar TV.Thermal and rheological behavior of acrylonitrile-carboxylic acid copolymers and their metal salt complexes.Journal of Applied Polymer Science,1999,74:567-582.
    [37]Bajaj P,Sreekumar TV,Sen K.Effect of reaction medium on radical copolymerization of acrylonitrile with vinyl acids.Journal of Applied Polymer Science,2001,79:1640-1652.
    [38]崔传生.丙烯腈/衣康酸钱共聚物的制备及其溶液性质的研究[博士学位论文].济南:山东大学,2006.
    [39]Chen H,Liu JS,Liang Y.Kinetic study of copolymerization of acrylonitrile with ammonium acrylate.Journal of Applied Polymer Science,2006,100:4679-4683.
    [40]Chen H,Liu JS,Liang Y,Wang CG.Copolymerization of acrylonitrile with methyl vinyl ketone.Journal of Applied Polymer Science,2006,99:1940-1944.
    [41]陈厚,王成国,崔传生,蔡华甦.H_2O/DMSO混合溶剂对丙烯腈与N-乙烯基吡咯烷酮共聚反应的影响.新型炭材料,2002,17(4):38-42.
    [42]Zhang WX,Liu J,Wu G.Evolution of structure and properties of PAN precursors during their conversion to carbon fibers.Carbon,2003,41:2805-2812.
    [43]Sun YS,Wang QR,Li XJ,et al.Investigation on dry spinning process of ultrahigh molecular weight polyethylene/decalin solution.Journal of Applied Polymer Science,2005,98:474-483.
    [44]Bhanu VA,Rangarajan P,Wiles K.Synthesis and characterization of acrylonitrile/methyl acrylate statistical copolymers as melt processable carbon fiber precursors.Polymer,2002,43:4841-4850.
    [45]高健,陈惠芳.PAN原丝及其干喷湿纺.合成纤维工业,2002,25(4):35-38.
    [46]Dgawa H,Saito K.Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index.Carbon,1995,33:783-788.
    [47]Nakom W,Hiroyuki N,Kouichi M.Effect of pre-oxidation at low temperature on the carbonization behavior of coal.Fuel,2002,81:1477-1484.
    [48]Yu MJ,Wang CG,Bai YJ,Wang YX,Xu Y.Influence of precursor properties on the thermal stablization of polyacrylonitrile fibers.Polymer Bulletin, 2006,57:757-763.
    [49]Tsehao K.The influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization.Journal of Applied Polymer Science,1991,43:589-600.
    [50]Edie DD.The effect of processing on the structure and properties of carbon fibers.Carbon,1998,36:345-362.
    [51]Johnson JW,Marjoram JR,Rose PG.Stress graphitization of polyacrylonitrile based carbon fiber.Nature,1969,221(5178):357-358.
    [52]王茂章,贺福.碳纤维的制造性质及其应用.北京:科学出版社,1984.
    [53]沈新元.高分子材料加工原理.北京:中国纺织出版社,2000.
    [54]Paul DR.Diffusion during the coagulation step of wet-spinning.Journal of Applied Polymer Science,1968,12:383-402.
    [55]Rende A.A new approach to coagulation phenomena in wet-spinning.Journal of Applied Polymer Science,1972,16:585-594.
    [56]Qian BJ,Pan D,Wu ZQ.The mechanism and characteristics of dry-jet wet-spinning of acrylic fibers.Advances in Polymer Technology,1986,6:509-529.
    [57]Knaul JZ,Creber Katherine AM.Coagulation rate studies of spinnable chitosan solutions.Journal of Applied Polymer Science,1997,66:117-127.
    [58]Law SJ,Mukhopadhyay SK.Compositional changes during the wet spinning of acrylic fibers from aqueous sodium thiocyanate solvent.Journal of Applied Polymer Science,1998,69:1459-1469.
    [59]Liu CK,Cuculo JA,Smith B.Coagulation studies for cellulose in the Ammonia/Ammonium Thiocyanate(NH_3/NH_4SCN) direct solvent system.Journal of Polymer Science:Part B:Polymer Physics,1989,27:2493-2511.
    [60]Chen H,Liang Y,Wang CG.Determination of the diffusion coefficient of H_2O in polyacrylonitrile fiber formation.Journal of Polymer Research,2005,12:49-52.
    [61]Oh SC,Wang YS,Yeo YK.Modeling and simulation of the coagulation process of poly(acrylonitrile) wet-spinning.Industrial & Engineering Chemistry Research,1996,35:4796-4800.
    [62]Chen H,Qu RJ,Liang Y.Kinetics of diffusion in polyacrylonitrile fiber formation.Journal of Applied Polymer Science,2005,96:1529-1533.
    [63]Chen J,Ge HY,Dong XG,Wang CG.The formation of polyacrylonitrile nascent fibers in wet-spinning process.Journal of Applied Polymer Science,2007,106:692-696.
    [64]汪仁钧,吴承训,潘鼎.PAN湿法纺丝凝固成形过程中的凝胶化与传质.合成技术及应用,2005,20(2):5-8.
    [65]季保华,王成国,王延相,白玉俊,贾文杰.湿纺凝固条件对PAN初生纤维形态结构的影响.合成纤维工业,2006,29(1):1-4.
    [66]林风崎,徐樑华,李常清.凝固条件对PAN初生纤维微孔结构形态的影响.合成纤维工业,2006,29(1):16-19.
    [67]Ashok KY,Nishkam K,Hans R.Manufacturing Process of Acrylic Fibre by Wet Spinning.Man-Made Textiles,2000,25:421-426.
    [68]Bahrami SH,Bajaj P,Sen K.Effect of Coagulation Conditions on Properties of Poly(acrylonitrile-carboxylic acid) Fibers.Journal of Applied Polymer Science,2003,89:1825-1837.
    [69]吕永根,杨常玲,翟磊,李永红,吕春祥,贺福,凌立成.用称重法研究PAN树脂的凝固过程.新型炭材料,2004,19(1):16-20.
    [70]Takahashi M,Nukushina Y,Kosugi K.Effect of fiber-forming conditions on microstructure of acrylic fiber.Textile Research Journal.1964,34:87-97.
    [71]李青山,沈新元.腈纶生产工学.北京:中国纺织出版社,2000.
    [72]侯震伟,陈立新,王庆瑞.湿法纺丝时纺丝原液凝固成形机理的探讨.中国纺织大学学报,1996,22(1):69-71.
    [73]王延相,王成国,朱波,季保华,何东新,王强.网状和皮芯结构对生产高性能碳纤维组织演变的影响.材料科学与工程学报,2005,23(5):325-240.
    [74]董纪震.合成纤维生产工艺学(上册).北京:中国纺织工业出版社,2000.
    [75]Ziabicki A著,华东纺织学院化学纤维教研室译.纤维成形基本原理.上海:上海科学技术出版社,1983.
    [76]Smiley RJ,Delgass WN.AFM,SEM and XPS characterization of PAN-based carbon fibers etched in oxygen plasmas.Journal of Material Science,1993,28:3601-3611.
    [77]Cohen C,Yanny GB,Prager S.Diffusion controlled formation of porous structures in ternary polymer system.Journal of Polymer Science:Polymer Physics Edition,1979,17:477-489.
    [78]Law SJ,Mukhopadhyay SK.The construction of a phase diagram for a ternary system used for the wet spinning of acrylic fibers based on a linearized cloudpoint curve correlation.Journal of Applied Polymer Science,1997,65:2131-2139.
    [79]Reuvers AJ,Altena FW.Demixing and gelation behavior of ternaty cellulose acetate solutions.Journal of Polymer Science,Part B:Polymer Physics,1986,24:793-804.
    [80]Young TH,Chuang WY.Thermodynamic analysis on the cononsolvency of poly(vinyl alcohol) in water-DMSO mixtures through the ternary interaction parameter.Journal of Membrane Science,2002,210:349-359.
    [81]Yilmaz L,McHugh AJ.Analysis of nonsolvent-solvent-polymer phase diagram and their relevance to membrane formation modeling.Journal of Applied Polymer Science,1986,31:997-1018.
    [82]李常清,徐粱华,王晓玲,刘淑金,曹维宇,陈宏卓.残余溶剂DMSO对PAN纤维结构及热性能的影响.高分子材料科学与工程,2003,19(4):89-91.
    [83]Dong XG,Wang CG,Cao WW,Chert J.Crystallinity development in polyacrylonitrile nascent fibers during coagulation.Journal of Polymer Research,2008,15:125-130.
    [84]董兴广,王成国,曹伟伟,陈娟.凝固浴条件对PAN纤维结构及性能的影响.高分子材料科学与工程,2007,23(2):170-174.
    [85]王延相,王成国,蔡华苏,马勇,董雪梅.拉伸对PAN原丝结构和性能的影响.合成纤维,2002,31(5):6-8.
    [86]高绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001.
    [87]董兴广,王成国,曹伟伟,赵亚奇,陈娟.凝固浴拉伸对碳纤维前驱体PAN初生纤维结构及性能的影响.高分子材料科学与工程,2008,24(6):117-120.
    [88]Masson JC编,陈国康,沈新元,林耀等译.腈纶生产工艺及应用.北京:中国纺织出版社,2004.
    [89]贾文杰,王成国,王强.油剂在PAN基碳纤维中的应用.塑料工业,2004,32(8):55-57.
    [90]吴宏仁,吴立峰.纺织纤维的结构与性能.北京:中国纺织出版社,1983.
    [91]Mukesh KJ,Abhiraman AS.Conversion of acrylonitrile-base precursor fibres to carbon fibres.Journal of Materials Science,1987,22:278-300.
    [92]Warner SB,Uhlmann DR.Oxidative stabilization of acrylic fibres.Journal of Materials Science,1979,14:1893-1900.
    [93]Liu XD,Ruland W.X-ray studies on the structure of polyacrylonitrile Fibers.Macromolecules,1993,26:3030-3036.
    [94]Colvin BG,Storr P.The crystal structure of polyacrylonitrile.European Polymer Journal,1974,10:337-340.
    [95]王延相,何东新.PAN纤维结构缺陷的形成和控制.金山油化纤,2004,(4):11-17.
    [96]刘岳新,徐棵华,张均,赵志娟.PAN分子取向程度与纤维结构性能的关系.合成纤维工业,2005,28(1):5-8.
    [97]莫志深,张宏放.晶态聚合物结构和X射线衍射.北京:科学出版社,2003
    [98]Yu MJ,Wang CG,Bai YJ,Wang YX,Zhu B.Effect of oxygen uptake and aromatization on the skin-core morphology during the oxidative stabilization of polyacrylonitrile fibers.Journal of Applied Polymer Science,2008,107:1939-1945.
    [1]陈希,黄象安.化学纤维实验教程.北京:纺织工业出版社,1988.
    [2]高绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001.
    [3]华东化工学院分析化学教研组编.分析化学(第三版).北京:高等教育出版社,1989.
    [1]周彦豪.聚合物加工流变学基础.西安:西安交通大学出版社,1988.
    [2]王洪霞.两亲分子有序组合体的流变性能及在材料合成中的应用.武汉:武汉大学,2003.
    [3]马德柱,何平笙,徐仲德,周漪琴.高聚物的结构与性能.北京:科学出版社,1995.
    [4]Bajaj P,Bhrami SH,Sen K,Sreekumar TV.Thermal and rheological be-havior of arylonitrile-carboxylic acid copolymers and their metal complex.Journal of Appllied Polymer Science,1999,74:567-582.
    [5]Mukhamedzhanova MY,Shirshova NY,Khamrakulov G.Rheological properties of concentrated solutions of ternary acrylonitrile copolymers.Fiber Chemistry,2000,32(5):340-343.
    [6]张国萍,毛萍君,张林,杨明远,王荣光.用于碳纤维原丝的聚丙烯腈纺丝溶液的性质研究.青岛大学学报,1999,14(3):26-29.
    [7]Drogun AV,Loza VM.Spinnability and rheological properties of melts of polyamide66-polyethylene terephthalate polymer blends.Fiber Chemistry,2000,32(6):419-422.
    [8]Morariu S,Bercea M,Ioan C,Ioan S,Simionescu BC.Conformational characteristics of oligo and polyacrylonitrile in dilutesolution.European Polymer Journal,1999,35:377-383.
    [9]Cheng RS,Shao YF,Liu MZ,Qian RY.Effect of adsorption on the viscosity of dilute polymer solution.European Polymer Journal,1998,34(11):1613-1619.
    [10]陈方泉,陈惠芳,潘鼎.聚丙烯腈/二甲基亚砜溶液的流变学性质.高分子材料科学与工程,2005,21(3):133-136.
    [11]王鹏,潘鼎.干-湿纺聚丙烯睛/二甲基亚砜原液流变性能的研究.化工新型材料,2004,32(8):41-43.
    [12]沈春银,毛萍君,张林,杨明远.高分子量聚丙烯腈纤维纺丝溶液的粘度特性.上海纺织科技,2000,28(16):6-8.
    [13]徐华,吴红枚.高浓度PAN/DMSO原液粘度特性及纺丝工艺性的研究.北京化工大学学报,1999,26(3):21-24.
    [14]胡盼盼,朱德杰,赵炯心,吴承训,钱宝钧.超高相对分子质量聚丙烯腈浓溶液的制备.合成纤维工业,1998,21(3):10-13.
    [15]朱德杰,胡盼盼,张斌等.缠结对超高分子量聚丙烯腈特性粘度测定的影响.中国纺织大学学报,1996,22(1):3-5.
    [16]Bhanu VA,Rangarajan P,Wiles K.Synthesis and characterization of acrytonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors.Polymer,2002,43:4841-4850.
    [17]何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,1990.
    [1]韩曙鹏,徐梁华,曹维宇,姚红,白丽芳.成纤过程中PAN纤维聚集态结构的形成.新型炭材料,2006,21(1):54-57.
    [2]姜立军,孙立,邵洪芳,孙金峰,于志刚,张明耀.二甲基亚砜法与硝酸法生产聚丙烯腈原丝的优劣比较.高科技纤维与应用,2005,30(5):15-17.
    [3]上海纺织工学院.腈纶生产工艺及其原理.上海:上海人民出版社,1976
    [4]Yu MJ,Wang CG,Bai YJ,Wang YX,Wang QF,Liu HZ.Combined effect of procession parameters on thermal stabilization of PAN fibers.Polymer bulletin,2006,57:757-763.
    [5]王启芬,王成国,王延相,杨茂伟,于美杰.PAN纤维的结构对纤维强度的影响.功能材料,2006,11:1787-1789.
    [6]王延相,王成国,朱波.聚丙烯腈湿法纺丝中纤维结构的形成研究.材料导报,2005,19(7):111-114.
    [7]Hong PD,Chou CM,Huang HT.Phase separation behavior in polyvinyl alcohol/ethylene glycol/water ternary solutions.European Polymer Journal,2000,36:2193-2200.
    [8]Young TH,Chuang WY.Thermodynamic analysis on the cononsolvency of poly(vinyl alcohol) in water-DMSO mixtures through the ternary interaction parameter.Journal of Membrane Science,2002,210:349-359.
    [9]Qian B J,Wu ZQ,Hu PP,et al.Studies of macromolecular entanglements.I.Melting behavior of swelling polymers with macromolecular entanglements.Journal of Applied Polymer Science,1991,42:1155-1166.
    [10]Qian BJ,Pan D,Wu ZQ.The mechanism and characteristics of dry-jet wet-spinning of acrylic fibers.Advances in Polymer Technology,1986,6:509-529.
    [11]Oh SC,Wang YS,Yeo YK.Modeling and simulation of the coagulation process of poly(acrylonitrile) wet-spinning.Industrial & Engineering Chemistry Research,1996,35:4796-4800.
    [12]Chen H,Qu RJ,Liang Y.Kinetics of diffusion in polyacrylonitrile fiber formation.Journal of Applied Polymer Science,2005,96:1529-1533.
    [13]徐梁华.PAN干湿法纺丝工艺中原丝的表面沟槽形态.高科技纤维与应用,2001,26(2):21-24.
    [14]朱岿立,潘鼎.干-喷湿纺聚丙烯腈纤维拉伸工艺研究.合成纤维工业,2003,26(2):9-12.
    [15]王鹏,潘鼎.干湿纺PAN/DMSO原液触变性与大分子缠结机理的研究.合成纤维工业,2004,27(6):37-39.
    [16]王延相,季保华,刘焕章.湿法纺聚丙烯腈原丝凝固过程的研究.功能材料,2005,36(9):1438-1441.
    [17]Paul DR.Diffusion during the coagulation step of wet-spinning.Journal of Applied Polymer Science,1968,12:383-402.
    [18]汪仁钧,吴承训,潘鼎.PAN湿法纺丝凝固成形过程中的凝胶化与传质.合成技术及应用,2005,20(2):5-8.
    [19]Liu CK,Cuculo JA,Smith B.Coagulation studies for cellulose in the Ammonia/Ammonium Thiocyanate(NH_3/NH_4SCN) direct solvent system.Journal of Polymer Science:Part B:Polymer Physics,1989,27:2493-2511.
    [20]季保华,王成国,王延相.湿纺凝固条件对PAN初生纤维形态结构的影响.合成纤维工业,2006,29(1):1-4.
    [21]Dong XG,Wang CG,Chen J.Study on the coagulation process of polyacrylonitrile nascent fibers during wet-spinning.Polymer Bulletin,2007,58:1005-1012.
    [22][苏]彼列彼尔金KE著.化学纤维成形过程中的物理化学基础.华东纺织工学院化纤教研室译.北京:中国纺织出版社,1981.
    [23]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [1]Chen J,Wang CG,Dong XG,Liu HZ.Study on the coagulation mechanism of wet-spinning PAN fibers.Journal of Polymer Research,2006,13:515-519.
    [2]段菊兰,邵惠丽,章潭莉,胡学超.凝固浴温度对Lyocell纤维结构及性能的影响.纺织学报,2001,14:13-15.
    [3]张胜兰,沈新,李继平.凝固条件对聚丙烯腈超滤膜结构与性能的影响.中国纺织大学学报,2000,26(4):4-8.
    [4]林凤崎,徐梁华,李常清,姚红.凝固条件对PAN初生纤维微孔结构形态的影响.合成纤维工业,2006,29(1):16-19.
    [5]姜立军,孙立,邵洪芳,孙金峰,于志刚,张明耀.二甲基亚砜法与硝酸法生产聚丙烯腈原丝的优劣比较.高科技纤维与应用,2005,30(5):16-18.
    [6]陈明仁,瞿彩芝.DMF一步法湿纺腈纶工艺技术.金陵石油化工,1994,2:1-5.
    [7]庞斌.DMF干法腈纶生产工艺.广东化纤,1997,1:7-13.
    [8]乔福牛.二甲基亚砜一步法碳纤维用聚丙烯腈原丝生产工艺.合成纤维工业,1995,18(4):19-23.
    [9]Chen J,Ge HY,Dong XG,Wang CG.The formation of polyacrylonitrile nascent fibers in wet-spinning process.Journal of Applied Polymer Science,2007,106:692-696.
    [10]Dong XG,Wang CG,Bai YJ,Cao WW.Effect of DMSO/H_2O coagulation bath on the structure and property of polyacrylonitrile fibers during wet-spinning.Journal of Applied Polymer Science,2007,105:1221-1227.
    [11]李青山,沈新元.腈纶生产工学.北京:中国纺织出版社,2000.
    [12]董兴广,王成国,曹伟伟,陈娟.凝固浴条件对PAN纤维结构及性能的影响.高分子材料科学与工程,2007,23(2):170-174.
    [13]张均,李常清,孔令强,赵振文,徐粱华.凝固与拉伸条件对PAN纤维结构形态的影响.合成纤维工业,2007,30(1):11-13.
    [14]杨茂伟,王成国,王延相,王启芬,刘焕章,蔡相军.PAN湿法纺丝工艺与纤维性能相关性研究.材料导报,2006,10:156-158.
    [15]李常清,徐梁华,王晓玲,刘淑金,曹维宇,陈宏卓.残余溶剂DMSO对PAN纤维结构及热性能的影响.高分子材料科学与工程,2003,19(4):89-91.
    [16]上海纺织工学院.腈纶生产工艺及其原理.上海:上海人民出版社,1976.
    [17]彼列彼尔金.纤维的结构与性能.北京:中国石化出版社,1990.
    [18]王延相,王成国,朱波,季保华,王强.聚丙烯腈基纤维的结构设计及其演变性研究.高科技纤维与应用,2005,30(10):10-13.
    [1]杨茂伟,王成国,王延相,王启芬,刘焕章,蔡相军.PAN湿法纺丝工艺与纤维性能相关性研究.材料导报,2006,10:156-158.
    [2]王延相,季保华,刘焕章.湿法纺聚丙烯腈原丝凝固过程的研究.功能材料,2005,36(9):1438-1441.
    [3]褚明利,沙中瑛,姜立军,张明耀.碳纤维用PAN原丝的结构与性能.长春工业大学学报(自然科学版),2005,26(4):259-261.
    [4]李常清,徐梁华,王晓玲,刘淑金,曹维宇,陈宏卓.残余溶剂DMSO对PAN纤维结构及热性能的影响.高分子材料科学与工程,2003,19(4):89-91.
    [5]赵根祥.DSC法研究PAN纤维的低温热解特性.高分子材料科学与工程,1990.5:53-58.
    [6]谢德民,石中亮,狄英伟,王荣顺.聚丙烯腈热解产物结构的研究.高分子材料科学与工程,1997,13:51-54.
    [7]谢德民,石中亮,苏忠民,王荣顺.聚丙烯腈热解产物的红外光谱研究.高分子材料科学与工程,1995,11(5):122-124.
    [8]季保华,王成国,王延相.湿纺凝固条件对PAN初生纤维形态结构的影响.合成纤维工业,2006,29(1):1-4.
    [9]韩曙鹏,徐梁华,曹维宇,姚红,白丽芳.成纤过程中PAN纤维聚集态结构的形成.新型炭材料,2006,21(1):54-58.
    [10]徐强,吴丝竹,徐梁华,曹维宇,吴刚.聚丙烯腈原丝取向结构和力学性能研究.合成纤维工业,2004,27(5):4-6.
    [11]Zhang WX,Li MS.DSC study on the polyacrylonitrile precursors for carbon fibers.Journal of Material Science Technology,2005,21(4):581-584.
    [12]Jing M,WangCG,Wang Q,Bai YJ,Zhu B.Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temerapure range of 350-600℃.Polymer Degration and Stability,2007,92:1737-1742.
    [13]董兴广,王成国,曹伟伟,赵亚奇,陈娟.凝固浴拉伸对碳纤维前驱体PAN初生纤维结构及性能的影响.高分子材料科学与工程,2008,24(6):117-120.
    [14]吴宏仁,吴立峰.纺织纤维的结构与性能.北京:中国纺织出版社,1983.
    [15]Chen J,Wang CG,Dong XG,Liu HZ.Study on the coagulation mechanism of wet-spinning PAN fibers.Journal of Polymer Research,2006,13:515-519.
    [16]赵振文,徐梁华.碳纤维用聚丙烯腈纺丝过程的控制设计.合成纤维工业,2005,28(6):37-39.
    [17]曾汉民,夏峰.扫描电镜研究聚丙烯腈纤维的织态结构和缺陷.高分子通讯,1980.3:186-188.
    [18]高绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001.
    [1]钱宝钧.热机械法研究PAN的超分子结构.高分子通讯,1979,4:201-209.
    [2]焦立平.用X射线正交透射法测定碳纤维原丝的取向度.化工科技,2005,13(2):46-48.
    [3]徐梁华,张巍,童元建,王晓玲,武冠英.PAN原丝工艺过程结晶行为的研究.新型炭材料,1997,12(3):31-33.
    [4]季保华,王成国,王延相.湿纺凝固条件对PAN初生纤维形态结构的影响.合成纤维工业,2006,29(1):1-4.
    [5]王延相,王成国,蔡华苏,马勇,董雪梅.拉伸对PAN原丝结构和性能的影响.合成纤维,2002,31(5):6-8.
    [6]刘岳新,徐梁华,张均,赵志娟.PAN分子取向程度与纤维结构性能的关系.合成纤维工业,2005,28(1):5-8.
    [7]王琴,吕春祥,梁晓怿,贺福,张睿,凌立成.PAN纤维在水浴牵伸过程中应力-应变曲线的研究.新型炭材料,2004,19(1):38-44.
    [8]邵洪芳,方静,林树波,孙金峰.影响碳纤维用PAN原丝水洗效果因素的探讨.高科技纤维与应用,2005,30(5):31-33.
    [9]姜立军,沙中瑛,孙金峰,孙立.PAN原丝沸水收缩率影响因素的探讨.合成纤维工业,2006,29(4):38-40.
    [10]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [11]高绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001.
    [12]董纪震,罗鸿烈,王庆瑞.合成纤维生产工艺学(上册).北京:中国纺织出版社,1981.
    [13]张美珍,刘百坚,谷晓昱.聚合物研究方法.北京:中国轻工业出版社,2000.
    [14]韩曙鹏,徐梁华,曹维宇,姚红.PAN纤维致密化过程对纤维晶态结构的研究.合成纤维工业,2004,27(6):17-19.
    [15]韩曙鹏,徐梁华,曹维宇,姚红.X射线衍射法研究PAN原丝的晶态结构.北京化工大学学报.2005.32(2):63-67.
    [16]Liu XD,Ruland W.X-ray studies on the structure of polyacrylonitrile Fibers.Macromolecules,1993,26:3030-3036.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700