面向网络仪器的测控HUB及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统仪器面向广域测控应用时,存在体系结构不开放以及缺少测量信息完整性(时间一致性、空间一致性以及溯源一致性)支持等问题。作者所在研究组基于“测量信息完整性”的观点和“开放体系结构”的思路,提出了“网络仪器”的解决方案,以实现仪器资源的开放互联和信息资源的广域共享。由于现有网络交换技术存在数据交换时延不确定的问题,在构建网络仪器时,为了满足探头资源(智能传感器和执行器)的网络接入和时间确定性数据交换的需求,本文引入“测控HUB”这一设备单元,并将其定义为具备时间统一和时间确定性数据交换功能的网络仪器的边界设备。
     论文以“网络仪器”为背景,围绕“时间确定性”这一核心问题,对测控HUB的结构组成、时间统一、时间确定性数据交换、以及测控HUB的设计实现与性能测试等问题进行了研究,论文主要工作如下:
     1、从网络仪器需求的角度,阐述了测控HUB的概念与特征,给出了时间确定性数据交换模型;基于网络仪器的体系结构框架以及测控HUB的概念,提出了测控HUB的完整构建方案,对测控HUB及其组成要素(外部端口、内部链路和功能单元)的结构进行了设计。
     2、从基准时间接入、时间测量和时间传递三个方面对测控HUB中的时间统一技术展开研究。
     (1)针对多基准时间信号的可信判别问题,提出一种以事件时刻精确测量为基础的通用可信判别方法,解决了现有方法不能同时对周期和非周期时间信号进行可信判别的问题;
     (2)针对基准时间信号到达等事件发生时刻的精确测量要求,设计了基于统一时间的事件时刻精确测量方法,实现了具有延迟时间自校功能和连续实时测量能力的事件时刻精确测量电路(已申请国家发明专利);
     (3)针对目前采用“时间同步”策略的时间传递方法存在时间校正误差的问题,提出一种基于“时钟交联”策略的时间传递方法,避免了时间校正环节,从而消除了时间校正的不确定误差,提高了时间传递精度。
     3、针对测控HUB时间确定性数据交换的需求,在对常规数据交换技术所存在的交换时延不确定问题分析的基础上,提出一种基于时间压力的时间确定性数据交换策略及其最大压力优先(LPQF)调度算法,深入研究了LPQF调度算法的基本原理、数学模型和实现方法,并采用网络微积分理论对LPQF调度算法进行了分析;设计了仿真软件对LPQF调度算法的性能进行验证,结果表明该调度算法相对于现有交换设备的调度算法能够有效保证数据包交换时延的确定性(“基于时间压力的时间确定性数据交换方法及交换装置”已申请国家发明专利)。
     4、结合卫星导航用户设备测试系统的项目需求,设计实现了测控HUB原型系统;针对测控HUB的性能测试问题,归纳了测控HUB的性能指标系列,并设计了各项性能指标的测试方法;开发了基于多DSP互联的测控HUB性能测试平台,并基于该平台对测控HUB原型系统的性能进行了评估。
The main problems existing in traditional instrument for wide-area measure and control application are the absence of an open architecture and measurement information integrity, such as clock synchronization, space consistency and traceability consistency. To solve these problems and realize the wide-area sharing of information resources under an open interconnection of instrument, a solution for the Instrument on Network(ION) is proposed. It is based on the perspective of measurement information integrity and the idea of open architecture. Meanwhile, a nondeterministic data transmission problem appears when using the existing network switching technology to construct the proposed ION. Considering the problems of probe’s network access and data’s deterministic exchange time in the ION, a“Measure-control HUB(MCHUB)”device unit is designed. It is defined as the border device that has the capability of unified time and deterministic switch delay.
     Based on the background of ION, this dissertation focuses on the core issue of“time deterministic”. The problems included structure and component of the MCHUB, unified time, data deterministic-time exchange, the design, implementation and performance evaluation of MCHUB are studied. The major research efforts include the following aspects.
     1. Considering the demands of ION, the concept and the characteristic of MCHUB are expounded. Also a deterministic data exchange model is presented. Based on the architecture of ION and the concept of MCHUB, the structure of MCHUB and a constructure design of its components are proposed.
     2. The unified time internal of MCHUB is researched with respect to benchmark time access, precise time measurement and time transfer.
     (1) Current existing evaluation methods can not provide the credible discrimination to the periodic time signal and the nonperiodic time signal at the same time. Aiming at the credible discrimination problem for multiple benchmark time signals, an evaluation method based on accurate event-time measurement is proposed. This method realized the simultaneous discrimination of the periodic time signal and the nonperiodic time signal.
     (2) In order to satisfy the requirement of the accurate measurement of time benchmark signal’s arrival events, a precise measurement method based on unified time is carried out. Also an accurate measurement circuit which has the ability of delay’s self-calibration within delay unit and continuous real-time measurement is designed.
     (3) A method of time transfer based on“clock jioned”is proposed for the consideration that errors rise during the time transfer process based on the time synchronization. The proposed method eliminates the errors brought by revised clock in course of synchronization and improves the precision of time transfer.
     3. To satisfy the deterministic data exchanging demand of MCHUB, the data exchange strategy based on the time pressure and schedule algorithm of largest pressure queue first(LPQF) is proposed according to the analysis of the nondeterministic time of conventional data exchange technology. The schedule algorithm of LPQF including basic principle, mathematical model, algorithm design and realization are comprehensively studied. It is analyzed by network calculus theory. To verify the performance of scheduling algorithm, a emulational software is designed. The simulate results show that LPQF guarantees the certainty of deterministic time’s data exchange and hence has better performance than other current algorithms.
     4. A prototype of MCHUB is designed based on the demand of satellite navigation equipment test system. To evaluate the performance of MCHUB, a series of performance index is concluded. And the test method of performance index is designed. At last, the performance test platform is constructed by multi-DSP’s interconnection. The prototype of MCHUB is evaluated by the performance test platform.
引文
[1]明德祥.面向网络仪器的统一时间支持体系研究.国防科技大学工学博士学位论文,2006.
    [2]王大珩,丁先华.现代仪器仪表技术与设计.北京:科学出版社,2002.
    [3]孙亚飞,陈仁文,周勇等.测试仪器发展概述.仪器仪表学报,2003,24(5):480-484,489.
    [4]范永凯,林君.第四代仪器──三层网络化仪器概念的提出.计算机工程与应用,2003,39(14):208-209.
    [5]林君.现代科学仪器及其发展趋势.吉林大学学报(信息科学版),2002,20(1):1-6.
    [6]陈国顺,宋新民,马峻.网络化测控技术.北京:电子工业出版社,2006.
    [7]周南德.网络化测试技术研究.计算机工程与应用,2003,39(24):91-93.
    [8]安幼林,杨锁昌.网络化测控实现技术研究.现代电子技术,2005,28(5):14-16.
    [9]孙亚飞,陈仁文,周勇等.测试仪器发展概述.仪器仪表学报,2003,24(5):480-484,489.
    [10]习友宝,古军.分布式网络化测试技术综述.仪器仪表学报,2002,23(5):212-216.
    [11] D. Ireland, P. Trevisan. Measurement and the Networked Future. IEEE Review, 2001, 11: 49-53.
    [12]熊永华,吴敏,曹卫华.基于网络测量系统的虚拟仪表的设计与应用.计算机测量与控制,2006,14(4):435-436,499.
    [13]林玉池.测量控制与仪器仪表前沿技术及发展趋势.天津:天津大学出版社,2005.
    [14]中国仪器仪表学会.中国测量控制与仪器仪表中长期科技发展规划建议,2004.
    [15]顾诚.网络仪器的技术特征分析.中国仪器仪表,2003(1):46-48.
    [16] M. Bertocco, M. Parvis. Platform Independent Architecture for Distributed Measurement Systems. In Proc. Instrumentation and Measurement Technology Conf. (IMTC), 2000, 5(1): 648-651.
    [17] C. C. Ko, B. M. Chen, Jianping Chen, Y. Zhuang, K. Chen Tan. Development of a Web-based Laboratory for Control Experiments on a Coupled Tank Apparatus. IEEE Transactions on Education, 2001, 44(1): 76-86.
    [18] K. B. Lee, R. D. Schneeman, Distributed Measurement and Control Based on the IEEE 1451 Smart Transducer Interface Standards. IEEE Trans. Instrum. Meas, 2000, 49(3): 621-627.
    [19] K. Nishimoto, T. Maekawa, Y. Tada, K. Mase, R. Nakatsu. Networked Wearable Musical Instruments Will Bring A New Musical Culture. Wearable Computers, 2001. Proceedings. Fifth International Symposium on, 2001. 10: 55-62.
    [20] C. Plessl, R. Enzler, H. Walder, J. Beutel, M. Platzner, L. Thiele. Reconfigurable Hardware in Wearable Computing Nodes. Wearable Computers, 2002. Proceedings. Sixth International Symposium on, 2002. 10: 215-222.
    [21]童宝润.时间统一技术.北京:国防工业出版社,2004.
    [22]沈荣骏.我国航天测控技术的发展趋势与策略.宇航学报,2001,22 (3):1-5.
    [23]夏南银.航天测控系统.北京:国防工业出版社,2002.
    [24]房鸿瑞.导弹航天测控新技术管窥.遥测遥控,2007,28 (3):1-8.
    [25]帅平.导航星座的自主导航技术——卫星自主时间同步.飞行器测控学报,2004,23 (4):11-15.
    [26]丁炜.通信网络QoS关键技术的研究.北京:北京邮电大学,2003.
    [27] R. Braden, D. Clark, S. Shenker. Integrated Services in the Internet Architecture. Network Working Group RFC-1633, June 1994.
    [28] S. Blake, D. Black, M. Carlson, E. Davies. An architecture for differentiated services. Network Working Group RFC2475, Dec 1998.
    [29] Bernet Y. et al. A Framework For Integrated Services Operation Over Diffserv Networks. Internet Engineering Task Force, Request for Comments (RFC) 2998, November 2000.
    [30] E. Rosen, A. Viswanathan, R. Callon. Multiprotocol Label Switching Architecture, RFC 3031, Jan 2001.
    [31] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin. Resource reSerVation Protocol (RSVP) version 1, Functional Specification, IETF, RFC 2205, September 1997.
    [32]马玉敏,张浩,樊留群.工业以太网的最新发展.测控技术,2005,24(12):1-4.
    [33]王子君,许维胜,王中杰,吴启迪.控制网络的确定性延迟演算理论研究.电子学报,2006,21(1):13-18.
    [34]王忠锋,于海斌,王宏等.工业以太网确定性通信实现方案.仪器仪表学报,2005,26(8z),491-492,497.
    [35]佟为明.现场总线实时性与确定性的研究.哈尔滨工业大学博士学位论文,2005.
    [36]王骥.实时以太网技术在航空电子系统中的应用.哈尔滨工程大学硕士学位论文,2006.
    [37]张艳芳,王平,谢昊飞等.EPA时间同步测试方法与实现技术.计算机工程与应用,2007,43(16):146-148.
    [38] N. Audsley, A. Burns. Real-Time Systems Scheduling, Predictably Dependable Computing Systems, ESPRIT Basic Research Series, Springer, 1995: 41-52.
    [39] R. Chipalkatti, J. F. Kurose, D. Towsley. Scheduling Policies for Real-Time and Non-Real-Time Traffic in a Statistical Multiplexer. Proc. IEEE INFOCOM 89, 1989: 774-783.
    [40] J. H. Park, Y. C. Yoon. An Extended TCP/IP Protocol for Real-Time Local Area Network. Control Eng. Pract, 1998. 6: 111-118.
    [41] D. Roberts. Developing for the Internet with Winsock. The Coriolis Group, Foster City, CA, 1996.
    [42] M. S. Branicky, S. M. Phillips, W. Zhang. Stability of Networked Control Systems: Explicit Analysis of Delay. Proceedings of 2000 American Control Conference, 2000: 2352-2357.
    [43] Y. Halevi, A. Ray. Integrated Communication and Control Systems: Part I──analysis. ASME Journal of Dynamic Systems, Measurement, and Control, 1988, 110(4): 367-373.
    [44]徐皑冬,王宏,杨志家.基于以太网的工业控制网络.信息与控制,2000,29(2):182-186.
    [45]唐鸿儒,丁伟,褚健.用Ethexnet+TCP/IP构建现场实时通信网络平台.计算机应用研究,2001,18(3):45-48.
    [46] Furrer. Ethernet TCP/IP in Industrial Automation: Basics and Practice. Heidelberg, Germany: Huthig Verlag, 1998.
    [47] Obaidat M S, Donahue D L. A priority ethernet LAN protocol. Proceedings of the 1993 ACM Conference on Computer Science, Indianapolis USA: ACM Press, 1993: 243-250.
    [48] Venkatram ani C. The design, implementation and evaluation of RETHER: A real-time ethernet protocol. Dissertation at the State Univ. of New York, November, 1996.
    [49] Kweon S K, Shin K G, Zheng Q. Statistical real-time communication over ethernet for manufacturing automation systems. Proc of Real-Time Technology and Applications Symposium Vancouver, British Columbia, Canada: IEEE Press, 1999: 192-202.
    [50] Jasperneite J, Neumann P. Switched ethernet for factory automation. In 8th IEEE International Conference on Emerging Technologies and Factory Automation, Nice France: IEEE Press, 2001: 205-212.
    [51] Jasperneite J, Neumann P. How to guarantee real-time behavior using Ethernet. 11th IFAC Symposium on Information Control Problems in Manufacturing, Salvador-Bahia, Brazil: IEEE Press, April 2004: 115-140.
    [52]张军,王平,易明华等.EPA通信调度测试方法与实现技术.计算机工程,2006,32(17):249-251.
    [53] Mills D L. Improved Algorithms for Synchronizing Computer Network Clocks. IEEE Trans. Networks, 1995. 6: 245-254.
    [54] D. Mills. Network Time Protocol (NTP) Version3 Specification, Implementation and Analysis, RFC 1305.
    [55] D. Mills. Simple Network Time Protocol (SNTP) Version 4 for Ipv4, Ipv6 and OSI, RFC 2030.
    [56]李明国,宋海娜.计算机时钟同步技术研究.系统仿真学报,2002,14(4):477-480.
    [57]贺鹏,吴海涛.网络时间同步算法研究与实现.计算机应用,2003,23(2):15-17.
    [58]贺鹏,吴海涛.分布式系统的时间同步算法研究及应用.计算机应用,2001,21(12):20-21.
    [59]李明国,宋海娜.基于概率同步算法的计算机外时钟同步系统设计与仿真.计算机仿真,2002,19(3):95-97,100.
    [60]李明国,宋海娜.基于统计同步算法的计算机外时钟同步系统设计与仿真.系统仿真学报,2002,14(5):573-575,587.
    [61]周文建,白泰礼,王平.网络化测试系统的时钟同步.实验科学与技术,2005(2):16-18.
    [62]朱建新,赵栋.电力系统中的时间同步网.电力系统通信,2002,23(5):17-19.
    [63]袁海.时间同步网的原理及其应用.电信技术,2001(10):69-71.
    [64]刘伟福,陈学锋等.通信网时间同步技术研究.电信科学,2001,17(5):15-19.
    [65] B. Simons, J. Lundelius-Welch, N. Lynch. An Overview of Clock Synchronization,in B. Simons, A. Spector (eds.): Fault-Tolerant Distributed Computing, Springer LNCS 448, 1990: 84-96.
    [66] K. Arvind. Probabilistic Clock Synchronization in Distributed Systems. IEEE Trans. Parall and Distributed Systems, 1994, 5(5): 474-487.
    [67] A. Olson, K. G. Shin. Probabilistic Clock Synchronization in Large Distributed Systems. Distributed Computing Systems, 11th International Conference on, 1991(5): 290-297.
    [68] F. Cristian, C. Fetzer. Probabilistic Internal Clock Synchronization. Reliable Distributed Systems Proceedings, 13th Symposium on, 1994(10): 22-31.
    [69] C. Fetzer, F. Cristian. An Optimal Internal Clock Synchronization Algorithm, Computer Assurance, 1995. COMPASS '95. Systems Integrity, Software Safety and Process Security. Proceedings of the Tenth Annual Conference on, 1995(7): 187-196.
    [70] A. Olson, K. G. Shin. Fault-tolerant Clock Synchronization in Large Multicomputer Systems. Parallel and Distributed Systems, IEEE Transactions on, 1994(9): 912-923.
    [71] F. Cristian, C. Fetzer. Fault-Tolerant External Clock Synchronization. Distributed Computing Systems Proceedings of the 15th International Conference on, 1995(6): 70-77.
    [72] Kim, K. H. K., C. Im, P. Athreya. Realization of a Distributed OS Component for Internal Clock Synchronization in a LAN Environment. Object-Oriented Real-Time Distributed Computing Proceedings. Fifth IEEE International Symposium on, 2002(5): 263-270.
    [73]边少锋,李文魁.卫星导航系统概论.北京:电子工业出版社出版,2005.
    [74] W. Lewandowski, G. Petit, C. Thomas. Precision and Accuracy of GPS time transfer. Instrumentation and Measurement, IEEE Transactions on, 1993(4): 474-479.
    [75] W. Lewandowski, J. Azoubib, W. J. Klepczynski. GPS: Primary Tool for Time Transfer. Proceedings of the IEEE, 1999(1): 163-172.
    [76] W. J. Klepczynski. GPS for Precise Time and Time Interval Measurement, in Global Positioning System: Theory and Applications, Volume II, B. W. Parkinson and J. J. Spilker, Jr., Eds. Washington, DC: American Institute of Aeronautics andAstronautics, 1996(17): 483-500.
    [77] J. Azoubib, W. Lewandowski, J. Nawrocki, D. Matsakis. Some Tests Of GLONASSPrecise-Code Time Transfer. European Frequency and Time Forum, 1999 and the IEEE International Frequency Control Symposium, 1999(4): 263-267.
    [78] C. Hackman, S. R. Jefferts, T. E. Parker. Common-Clock Two-Way Satellite Time Transfer Experiments. IEEE Intl. Freq. Cont. Symp, 1995: 275-282.
    [79]朱学钧.北斗导航卫星系统──双星定位通信原理.导弹试验技术,2002(2):53-58.
    [80]周露,刘宝忠.北斗卫星定位系统的技术特征分析与应用.全球定位系统,2004,29(4):12-16.
    [81] Carroll, L. T. K. M, Celano T. Timing via the new LORAN-C system. Frequency Control Sympposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 2003. 5: 245-249.
    [82] Haitao Wu, Xiaohui Li, Huijun Zhang, Haijun Gao, Yujing Bian. UTC message Broadcasting over Loran-C Data Channel. Frequency Control Symposium and PDA Exhibition, 2002. 5: 530-536.
    [83] R. Hoeller, M. Horauer, G. Griedling, N. Keroe, U. Schmid, K. Schossmaier. SynUTC-High Precision Time Synchronization over Ethernet Networks. Proceedings of the 8th Workshop on Electronics for LHC Experiments, Colmar, France, 2002(9): 428-432.
    [84] M. Horauer, K. Schossmaier, U. Schmid, R. H?ller, N. Ker?. PSynUTC-Evaluation of a High Precision Time Synchronization Prototype System for Ethernet LANs. Precise Time and Time Interval (PTTI), Washington, USA, 2002(12): 263-278.
    [85] R. Holler, T. Sauter, N. Kero. Embedded SynUTC and IEEE 1588 clock synchronization for industrial Ethernet, Emerging Technologies and Factory Automation. Proceedings ETFA’03, IEEE Conference, 2003, 9(1): 422-426.
    [86] IEEE Standard 1588-2002 Standard for a Precise Clock Synchronization Protocol for Networked Measurement and Control Systems, IEEE Std 1588-2002, 2002. 11: 1-144.
    [87] J. Semancik. LXI: A Shift in the Functional Test Paradigm. Systems Readiness Technology Conference, 2006(9): 116-121.
    [88] P. Franklin, A. Creque, R. Reddy. Exploring LXI's advanced capabilities. Autotestcon, 2005(9): 61-67.
    [89] H. Huckeba, Rolfe Dlugy-Hegwer. Precise Time Synchronization Using IEEE 1588 for LXI Applications. Systems Readiness Technology Conference, 2006(9):129-135.
    [90]刘笃喜,马骏,许建社等.面向仪器级互换的LXI总线及其关键技术研究.科学技术与工程,2006,6(10):1412-1416,1420.
    [91]肖凯,刘昆.基于局域网的新型模块化仪器互连标准──LXI.仪器仪表学报,2005,26(8):672-673,685.
    [92]姚远,王菁,刘永.交换机时间同步管理系统及其实现.电信科学,2004(3):68-71.
    [93]贾冬云.S1240交换机外部时间同步技术发展探讨.电信建设,2003(3):74-76.
    [94] F. Safaei, A. Khonsari, M. Fathy, M. Ould-Khaoua. Analysis of Circuit Switching for the Torus Interconnect Networks with Hot-Spot Traffic. Parallel Processing Workshops, 2006(4): 142-150.
    [95] F. Safaei, A. Khonsari, M. Fathy, M. Ould-Khaoua. Performance Modelling and Analysis of Pipelined Circuit Switching in Hypercubes with Faults. High-Performance Computing in Asia-Pacific Region, 2005: 265-272.
    [96] M. Sueishi, M. Kitakami, H. Ito. Fault-tolerant message switching based on wormhole switching and backtracking. Dependable Computing, 2004(3): 183-190.
    [97] J. W. Ward. Store-and-forward message switching using polar-orbiting microsatellites. Message Handling - Past, Present and Future, 1991: 9/1-9/4.
    [98]伊鹏.基于带缓存交叉开关的交换结构研究.解放军信息工程大学博士学位论文,2006.
    [99] M. Karol, M. Hluchyj, S. Morgan. Input Versus Output Queueing on a Space Division Packet Switch. IEEE Transactions on Communications, December 1987, 35(12): 1347-1356.
    [100] S. Li, M. Lee. A Study of Traffic Imbalances in a Fast Packet Switch. Proceeding of IEEE INFOCOM, April 1989: 538-547.
    [101] Y.Tamir, G.Frazier. High Performance Multi-Queue Buffers for VLSI Communications Switches. Proceedings of Computer Arehitecture, June 1988: 343-354.
    [102] T. Andcrson, S. Owicki, J. Saxe, C. Thacker. High-Speed Switch Scheduling for Local-Area Networks. ACM Transactions on Computer Systems, November 1993, 11(4): 319-352.
    [103] J. Garcia, L. Cerda, J. Corbal, M. Valero. A conflict-free memory banking architecture for fast VOQ packet buffers. Global Telecommunications Conference,2003. 7: 4158-4162.
    [104] D. Banovic, I. Radusinovic. Simulator for Performance Analysis of VOQ Switches. Computers and Communications, 2006(6): 526-531.
    [105] A. Gupta, N. Georganas. Analysis of Packet Switch with Input and Output Buffers and Speed Constraints. Proceedings of IEEE INFOCOM, APril 1991: 694-700.
    [106] B. Prabhakar, N. MeKeown. On the Speedup Required for Combined Input and Output Queued Switching. Stanford University Technical RePort, STAN-CSL-TR-97-738. November 1997.
    [107] N. McKeown, B. Prabhakar, M. Zhu. Matching Output Queueing with Combined Input and Output Queueing. Proceedings of the 35th Allerton Conference on Communication, Control and Computing, September 1997: 595-603.
    [108] Qiang Duan, John N. Daigle. Resource Allocation for Quality of Service Provision in Buffered Crossbar Switch. Eleventh International Conference on Computer Communications and Networks, Oct 2002: 509-513.
    [109] M. Nabeshima. Performance evaluation of a combined input and crosspoint-queued switch. IEICE Trans. Commun., Mar. 2000, E83-B(3): 737-741.
    [110] Golestani S. A stop-and-go queueing framework forcongestion management. In Proc ACM SIGCOMM’90, Philadephia PA, 1990.8.
    [111] Venna D, Zhang Hui, Ferrari D. Guaranteeing delay jitter bounds in packet switching networks, Tricomm’91, Chapel Hill, NC, 1991: 35-46.
    [112] Kalmanek C, Kanakia H, Keshav S. Rate controlled servers for very high-speed networks. IEEE Globecom’90, San Diego, CA, 1990, 300.3.1-300.3.9.
    [113] Figtleira N, Pasquale J. Leave-in-time: A service discipline for real-time communications in a packet switching network. ACM SIGCOMM’95, Cambridge, MA, 1995: 207-218.
    [114]庞斌,贺思敏,高文.高速IP路由器中输入排队调度算法综述.软件学报,2003,14(5):1011-1022.
    [115] Anderson T, Owicki S, Saxes J, Thacker C. High speed switch scheduling for local area networks. ACM Transactions on Computer Systems, 1993, 11(4): 319-352.
    [116] McKeown N. The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Transactions on Networking, 1999, 7(2): 188-201.
    [117] Serpanos DN, Antoniadis PI. FIRM: A class of distributed scheduling algorithms for high-speed ATM switches with multiple input queues. In: Sidi M, ed. Proceedings ofthe IEEE INFOCOM. Tel Aviv: IEEE Communications Society, 2000: 548-555.
    [118] Chao HJ. Saturn: A terabit packet switch using dual round robin. IEEE Communications Magazine, 2000, 38(12): 78-84.
    [119] McKeown N, Mekkittikui A, Anantharam V, Walrand J. Achieving 100% throughput in an input-queued switch. IEEE Transactions on Communication, 1999, 47(8): 1260-1267.
    [120] Mekkittikui A, McKeown N. A starvation-free algorithm for achieving 100% throughput in input-queued switches. In: Lee D, ed. Proceedings of the IEEE International Conference on Computer Communications and Networks (ICCCN). Rockville, MA: IEEE Communications Society, 1996: 226-231.
    [121] Gale D, Shapley LS. College admission and the stability of marriage. American Mathematical Monthly, 1962(69): 9-15.
    [122] Gusfield D, Irving R. The Stable Marriage Problem: Structure and Algorithms. The MIT Press, 1989.
    [123] C. Chang, W. Chen, H. Juang. On Service Guarantees for Input Buffered Crossbar Switches: A Capacity Decomposition Approach by Birkhoff and von Neumann. Proceedings of IEEE IWQoS, 1999: 79-86.
    [124] C. S. Chang, D. S. Lee, Y. S. Jou. Load Balanced Birkhoff-von Neumann Switches, Part I: one-stage buffering. IEEE HPSR Conference, Dallas, May 2001.
    [125] P. Prabhakar, N. Mckeown. On the speedup required for combined input and output queued switching. Technical Report, Stanford CSL-TR-97-738, 1997.
    [126] I. Stoica, H. Zhang. Exact emulation of an output queueing switch by a combined input and output queueing switch. In: Knightly E, ed, Proceedings of the IEEE IWQoS. Napa: IEEE Communications Society, 1998: 218-224.
    [127] S. T. Chuang, A. Goel, N. McKeown. Matching output queueing with a combined input/output-queued switch. IEEE Journal on Selected Areas in Communications, 1999, 17(6): 1030-1039.
    [128] N. Chrysos, M. Katevenis. Multiple Priorities in a Two-Lane Buffered Crossbar. [DB/CD]. ICC’04. http://archvlsi.ics.forth.gr/bufxbar
    [129] T. Javidi, R. Magill, T. Hrabik. A high-throughput scheduling algorithm for a buffered crossbar switch fabric. IEEE ICC’01, June 2001: 1581-1587.
    [130] Xiao Zhang, Laxmi N.Bhuyan. An Efficient Algorithm for Combined Input Crosspoint Queued (CICQ) Switches. IEEE Globecom 2004, November 2004:1168-1173.
    [131] Lotfi Mhamdi, Mounir Hamdi. MCBF: A High-Performance Scheduling Algorithm for Buffered Crossbar Switches. IEEE Communications Letters, 2003(9): 451-453.
    [132]周卫华,倪县乐,丁炜.基于端到端时延保证的紧急分组优先算法.重庆邮电学院学报,2004,16(1):10-14.
    [133] K. Yoshigoe. Rate-based Flow-control for the CICQ Switch. Local Computer Networks, 2005(11): 44-50.
    [134] Zhang Xiao, L. N. Bhuyan. An efficient scheduling algorithm for combined input-crosspoint-queued (CICQ) switches. Global Telecommunications Conference, 2004. 2: 1168-1173.
    [135] Yanfeng Zheng, Chun Shao. An Efficient Round-Robin Algorithm for Combined Input-Crosspoint-Queued Switches. Autonomic and Autonomous Systems and International Conference on Networking and Services, 2005(10): 2-2.
    [136] G. Passas, M. Katevenis. Packet mode scheduling in buffered crossbar (CICQ) switches. 2006 Workshop on High Performance Switching and Routing, 2006(6): 105-112.
    [137] L. Mhamdi, S. Vassiliadis. Integrating uni- and multicast scheduling in buffered crossbar switches. Workshop on High Performance Switching and Routing, 2006(6): 99-104.
    [138] N. Chrysos, M. Katevenis. Transient Behavior of a Buffered Crossbar Converging to Weighted Max-Min Faimess. Inst. of Computer Science, FORTH, Heraklio, Crete, Greece, Augst 2002: 77-89.
    [139] N. Chrysos, M. Katevenis. Weighted Fairness in Buffered Crossbar Scheduling. Proc. IEEE Workshop High Perf. Switching & Routing (HPSR 2003). Torino, Italy, June 2003: 17-22.
    [140] J. Duato, J. Flich, T. Nachiondo. A cost-effective technique to reduce HOL blocking in single-stage and multistage switch fabrics. Parallel, Distributed and Network-Based Processing, 2004(2): 48-53.
    [141] M. E. Gomez, J. Flich, A. Robles, P. Lopez, J. Duato. A Methodology to Reduce HOL Blocking in InfiniBand networks. InProceedings: 2003 International Parallel and Distributed Processing Symposium, IEEE Computer Society Press, Nice, France, 2003(4): 46-56.
    [142] T. Nachiondo, J. Flich, J. Duato. Destination-Based HOL Blocking Elimination.Parallel and Distributed Systems, 2006(7): 213-222.
    [143] EndRun Technologies White Paper. UTC Time and Frequency Dissemination via the IS-95 CDMA Mobile Telecommunications Infrastructur. http:// www.endruntechnologies.com
    [144] Elliott D. Kaplan,Christopher J. Hegarty.GPS原理与应用(第二版).北京:电子工业出版社,2007.
    [145]曾祥君,尹项根,K. K. Li,W. L. Chan.GPS时钟在线监测与修正方法.中国电机工程学报,2002,22(12):41-45.
    [146]周书民,赵明,孙亚民.基于本地时钟选择的时钟同步算法.系统仿真学报,2006,18(z2):358-360.
    [147]盛骤,谢式千,潘承毅.概率论与数理统计(第三版).北京:高等教育出版社,2004.
    [148]李孝辉,吴海涛,高海军,边玉敬.用kalman滤波器对原子钟进行控制.控制理论与应用,2003,20(4):551-554.
    [149]孙杰,潘继飞.高精度时间间隔测量方法综述.计算机测量与控制,2007,15(2):145-148.
    [150]吴守贤,漆贯荣,边玉敬.时间测量.北京:科学出版社,1983.
    [151]刘国福,张玘,刘波.TDC-GP1高精度时间间隔测量芯片及其应用.单片机与嵌入式系统应用,2004(11):38-40.
    [152]丁建国,沈国保,刘松强.基于数字延迟线的高分辨率TDC系统.核技术,2005,28(3):173-175.
    [153]郭海青.电子计数法测频提高测量精度的分析.青海师范大学学报,2006(1):24-26,31.
    [154] J. Rivoir. Fully-Digital Time-To-Digital Converter for ATE with Autonomous Calibration. Test Conference, 2006(10): 1-10.
    [155] J. Kalisz, M. Pawlowski, R. Pelka. Error analysis and design of the Nutt time-interval digitizer with picosecond resolution. J. Phys. E: Sci. Instrum., 1987, vol. 20: 1330-1341.
    [156] Jozef Kalisz, Ryszard Szplet, Ryszard Pelka. Single-Chip Interpolating Time Counter with 200-ps Resolution and 43-s Range. TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, August 1997, vol. 46, NO. 4: 851-856.
    [157] D. L. Mills. Modelling and Analysis of Computer Network Clocks. ElectricalEngineering Department University of Delaware Technical Report 92-5-2, 1992.
    [158]王欣,王德隽.离散信号的滤波.北京:电子工业出版社,2002.
    [159] Stein S R, Filter R L. Kalman Filter Analysis for Real Time Application of Clocks and Oscillators. 42nd Annual Frequency Control Symposium, Maryland, 1988: 447-452.
    [160]臧其源,林时昌.振荡器的频率稳定度及其对电子系统的影响.北京:宇航出版社,1990.
    [161]杨文国,郭田德,赵彤.基于动态规划的无线传感器网络的路由算法.计算机研究与发展,2007,44(5):890-897.
    [162] Boudec J-Y L, Thiran P. Network Calculus-A Theory of Deterministic Queuing Systems for the Internet. Heidelberg, Germany: Springer Verlag. Jan. 2004.
    [163] F. Ciucu, A. Burchard, J. Liebeherr. Scaling Properties of Statistical End-to-End Bounds in the Network Calculus. Information Theory, 2006(6): 2300-2312.
    [164] Wang Xiaoxin, Liu Luyuan, Liu Kun, Ma Jinyan. Modeling and Real-time Performance Analysis of Switched Ethernet by Network Calculus. Engineering Sciences, 2005, 3(4): 74-77.
    [165] Qizhi Zhang, Yunze Cai, Danying Gu, Weidong Zhang. Determine the Maximum Closed-Loop Control Delay in Switched Industrial Ethernet Using Network Calculus. American Control Conference, 2006(6): 4870-4875.
    [166]高文宇,陈松乔,王建新.网络微积分学研究.微电子学与计算机,2004,21(11):76-80.
    [167]李明辉.基于网络演算的网络建模方法研究.西南交通大学硕士学位论文,2007.
    [168]《XX用户设备测试系统研制技术要求V1.0》,XXXX,2006.3
    [169]《XX各型用户机技术要求》,XXXX,2006.3
    [170]肖进丽,潘正风,黄声享.GPS/INS组合导航系统时间同步方法研究.测绘通报,2007(4):27~29,58.
    [171] Dimitrios G. Simos. Design of a 32×32 Variable-Packet-Size Buffered Crossbar Switch Chip, Technical Report FORTH-ICS/TR-339, Inst. of Computer Science, FORTH, Heraklion, Crete, Greece; M. Sc. Thesis, Univ. of Crete, July 2004.
    [172] Katevenis M., Passas G., Simos D.. Variable Packet Size Buffered Crossbar(CICQ) Switches, Proc. of the IEEE International Conference on Communications (ICC 2004), Paris, France, 20-24 July 2004, vol. 2: 1090-1096.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700