小麦phKL和节节麦Ppd-D1基因的遗传评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前应用于普通小麦(Triticum aestivum L.,2n=6x=42,AABBDD)外源遗传物质转移中的Ph基因突变体ph1b,ph2a和ph2b都是通过人工诱变的方法获得的,这些人工突变体在小麦外源遗传物质转移中已有许多研究。不同于上述人工突变体,四川小麦地方品种开县罗汉麦天然存在phKL基因,其诱导部分同源染色体配对能力类似于Ph2基因突变体,该基因可能与Ph1和Ph2基因突变体有不同的遗传作用机制,可能是一种新型的染色体操作工具材料;光周期不敏感普通小麦在小麦栽培品种中占主导地位,对全世界小麦生产有重要贡献。其中,2D染色体上的光周期基因Ppd-D1对小麦光周期不敏感,发挥了重要作用。在欧洲,多数对光周期不敏感的小麦光周期基因Ppd-D1来源于日本品种Akakomugi。由于仅有极少数的节节麦(Aegilops tauschii Coss.,2n=2x=14,DD)参与了六倍体小麦的起源与进化,节节麦2D染色体上可能存在一些目前普通小麦遗传群体不具有的光周期基因位点。
     本文围绕开县罗汉麦天然的phKL基因和节节麦的光周期基因Ppd-D1进行相关研究。利用具有phKL的开县罗汉麦与外源物种Aegilops peregrina(2n=4x=28,UUS~sS~s)远缘杂交,选育稳定株系,并对稳定株系进行分子细胞学鉴定,以评价phKL基因在远缘杂交转移外源基因的实际应用效果;对通过phKL基因导入Ae.peregrina遗传物质的小麦品系进行条锈病抗性鉴定分析,获得新的抗病材料;研究节节麦的光周期基因的遗传多样性,并转入六倍体遗传背景中,评价其应用价值。主要研究结果如下:
     1.用含有phKL基因的开县罗汉麦与Ae.peregrina居群13E远缘杂交,杂种用小麦品系3854回交2次后,连续自交选择,获得农艺性状稳定、结实正常、染色体数2n=42的6个品系3121,3131,3141,3161,3171,3181。这6个品系在F3时来自同一个单株。其中,3161,3171,3181在F4时是同一个单株,在F5后分别为3个农艺性状相似的姊妹系。这3个品系与普通小麦类似,软壳、易脱粒,方型穗,植株偏高。其中,3171在成株期抗条锈,而3161和3181感条锈。3121,3131,3141在F4时也是同一个单株,在F5后分别为3个单株的姊妹系。这三个姊妹系的颖壳硬且紧包种子,在室内考种时不易脱粒,只能用手才能剥离,这种颖壳紧包种子而不易脱粒是Ae.peregrina的野生性状。同时,这3个品系与Ae.peregrina居群13E相似之处还表现在:穗型类似,株型分散。从形态上看,3121,3131,3141可能转入了2U或2S~L染色体上的硬壳基因。这三个品系其余主要农艺性状也基本相似。3131和3141在田间无法区分,但是与3121能够根据条锈病的抗性区分开。3131和3141在成株期感条锈,而3121抗条锈。3121的抗条锈特征与13E类似,而且其小麦亲本不抗病,表明抗性来自13E。3121具有的抗病基因与13E的第2同源群硬壳位点无直接关系,可能受不同染色体(或片段)控制。对抗条锈的新品系3121花粉母细胞观察表明,染色体减数分裂过程正常,表明3121是个细胞学上稳定的材料。它与开县罗汉麦杂种F1的绝大多数花粉母细胞配成21个二价体。根据细胞学和农艺性状资料,3121可能是一个具有两个以上易位的易位系。本研究表明,phKL基因在外源基因转移方面有较大的应用价值。但是,通过染色体C带和基因组原位杂交,未成功检测出易位染色体。下一步,需要用更灵敏的分子生物学技术检测出上述品系的易位片段。
     2.以开县罗汉麦为母本,13E为父本杂交,将杂种F1中将自交结实的种子,分单株种植,而后选结实率较高单株自交至F9,选出3271,3281,3291,3301,3311等比较稳定的品系。尽管这些品系的穗子比开县罗汉麦偏长,小穗数增多,但是与亲本比较,普遍存在结实率偏低问题。细胞学观察表明,这些品系为细胞学稳定的材料。这些品系结实率不高,可能不是由于细胞学上的减数分裂不正常引起的,而可能是由于导入外源染色体片段不能完全补偿缺失的小麦染色体的遗传物质,致使育性降低。进一步,通过对3271与KL的杂种F1染色体观察,发现绝大多数花粉母细胞配成21个二价体,表明品系3271可能是易位系。对这些品系的高分子量谷蛋白亚基和微卫星(SSR)分子标记分析揭示了新的变异,表明在远缘杂交过程中产生了遗传变异。
     3.对56个不同来源节节麦的抽穗期遗传评价表明,节节麦抽穗期存在很大差异。以抽穗期相差7天作为一个间隔,56个节节麦材料被划分为4种类型。类型Ⅰ具有相对短的抽穗期(在169到176天之间)。类型Ⅱ抽穗期在177到184天之间。类型Ⅰ和类型Ⅱ所包含的所有节节麦材料均属于节节麦tauschii亚种。类型Ⅲ抽穗期在185到192天之间。类型Ⅳ抽穗期超过193天。抽穗期与其地理分布相关。分布于我国新疆伊犁河流域和黄河流域的所有节节麦都具有早的抽穗期(类型Ⅰ),它们均属于节节麦tauschii亚种。另一方面,所有strangulata亚种的节节麦只分布于外高加索(亚美尼亚和阿塞拜疆)和伊朗的里海,它们具有晚的抽穗期。三个人工合成六倍体小麦SHW-L1,Syn-SAU-13和Syn-SAU-14的抽穗期分别为182天,189天和189天。它们的共同四倍体供体小麦圆锥麦AS2255的抽穗期为171天,而其三个不同节节麦ssp.tauschii AS60,ssp.tauschii AS2395和ssp.strangulata AS2393的抽穗期分别为173天,195天和195天。由于SHW-L1的抽穗期比Syn-SAU-13和Syn-SAU-14要早7天,推测人工合成六倍体小麦的抽穗期早晚与供体节节麦的抽穗期早晚相关。进一步的遗传分析表明,人工合成六倍体小麦SHW-L1的2D染色体,在SHW-L1和中国春杂种F2的遗传背景下,能缩短抽穗期5天以上。人工合成小麦SHW-L1的2D染色体是由节节麦AS60提供。因此推测,节节麦含有的光周期位点与中国春的ppd-D1位点有差异。由于进化的瓶颈效应,节节麦tauschii亚种具有的光周期位点,可能没有渗入到六倍体小麦中。因此节节麦tauschii亚种AS60中的光周期位点可作为六倍体小麦光周期育种的新资源。
     4.前人通过对光周期不敏感和敏感小麦的比较研究发现,光周期不敏感品种的Ppd-D1基因编码区上游序列出现了2089bp缺失,此缺失可能切除了某些调节基因或改变了转录的起始位点,引起Ppd-D1的异常表达,从而启动光周期途径,并最终导致提前抽穗。为了检测光周期不敏感小麦品种Ppd-D1编码区上游存在的2089bp缺失是否也存在节节麦中,我们运用位于此缺失序列之内的PCR扩增引物对8份节节麦扩增,并对产物进行克隆测序。序列比较发现:(1)所有的8份节节麦与光周期敏感普通小麦一样,没有发生2098bp缺失。节节麦未发现该2089bp片段缺失表明,该片段缺失可能是在普通小麦起源之后产生的。由于这8份节节麦的抽穗期存在很大差异,表明节节麦抽穗期存在的差异与这整个2098 bp缺失无直接关系;(2)节节麦的这段序列存在两个不同位置的缺失/插入短序列,分别包含24个碱基(8个氨基酸)和15个碱基(5个氨基酸)。24碱基缺失/插入和临近序列具有MITE(miniature terminal inverted repeat element)转座子特征,该MITE有14 bp不完全的倒位重复序列(CCCATTGGGTATA与GATACCCGATGGG),同时产生了“TA”TSD(target site duplication)重复位点,表明可能是一个MITE活动的结果;(3)存在这两个短序列的节节麦都属于ssp.tauschii,而缺失这两个短序列的节节麦都属于ssp.strangulata。同时,普通小麦也缺失这两个短序列。因此,本研究证明节节麦strangulata亚种是原始普通小麦光周期基因的供体。这也为节节麦strangulata亚种是普通小麦D基因组的供体物种提供了新的证据。(4)根据抽穗期资料,这两个缺失/插入短序列与节节麦的抽穗期早晚并无必然的关系。
     5.前人研究表明,普通小麦光周期基因中,Ppd-D1与Ppd-B1,Ppd-A1相比较有一个很大的不同,就是Ppd-D1在其第8外显子中少了16bp的片段。为了研究该16bp片段缺失是否来自于节节麦,我们对11份节节麦材料Ppd-D1基因的第8外显子部分序列克隆测序。序列比较结果表明,与普通小麦不一样,所有的节节麦都没有该16bp片段缺失,这表明该缺失也可能是在普通小麦起源之后产生的。
     6.节节麦AS60与普通小麦中国春的光周期基因在控制小麦抽穗早晚方面存在差异,节节麦AS60具有Ppd-D~t1基因的表现型,而中国春具有ppa-D1基因的表现型。但是,AS60并不存在光周期不敏感普通小麦Ppd-D1基因编码区上游序列出现的2089bp缺失。同时,节节麦AS60的Ppd-D~t1基因编码区3'端的1572bp序列与普通小麦中国春相应序列相比,除了上述提到的中国春存在16bp片段缺失之外,仅存在3个SNP位点,表明该段序列差异较小。只有将节节麦AS60的整个Ppd-D~t1基因序列测出来,并与普通小麦比较,才能揭示节节麦AS60与普通小麦中国春的光周期基因在控制小麦抽穗早晚存在差异的遗传原因。
The artificial mutants ph1b, ph2a, and ph2b in common wheat (Triticum aestivum L., 2n=6x=42, AABBDD) have been widely used in alien genetic introgression into wheat. Different from these artificial mutants, Sichuan common wheat landrace Kaixianluohanmai naturally has a recessive gene phKL, which exerts similar strength of mutant in Ph2 locus in wheat-alien hybrids. Gene phKL probably has a different genetic mechanism from mutants in Ph1 and Ph2 loci on controlling homoeologous pairing. Gene phKL may be a new tool for chromosome manipulation; Photoperiod insensitivity is widespread in the world's wheat varieties and acts on a very important role on wheat product. The major source of photoperiod insensitivity in wheat is the Ppd-D1 allele on the short arm of chromosome 2D in common wheat. In the case of European varieties, most hexaploid wheat cultivars insensitive to photoperiod carry a Ppd-D1 allele are derived from the Japanese variety Akakomugi. Because of the evolution bottleneck, much of the genetic variation on Ppd-D1 alleles in the ancestral species Ae. tauschii Coss. (2n=2x=14, DD) may be not represented in common wheat.
     In order to evaluate the value of gene phKL on alien genetic introgression, we developed new common wheat lines derived from the hybrids of common wheat landrace Kaixianluohanmai with Aegilops peregrina(2n=4x=28, UUS~SS~S). The new lines were characterized by morphological, cytological, and molecular levels. New common wheat lines with resistance to stripe rust were obtained. Meanwhile, the genetic diversity of Ppd-D1 alleles from Ae. tauschii was evaluated in Ae. tauschii itself or its synthetic hexaploid wheats. The results were as follows:
     The hybrids of common wheat landrace Kaixianluohanmai with Aegilops peregrina accession 13E were backcrossed to common wheat elite line 3854 twice. The backcross progenies were repeatly self-crossed and six wheat lines, 3121, 3131, 3141, 3161, 3171, and 3181, were selected. They showed good seed-setting and had 2n=42 chromosomes. The six lines can be traced to a single F3 plant. Of which, the three sister lines 3161,3171, and 3181 were derived from a single F4 plant. They had soft glumes to be easily threshed, square spikes and high plants. Although 3161 and 3181 were susceptible, 3171 was resistant to stripe rust at adult stage. The three sister lines 3121, 3131, and 3141 had similar agronomic and come from a single F4 plant. The three sister lines had tough glumes and were difficult to be threshed, which was inherited from Ae. peregrina. Additionally, they showed speared spike and loose plant-type similar to those of Ae. peregrina. Based on morphological characteristics, the gene for tough glume (Tg) in Ae. peregrina was transferred into wheat lines 3121, 3131, and 3141. Line 3131 and 3141 can not be differentiated each other according to morphological characteristics. However, the two lines were different from line 3121 on resistance to strip rust. Lines 3131 and 3141 were susceptible, while 3121 was resistant to stripe rust at adult stage with a similar resistant characters to Ae. peregrina 13E. Meanwhile, common wheat parents of 3121 was also susceptible to stripe rust at adult stage. Therefore, the resistance should come from Ae. peregrina 13E. The two genes, for resistance to stipe rust and tough glume, may be located on different chromosomes or regions. Pollen-mother-cell (PMC) observation on line 3121 resistant to stripe rust indicated that it was stable in cytology with regular chromosome pairing. The meiotic chromosomes in most PMCs of the 3121×Kaixianluohanmai hybrids showed 21 bivalents. Based on cytological and morphological characteristics, it was suggested that 3121 had more than two translocations. Present study suggested that phKL is useful in alien introgression into wheat. However, further works are still needed to detect Ae. peregrina chromosome fragments existed in above new lines.
     From the F9 of hybrids bewteen Kaixianluohanmai and Ae. peregrina 13E, new lines 3271, 3281, 3291, 3301, and 3311were selected. They had more spikelets and longer spike. However, they showed a reduced seed-set rate in comparison with that of Kaixianluohanmai. Because of their regular meiotic process for 42 chromosomes, the lower seed-set may be related to the fail compensation of alien chromosome (fragment) for the loss chromosome (fragment) of wheat. The meiotic chromosomes in most PMCs of the 3171×Kaixianluohanmai hybrids showed 21 bivalents, which suggested that 3121 was a translocation line. Analysis on high-molecular-weight glutenin subunits and microsatellite (SSR) revealed new variations in these new line, which may be induced during the wheat- Ae. peregrina wide cross.
     The present study revealed a wide variation for heading time among 56 Ae. tauschii accessions. On the basis of the heading date with an interval for 7 days (a week), the 56 Ae. tauschii accessions were grouped into four types. Types I with relatively short heading date between 169 and 176 days and II with heading date between 177 and 184 days belonged to Ae. tauschii ssp. tauschii. Type III showed heading date between 185 and 192 days. Type IV showed long heading date more than 193 days. The heading date was related to distribution. All the accessions from Yili River valley of Xinjiang, and the middle reaches of the Yellow River in China showed short heading dates (Type I), whereas all the ssp. strangulata accessions were only distributed in Transcaucasia (Armenia, Azerbaijan) and SE Caspian sea in Iran, and they showed very long heading date. The heading date for the same female parent AS2255 of the three synthetic wheats SHW-L1, Syn-SAU-13, and Syn-SAU-14 was 171 days. The heading dates of the three male parents Ae. tauschii ssp. tauschii AS60 for SHW-L1, ssp. tauschii AS2395 for Syn-SAU-13, and ssp. strangulata AS2393 for Syn-SAU-14 were 173, 195, and 195 respectively. The heading dates for synthetic hexaploid wheats SHW-L1, Syn-SAU-13, and Syn-SAU-14 were 182, 189, and 189 days, respectively. These results suggested that heading date of synthetic hexaploid wheats was related to that of Ae. tauschii. Compared to Syn-SAU-13 and Syn-SAU-14, SHW-L1 showed earlier heading time. In contrast, compared to that of AS2255 and AS60, the heading date of SHW-L1 was delayed 11 and 9 days, respectively. However, the heading dates of Syn-SAU-13 and Syn-SAU-14 were shortened in comparison with their corresponding Ae. tauschii parent. Genetic analysis indicated that chromosome 2D of synthetic wheat SHW-L1 showed a major effect on promoting heading time with a reduction of more than 5 days in the hybrid background between SHW-L1 and CS lines. The chromosome 2D of SHW-L1 was provided by Ae. tauschii AS60. Thus, it is postulated that this Ae. tauschii possess a different allele from the ppd-D1 of hexaploid wheat CS. Because of the evolution bottleneck, the allele Ppd-D1 in ssp. tauschii might not be represented in current hexaploid wheat. Therefore, the allele Ppd-D1 in ssp. tauschii AS60 might be used as a new source for hexaploid wheat breeding on photoperiod response.
     4. Previous studies indicated that common wheat cultivars with the photoperiod insensitive Ppd-D1 allele had a 2098 bp deletion upstream of the coding region. Cultivars with the photoperiod sensitive ppd-D1 allele did not have the 2098 bp deletion. This deletion was associated with misexpression of the 2D Ppd-D1 gene and expression of the key floral regulator FT (FLOWERING LOCUS T) in short day, showing that photoperiod insensitivity is due to activation of a known photoperiod pathway irrespective of day length. In order to study wehther or not the 2098 bp deletion also exists in Ae. tauschii, primer within the 2098 bp deletion was used in PCR reaction for eight Ae. tauschii accessions. The PCR products were then cloned and sequenced. Sequence comparison indicated that: (1) all the eight Ae. tauschii accessions did not have the 2098 bp deletion as photoperiod sensitive ppd-D1 allele did. The 2098 bp deletion did not appear in Ae. tauschii, indicating that the 2098 bp deletion in the photoperiod insensitive Ppd-D1 allele was produced after the origin of common wheat. The sharp differences on heading time among the eight Ae. tauschii accessions suggested that heading time was not related to the 2098 bp deletion; (2) There were two short sequence insertions/deletions, having 24 bp (8 amino acids) and 15 bp (5 amino acids), within this region. The 24 bp insertions/deletions and adjacent regions seems a result of MITE (miniature terminal inverted repeat element) activation. The MITE insertion had the imperfect 14 bp terminal inverted repeat (TIR, CCCAT(-|T)GGGTATA and GATACCC(-|G)ATGGG), and the MITE insertion produced "TA" target site duplication (TSD); (3) All the Ae. tauschii ssp. tauschii accessions had the two short sequence insertions, wihle all the Ae. tauschii ssp. strangulata accessions and common wheat did not have two short sequence insertions. These result proved that Ae. tauschii ssp. strangulata was the donor of ppd-D1 gene in original common wheat. This also is a new evidence that Ae. tauschii ssp. strangulata was the D-genome donor of common wheat; (4) the two short sequence insertions were not related to heading time of Ae. tauschii.
     Previous studies indicated that when compared to the photoperiod gene Ppd-B1 on 2B and Ppd-A1 on 2A, Ppd-D1 on 2D of all common wheat cultivarss that were sequenced had a 16 bp deletion in exon 8. In order to study wehther or not the 16 bp deletion also exists in 2D of Ae. tauschii, primers out of the 16 bp deletion were used in PCR reaction for 11 Ae. tauschii accessions. The PCR products were then cloned and sequenced. Sequence comparison indicated that all the Ae. tauschii accessions did not have the 16 bp deletion, which was different from that of common wheat. These results suggested that the 16 bp deletion in common wheat was also produced after the origin of common wheat.
     It was suggested that Ae. tauschii AS60 possess a different allele from the ppd-D1 of hexaploid wheat Chinese Spring. Ae. tauschii AS60 showed the phenotype of Ppd-D~t1, while Chinese Spring showed the phenotype of ppd-D1. However, Ae. tauschii AS60 did not have the 2089 bp deletion as other common wheat with photoperiod insensitive Ppd-D1 allele. Furthermore, compared to that of Chinese Spring, the 1572 bp sequences downstream of Ppd-D~t1 in Ae. tauschii AS60 was conserved. Besides the 16bp deletion in Chinese Spring as above mentioned, there were only three SNPs. In order to further reveal the genetic differences on heading time between Ae. tauschii AS60 and Chinese Spring, the full coding sequence of Ppd-D~t1 in Ae. tauschii AS60 is still needed.
引文
1.蔡得田,袁隆平,卢兴桂.二十一世纪水稻育种的新战略Ⅱ.利用远缘杂交和多倍体双重优势进行超级稻育种.作物学报,2001,27:110-116.
    2.蔡得田,陈建国,陈冬玲,戴兵成,张维,宋兆建,杨之帆,杜超群,唐志强,何玉池,张道生,何光存,朱英国.两个具多倍体减数分裂稳定性的多倍体水稻品系的选育.中国科学(C辑),2007,37:217-226.
    3.曹张军,王献平,王美南,曹双河,井金学,商鸿生,李振岐,张相岐.小麦背景中来自华山新麦草的抗条锈病基因的遗传学分析和分子标记.遗传学报,2005,32:738-743.
    4.陈佩度,刘大钧.普通小麦与簇毛麦杂种后代的细胞遗传学研究.南京农学院学报,1982,4:1-16.
    5.崔运兴,马缘生.中国特有小麦资源主要遗传性状评价与利用.核农学报,1988,2:129-138.
    6.付体华,任正隆,林文君.四川小麦地方品种自然群体ph基因研究.作物育种探索,成都,四川科学技术出版社,1992,pp.177-192.
    7.刘朝晖,陈佩度.小麦染色体配对遗传控制系统的作用研究.南京农业大学学报,1999,22:1-5.
    8.刘登才,颜济,杨俊良,罗明诚,杨武云.小麦自然群体中部分同源染色体配对促进基因的染色体定位研究.西南农业学报,1997,10:10-15.
    9.刘登才,颜济,杨俊良,罗明诚,杨武云.小麦地方品种“开县罗汉麦”在远缘杂交中的遗传评价.作物学报,1999,25:778-780.
    10.龙文波,栾丽,王兴,刘玉花,涂升斌,孔繁伦,何涛.同源四倍体水稻恢复系TP-4和D明恢63与保持系D46B的细胞遗传学比较.遗传,2007,29:462-470.
    11.罗明诚,颜济,杨俊良.中国普通小麦地方小麦品种遗传学研究.四川农业大学博士论文,1992a.
    12.罗明诚,杨祖俐,颜济,杨俊良.中国普通小麦地方品种与黑麦杂种F1的细胞遗传学研究.作物育种探索,成都,四川科学技术出版社,1992b,169-176.
    13.马渐新,周荣华,董玉深,王晓鸣,贾继增.用微卫星标记定位一个未知的小麦抗条锈病基因.科学通报,1999,44:1513-1517.
    14.马瑞,郑殿升,樊路.普通小麦品种中Ph基因突变体存在的可能性研究.作物学报,1999,25:99-104.
    15.舒焕麟,杨足君,李光蓉.创新诱发材料SY95-71选育和利用价值研究.四川农业大学学报,1999,17:249-253.
    16.王新望,赖菁茹,陈梁鸿,刘广田 中国春Ph1基因的分子标记及冬小麦Ph1b 代换系的获得.植物学报,2000,42:274-278.
    17.相志国,刘登才,郑有良,张连全,颜泽洪.phKL基因诱导小麦远缘杂种部分染色体配对的能力界于Ph1和Ph2基因突变体之间.遗传,2005,27:935-940.
    18.叶兴国,樊路.小麦Ph基因系的研究与利用现状(综述).麦类作物,1991,6:17-19.
    19.殷学贵,尚勋武,庞斌双,宋建荣,曹世勤,李金昌,张学勇,2006.A-3中抗条锈新基因YrTp1和YrTp2的分子标记定位分析.中国农业科学,39:10-17.
    20.颜济,杨俊良,主编.小麦生物系统学 第一卷 小麦-山羊草复合群.北京:中国农业出版社,1999.
    21.张海琴.小麦族猬草属植物基因组组成及其分类地位研究.四川农业大学博士论文,2006.
    22.郑殿升,马瑞,刘三才,宋春华.小麦远缘杂交的珍贵种质沙丘小麦.植物遗传资源科学,2000,1:38-41.
    23.Adams KL,Wendel JF.Polyploidy and genome evolution in plants.Current Opinion in Plant Biology,2005,8:135-141.
    24.Attia T,Ekingen H,R(o|¨)bbelen G.Origin of 3D suppressor of homoeologous pairing in hexaploid wheat.Z.Pflanzenzuecht,1979,83:121-126.
    25.Attia T,Robbelen G.Meiotic pairing in haploids and amphihaploids of spontaneous versus synthetic origin in rape,amphihaploids of spontaneous versus synthetic origin in rope,Brassica napus L.Can J Genet Cytol,1986a,28:330-334.
    26.Attia T,Robbelen G.Cytogenetic relationship within cultivated Brassica analyzed in amphihaploids from three diploid ancestors.Can J Genet Cytol,1986b,28:323-329.
    27.Aragon-Alcaide S,Reader S,Miller T,Moore G.Centromeric behaviour in wheat with high and low homoeologous chromosomal pairing.Chromosoma,1997,106:327-333.
    28. Avivi L, Feldman M, Bushuk W. The mechanism of somatic association in common wheat , Triticum aestivum L. I. Suppression of somatic association by colchicines. Genetics, 1969, 62: 745-752.
    29. Badaeva ED, Amosova AV, Samatadze TE, Zoshchukl SA, Shostakl NG, Chikida NN, Zeleninl AV, Raupp WJ, Friebe B, Gill BS. Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst Evol, 2004, 246: 45-76.
    30. Banana HS, McIntosh RA. Cytogenetic studies in wheat XV. Chromosome location of rust resistance genes in VPM1. Genome, 1993, 36: 476-482.
    31. Beales J, Turner A, Griffiths S, Snape JW, Laurie DA. A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-Dla mutant of wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 115,721-733.
    32. Benavente E, Orellana J, Fernandez-Calvin B. Comparative analysis of the meiotic effects of wheat ph1b and ph2b mutations in wheat × rye hybrids. Theor Appl Genet, 1998, 96: 1200-1204.
    33. Borlaug NE. Contributions of conventional plant breeding to food production. Science, 1983, 219:689-693.
    34. Bushuk W. Wheat breeding for end product use. Euphytica, 1998, 100: 137-145.
    35. Ceoloni C, Avivi L, Feldman M. Spindle sensitivity to colchicine of the Ph1 mutant in common wheat. Can J Genet Cytol, 1984,26: 111-118.
    36. Ceoloni C, Donini P. Combining mutations for two homoeologous pairing suppressor genes Ph1 and Ph2 in common wheat and in hybrids with alien Triticeae. Genome, 1993, 36: 377-386.
    37. Chen PD, Tsujimoto H, Gill BS. Transfer of Ph~1 genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet, 1994, 88: 97-101.
    38. Chen PD, Qi LL , Zhang SZ, Liu DJ. Development and molecular cytogenetic analysis of whtat-Haynaldia villosa 6VS/ 6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995 ,91:1125-1128.
    39. Chicaiza O, Khan LA, Zhang X, Brevis CJ, Jackson L, Chen X, Dubcovsky J. Registration of five wheat isogenic lines for leaf rust and stripe rust resistance genes. Crop Science, 2005, 46: 485-487.
    40. D'Ovidio R, Porceddu E. PCR-based assay for detecting 1B-genes for low molecular weight glutenin subunits related to gluten quality properties in durum wheat. Plant Breeding, 1996, 115: 413-415.
    41. Driscoll CJ, Quinn CJ. Genetic variation in Triticum affecting the level of chromosome pairing in intergeneric hybrids. Can J Genet Cytol, 1970, 12: 278-282.
    42. Driscoll, C. J. Genetic suppression of homoeologous chromosome pairing in hexaploid wheat. Can.J Genet. Cytol, 1972, 14: 39-42.
    43. Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 2007,29:1862-1866.
    44. Dubcovsky J, Luo MC, Dvorak J. Differentiation between homoeologous chromosomes 1A of wheat and 1A~m of Triticum monococcum and its recognition by the wheat Ph1 locus. Proc Natl Acad Sci USA, 1995, 92: 6645-6649.
    45. Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G. Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. TheorAppl Genet, 1998, 97:968-975.
    46. Dunford RP, Kurata N, Laurie DA, Money TA, Minobe Y. Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae. Nucleic Acids Res, 1995, 23: 2724-2728.
    47. Dvorak, J. Chromosomal distribution of genes in dipoid Elytrigia elongata that promote or suppress pairing of wheat homoeologous chromosomes. Genome, 1987, 29: 34-40.
    48. Dvorak J, Lukaszewski AJ. Centromere association is an unlikely mechanism by which the wheat Ph1 locus regulates metaphase I chromosome pairing between homoeologous chromosomes. Chromosoma, 2000, 109: 410-414.
    49. Dvorak J, Luo MC, Yang ZL, Zhang HB. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet, 1998, 97: 657-670.
    50. Farqoo S, Iqbal N, Shah TM. Intergenetic hybridization for wheat improvement. III. Genetic variation in Triticum species affecting homoeologous chromosome pairing. Cereal Res Commun, 1990, 18: 233-237.
    51. Feldman, M. The effect of chromosome 5B, 5D and 5A on chromosomal pairing in Triticum aestivum. Proc Natl Acad Sci USA, 1966, 55: 1447-1453.
    52. Feldman M. The origin of cultivated wheat. In: Bonjean A P, AngusW J, eds, The World Wheat Book, Lavoisier Publishing, Paris, 2001, pp. 1-56.
    53. Feldman M, Levy AA. Allopolyploidy-a shaping force in the evolution of wheat genomes. Cytogenetic and Genome Research, 2005, 109: 250-258.
    54. Feldman, M., Liu B, Segal G, Abbo S, Levy AA, Vega JM. Rapid elemination of low-copy sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics, 1997, 147: 1381-1387.
    55. Feldman M, Mello-Sampayo T, Sears ER. Somatic association in Triticum aestivum. Proc Natl Acad Sci USA, 1966, 56: 1192-1199.
    56. Flood RG, Halloran GM. The influence of certain chromosomes of the hexaploid wheat cultivar Thatcher on time to ear emergence in Chinese Spring. Euphytica, 1983,32: 121-124.
    57. Foote T, Roberts M, Kurata N, Sasaki T, Moore G. Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat. Genetics, 1997, 147: 801-807.
    58. Foulkesl MJ, Sylvester-Bradley R, Worland AJ, Snape JW. Effects of a photoperiod response gene Ppd-Dl on yield potential and drought resistance in UK winter wheat. Euphytica, 2004, 135: 63-73.
    59. Gilles CB. The effect of Ph gene alleles on synaptonemal complex formation in Triticum aestivum × T. kotschyi hybrids. Theor Appl Genet, 1987, 74: 430-438.
    60. Gill BS, Friebe B, Endo TR. Standard karyotype and nomenclature system for description of chromosom bands and structural abberation in wheat (Triticum aestivum L.). Genome, 1991, 34: 830-839.
    61. Gill KS, Gill BS, Endo TR, Mukai Y. Fine physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics, 1993, 134: 1231-1235.
    62. Gill KS, Gill BS, Endo TR, Boyko EV. Identification and high-density mapping of gene-rich regions in chromosome group 5 in wheat. Genetics, 1996, 143: 1001-1012.
    63. Giorgi, B. A homoeologous pairing mutant isolated in Triticum durum cv. Cappelli. Mutat Breed Newsl, 1978, 11: 4-5.
    64. Gororo NN, Flood RG, Eastwood RF, Eagles HA. Photoperiod and vernalization responses in Triticum turgidum x T. tauschii synthetic hexaploid wheats. Annals of Botany, 2001, 88: 947-952.
    65. Simon G, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature, 2006, 439: 749-752
    66. Hakan Ozakan and Moshe Feldman. Genotypic variation in tetraploid wheat affecting homoeologous pairing in hybrids with Aegilops peregina. Genome, 2001, 44: 1000-1006.
    67. Holm PB, Wang X. The effect of chromosome 5B on synapsis and chiasma formation in Triticum aestivum cv. Chinese Spring. Carlsberg Res Commun, 1988, 53: 191-208.
    68. Hoogendoorn J. The basis of variation in date of ear emergence under field conditions. among. the progeny. of a cross between two winter wheat varieties. J Agric Sci Camb 1984, 104: 493- 500.
    69. Hoogendoorn J. A reciprocal F1 monosomic analysis of the genetic control of time of ear emergence, number of leaves and number of spikelets in wheat (Triticum aestivum L.). Euphytica, 1985, 34: 545-558.
    70. Iwaki K, Haruna S, Niwa T, Kato K. 2001. Adaptation and ecological differentiation in wheat with special reference to geographical variation of growth habit and Vrn genotype. Plant Breeding, 120: 107-114.
    71. Jaaska V. Isoenzymes in the evaluation of germplasm diversity in wild diploid relatives of cultivated wheat. In: Damania A B, ed, Biodiversity and Wheat Improvement, ICARDA, Wiley-Sayce Publ, 1995, pp. 247-257.
    72. Jampates R, Dvorak J. Location of the ph1 locus in the metaphase chromosome map and the linkage map of the 5Bq arm of wheat. Can J Genet Cytol, 1986, 28: 511-519.
    73. Jauhar, PP, Chibbar RN. Chromosome-mediated and direct gene transfers in wheat. Genome, 1999,42:570-583.
    74. Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H,Chevre AM. PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics, 2003, 164: 645-653.
    75. Kang HY, Zhang HQ, Wang Y, Jiang Y, Yuan HJ, Zhou YH. Comparative Analysis of the Homoeologous pairing effects of phKL gene in common wheat × Psathyrostachys huashanica Keng ex Kuo. Cereal Research Communications, 2008, 36: 429-440.
    76. Kihara H. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic(Tokyo), 1944, 19: 889-890.
    77. Kuraparthy V, Chunneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS. Charactertization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet, 2007, 114: 1379-1389.
    78. Laurie DA, Pratchett N, Snape JW, Bezant JH. RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome, 1995, 38: 575-585.
    79. Law CN, Worland AJ, Giorgi B. The genetic control of ear-emergence time by chromosomes 5A and 5D of wheat. Heredity, 1976, 36: 49-58.
    80. Law CN, Sutka J, Worland AJ. A genetic study of day length response in wheat. Heredity, 1978, 41: 185-191.
    81. Li GQ, Li ZF, Yang WY, Zhang Y, He ZH, Xu SC, Singh RP, Qu TT, Xia XC. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet, 2006, 112: 1434-1440.
    82. Liu B, Wendel JF. 2002. Non-Mendelian phenomena in allopolyploid genome evolution. Current Genomics 3: 489-506.
    83. Liu DC, Zheng YL, Yan ZH, Zhou YH, Wei YM, Lan XJ. Combination of homoeologous pairing gene phKL and Ph2-deficiency in common wheat and its meiotic behaviors in hybrids with alien species. Acta Bot Sin, 2003, 45: 1121—1128.
    84. Liu YP, Li JP, Lan SQ, Zhao FW, Li XP, Worland A J. 2001. Effects of photoperiod insensitive gene on agronomic characteristics of Winter Wheat. Acta Agriculturae Boreali Sinica, 16: 59-64.
    85. Liu ZQ, Adamczyk K, Manzanares-Dauleux M, Eber F, Lucas MO, Delourme R, Che'vre AM, Jenczewski E. Mapping PrBn and other quantitative trait loci responsible for the control of homeologous chromosome pairing in oilseed rape (Brassica napus L.) haploids. Genetics, 2006, 174: 1583-1596.
    86. Luo MC, Dubcovsky J, Dvorak J. Recognition of homeology by the wheat Ph1 locus. Genetics, 1996, 144: 1195-120.
    87. Luo PG, Ren ZL, Zhang HQ, Zhang HY. Identification, chromosome location, and diagnostic markers for a new gene (YrCN19) for resistance to wheat stripe rust. Phytopathology, 2005, 95:1266-1270.
    88. Ma XF, Gustafson JP. Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenetic and Genome Research, 2005, 109: 236-249.
    89. Ma JX, Zhou RH, Dong YS, Wang LF, Wang XM, Jia JZ. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticun turgidum L. using microsatellite markers. Euphytica, 2001, 120: 219-226.
    90. Macer RCF Plant pathology in a changing world. Transactions of the British Mycological Society, 1975, 65: 351-374.
    91. Marais GF, Pretorius ZA, Wellings CR, McCallum B & Marais AS 2005 Leaf and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica, 143: 115-123.
    92. Marais GF, Pretorius ZA, Wellings CR, Marais AS 2003 Transfer of rust resistance genes from Triticum species to common wheat. South African Journal of Plant and Soil, 2003, 20: 193-198.
    93. Marais GF, McCallum B, Marais AS. Leaf rust and stripe rust resistance genes derived from Triticum sharonense. Euphytica, 2006, 149: 373-380.
    94. Marais GF, McCallum B, Snyman JE, Pretorius ZA & Marais AS 2005 Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breeding 124: 538-541.
    95. Matinez M, Cuadrado C, Laurie DA, Romero C. Synpatic behaviour of hexaploid wheat haploid with different effective of the diploidizing mechanism. Cytogenetic and Genome Rsearch,, 2005, 109: 210-214.
    96. Martinez M, Cunado N, Carcelen N, Romero C. The Ph1 and Ph2 loci play different roles in the synnaptic behavior of hexaploid wheat Triticum aestivum. Theor Appl Genet, 2001a, 103: 398-405.
    97. Martinez M, Naranjo T, Cuadrado C, Romero C. Synaptic behaviour of the tetraploid wheat Triticum timopheevii. Theor Appl Genet, 1996, 93: 1139-1144.
    98. Martinez M, Naranjo T, Cuadrado C, Romero C. The synaptic behaviour of Triticum turgidum with variable doses of the Ph1 locus. Theor Appl Genet, 2001b, 102:751-758.
    99. Martinez-Perez E, Shaw P, Reader S, Aragon-Alcaide L, Miller T, Moore G. Homologous chromosome pairing in wheat. J Cell Sci, 1999, 112: 1761-1769.
    100.Martinez-Perez E, Shaw P, Moore G. Polyploidy induces centromere association. J Cell Biol, 2000, 148: 233-238.
    101.Martinez-Perez E, Shaw P, Moore G. The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature, 2001c, 411: 204-207.
    102.Martinez-Perez E, Shaw P, Aragon-Alcaide L, Moore G. Chromosomes form into seven groups in hexaploid and tetraploid wheat as a prelude to meiosis. Plant J, 2003,36:21-29.
    103.Martinic Z.F. Life cycle of common wheat varieties in natural environments as related to their response to shortened photoperiod. Z Pflanzenzuchtg, 1975, 75: 237-251.
    104.McFadden ES, Sears ER. The artificial synthesis of Triticum spleta. Rec Genet Soc Am, 1944,13:26-27.
    105.McIntosh RA, Silk J, The TT. Cytogenetic studies in wheat XVII. Monosomic analysis and linkage relationships of gene Yrl5 for resistance to stripe rust. Euphytica, 1996, 89: 395-399.
    106.McIintosh R, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers DJ, Appels R, Devos KM, 2008. Catalogue of Gene Symbols for Wheat. 11th International Wheat Genetics Symposium, 24-29 August 2008, Brisbane Qld Australia.
    107.Mello-Sampayo T. Genetic regulation of meiotic chromosome pairing by chromosome 3D of Triticum aestivum. Nature New Biol, 1971,230: 22-23.
    108.Mikhailova EI, Naranjo T, Shepherd K, Wennekes-van Eden J, Heyting C, de Jong H. The effect of the wheat Ph1 locus on chromatin organisation and meiotic pairing analysed by genome painting.Chromosoma, 1998, 107: 339-350.
    109.Miller TE, Reader SM, Shaw PJ, Moore G. Towards an understanding of the biological action of the Phl locus in wheat. Proc 9th Intern Wheat Genet Symp, Canada, 1998, 1: 17-19.
    110.Murai K, Ikari C, Shitsukawa N. Pathways that promote the floral transition in wheat. In: Tsunewaki K, ed, Frontiers of Wheat Bioscience, the 100th Memorial Issue of Wheat Information Service, Kihara Memorial Foundation for the Advancement of Life Sciences, Yokohama, Japan, 2005, pp. 119-128.
    111.Naranjo T, Maestra B. The effect of ph mutations on homoeologous pairing in hybrids of wheat with Triticum longissimum. Theor Appl Genet, .1995, 91: 1265-1270.
    112.Ogbonnaya F C, Halloran G M, Lagudah E S. D genome of wheat - 60 years on from Kihara, Sears and McFadden. In: Tsunewaki K, ed, Frontiers of Wheat Bioscience, the 100th Memorial Issue of Wheat Information Service, Kihara Memorial Foundation for the Advancement of Life Sciences, Yokohama, Japan, 2005, pp. 205-220.
    113.Okamoto M. Asynapsis effect of chromosome V. Wheat Inf Serv, 1957, 5: 6.
    114.Pestsova E, Ganal MW, Roder MS, 2000. Isolation and mapping of microsatellite markes specific for the D genome of bread wheat. Genome, 43: 689-697.
    115.Qu LJ, Foote TN, Roberts MA, Money TA, Aragon-Alcaide L, Snape JW, Moore G. A simple PCR-based method for scoring the ph1b deletion in wheat. Theor Appl Genet, 1998, 96: 371-375.
    116.Riley R, Chapman V. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 1958, 182: 713-715.
    117.Riley R. Kimber G., Chapman V. Origin of genetic control of diploid-like behavior of polyploid wheat. J Hered, 1961, 52: 22-25.
    118.Riley R, Law CN. Genetic variation in chromosome pairing. Adv Genet, 1965, 13: 57-11.
    119.Riley R, Chapman V, Johnson R 1968a Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217: 383-384.
    120.Riley R, Chapman V, Johnson R 1968b The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genetical Research, Cambridge 12: 199-219.
    121.Roberts MA, Reader SM, Dalgliesh C, Miller TE, Foote TN, Fish LJ, Snape JW, Moore G. Induction and characterisation of Ph1 wheat mutants. Genetics, 1999, 153: 1909-1918.
    122.Roder MS, Korsun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW. A microsatellite map of the wheat genome. Genetics, 1998, 149: 2007-2023.
    123.Rodriguez S, Maestra B, Perera E, Diez M, Naranjo T. Pairing affinities of the B-and G-genome chromosomes of polyploid wheats with those of Aegilops speltoides. Genome, 2000, 43: 814-819.
    124.Sanchez-Moran E, Benavente E, Orellana J. Analysis of karyotypic stability of homoeologous- pairing (ph) mutants in allopolyploid wheats. Chromosoma, 2001, 110:371-377.
    125.Scarth R, Law CN. The control of day-length response in wheat by the group 2 chromosomes. Z Pflanzenzuecht, 1984, 92: 140-150.
    126. Sears E R. Genetic control of chromosome pairing in wheat. Annu Rev Genet, 1976,10:31-51.
    127. Sears E R. An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol, 1977, 19: 585-593.
    128.Sears E R. A wheat mutant conditioning an intermediate level of homoeologous pairing. Can J Genet Cytol, 1982,24: 715-719.
    129.Sears ER, Miller TE. The history of Chinese Spring wheat. Cereal Research Communication, 1985, 13:261-263.
    130.Segal G. Liu B, Vega JM, Abbo S, Rodova M. Identification of a chromosome-specific probe that maps within the Ph1 deletions in common and durum wheat. Theor Appl Genet, 1997, 94: 968-970.
    131.Sidhu GK, Rustgi S, Shafqat MN, von Wettstein D, Gill KS. Fine structure mapping of a gene-rich region of wheat carrying Ph1, a suppressor of crossing over between homoeologous chromosomes. Proc Natl Acad Sci USA, 2008, 105: 5815-5820.
    132.Singh RP, Nelson JC, Sorrells ME. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Science, 1998,40: 1148-1155.
    133.Snape JW, Butterworth K, Whitechurch E, Worland AJ. Waiting for fine times: genetics of flowering time in wheat. Euphytica, 2001, 119: 185-190.
    134.Snape JW, Quarrie SA, Laurie DA. Comparative mapping and its use for the genetic analysis of agronomic characters in wheat. Euphytica, 1996, 89: 27-31.
    135.Solts PS, Soltis DE. The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA, 2000, 97: 7051-7057.
    136.Stracke S, Borner A. Molecular mapping of the photoperiod response gene ea7 in barley. Theor Appl Genet, 1998, 97: 797-800.
    137.Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A, Ronin YI, Nevo E. Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet, 1997,95:622-628.
    138.Sun GL, Yen C. The ineffectiveness of the ph1b gene on chromosome association in the F_1 hybrid, Triticum x Psathyrostachys huashanica. Wheat Information Service , 1994, 79: 28-32.
    139.Sourdille P, Tavaud M, Charmet G, Bernard M. Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet, 2001, 103: 346-352.
    140.Sutton T, Whitford R, Baumann U, Dong C, Able JA, Langridge P. The ph2 pairing homoeologous locus of wheat (Triticum aestivum) identification of candidate meiotic gene using a comparative genetics approach. Plant J, 2003, 36: 443-456.
    141.Tewolde H, Fernandez CJ, Erickson CA. Wheat cultivars adapted to post-heading high temperature stress. Journal of Agronomy and Crop Science, 2006, 192: 111-120.
    142.Thomas B, Vince-Prue D. Photoperiodism in plants. Academic, Longdon, 1997.
    143.Turner A, Beales J, Faure S, Dunford RP, Laurie DA. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 2005, 310: 1031-1034.
    144.Uauy C, Brevis JC, Chen XM, Khan I, Jackson L, Chicaiza O, Distenfeld A, Fahima T, Dubcovsky J. High-temperature adult-plant stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet, 2005, 112: 97-105.
    145. Vega JM, Feldman M. Effect of the pairing gene Ph1 on centromere misdivision in common wheat. Genetics, 1998a, 148: 1285-1294.
    146.Vega JM, Feldman M. Effect of the pairing gene Ph1 and premeiotic colchicine treatment on intra and interchromosome pairing of isochromosomes in common wheat. Genetics, 1998b, 150: 1199-1208.
    147.Wall A M, Riley R, Chapman V. Wheat mutants permitting homoeologous meiotic chromosome pairing. Genet Res, 1971, 18: 311-328.
    148.Ward R W, Yang Z L, Kim H S, Yen C. Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T. tauschii from China and Southwest Asia. Theor Appl Genet 1998, 96: 312-318.
    149.Welsh JR, Keim DL, Pirasteh B, Richards RD. Genetic control of photoperiod response in wheat. In: Proceedings of the 4th International Wheat Genetics Symposium, University of Missouri, Columbia, USA, 1973, pp. 879-884.
    150.Wendel JF. Genome evolution in polyploidy. Plant Mol Biol, 2000,42: 225-249.
    151.Whitechurch EM, Slafer GA, Miralles DJ. Variability in the duration of stem elongation in wheat genotypes and sensitivity to photoperiod and vernalization. Journal of Agronomy and Crop Science, 2007a, 193: 131-137.
    152.Whitechurch EM, Slafer GA, Miralles DJ. Variability in the duration of stem elongation in wheat and barley genotypes. Journal of Agronomy and Crop Science, 193, 138-145.
    153.Worland AJ. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica, 1996, 89: 49-57.
    154.Worland AJ, Borner A, Korzun V, Li WM, Petrovic S, Sayers EJ. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica, 1998, 100: 385-394.
    155.Xu XY, Bai GH, Brett FC, Gregory ES. A QTL for early heading in wheat cultivar Suwon 92. Euphytica, 2005, 146, 233-237.
    156.Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268.
    157.Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644.
    158.Yen C, Yang J L, Liu X D. The distribution of Aegilops tauschii Cosson in China and with reference to the origin of the Chinese common wheat. In: Sakamoto S, ed, Proceedings of the 6th International Wheat Genetics Symposium, Kyoto, 1983, Japan, pp. 55-58.
    159.Yen C, Luo M C, Yang J L. The origin of the Tibetan weedrace of hexaploid wheat, Chinese Spring, Chengdu-guang-tou and other landraces of the White Wheat Complex from China. In: Miller T E, Koebner R M D, eds, Proceedings of the 7th International Wheat Genetics Symposium, Cambridge, British, 1988, pp. 175-179.
    160.Zhang LQ, Liu DC, Yan ZH, Lan XJ, Zheng YL, Zhou YH. Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Science in China Ser C Life Science, 2004, 47: 553-561.
    161.Zhang LQ, Liu DC, Yan ZH, Zheng YL. Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization. Science in China Ser. C Life Scinece, 2005, 48: 424-433.
    162.Zhang LQ, Sun GL, Yan ZH, Chen QJ, Yuan ZW, Lan XJ, Zheng YL, Liu DC. Comparison of newly synthetic hexaploid wheat with its donors on SSR products with emphasis on the utilization of SSR markers. Journal of genetics and Genomics, 2007, 34: 939-946.
    163.Zhang LQ, Yen Y, Zheng YL, Liu DC. Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sexual Plant Reproduction, 2007a, 20: 159-166.
    164.Zhang LQ, Yan ZH, Dai SF, Chen QJ, Yuan ZW, Zheng YL, Liu DC. The crossability of Triticum turgidum with Aegilops tauschii. Cereal Research Communication, 2008, 37: 417-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700