利用工业废渣制备低温陶瓷透水材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透水材料实质上是一类非封闭性的多孔材料,能使雨水经过砖表面渗透到砖的下面乃至地下,用以补充地下水,这是近年出现的绿色环保路面铺设材料,可广泛用于公园、广场、人行道、住宅区等地的路面,具有调节温度、湿度,维护地表生态平衡的功能。
     磷渣作为电炉法生产黄磷产生的固体废渣,由于含磷和氟,对环境有污染,长期堆放占用土地,形成资源浪费。目前磷渣的主要用途限于水泥和建材行业,其资源价值未得到充分发挥。磷渣的综合利用符合国家环境保护、资源节约的战略发展方向,具有重要的社会、经济和环境效益。
     本文通过物理、化学活化技术,使磷渣玻璃体解聚并在水相介质下再度聚合成以硅-铝长链为主的类陶瓷体结构,制备出性能优良的低温陶瓷透水材料。试验研究表明:
     (1)机械粉磨增加了磷渣颗粒的比表面积,可以获得良好的粒度分布,使粘连颗粒分散,产生新生表面,形成表面缺陷,加快活性Si02、Al203的溶出,有利于外部离子的侵入,从而为磷渣活性的激发提供前提条件。
     (2)合理调配激发剂中Si02、A1203、Na20的组成,可以制备出抗压强度大于100MPa的低温陶瓷复合材料。
     (3)在激发剂一定的情况下,影响低温陶瓷透水材料性能的主要因素有粉体、骨料、水胶比、胶骨比、混料工艺和养护方式。在较佳工艺条件下,利用磷渣制备的低温陶瓷透水材料抗压强度大于40MPa,透水速度大于4mm/s。
     (4)通过磷渣颗粒相互搭接、互成骨架,形成大量连通的孔洞,使低温陶瓷透水材料在具有一定强度的同时具有透水性能。
     (5)磷渣制备的低温陶瓷透水材料的水化产物存在C-S-H及碳酸盐物相,不存在[SiO6]。而且[Si04]并不是呈孤立存在的,每个[SiO4]与周围的其它[Si04]连接呈三维网络状架构,反应体系中A13+离子基本上占据四面体配位位置,参与三维网络架构的形成。水化产物互相层叠,纵横交错,层与层之间相互紧密咬合,这是材料在具有众多气孔的同时依然保持高强度的主要原因。
     (6)技术经济分析表明:利用磷渣制备低温陶瓷透水材料具有优良的物理力学性能、经济性和环境协调性,为磷渣资源化提供了一种全新的技术方案。
Permeable material is essentially a class of non-closed porous material that enable water to infiltrate through material surface and even below the ground floor of material, which would supplement the groundwater, which is a green environmental protection new product in recent years. It can be widely used in parks, squares, sidewalks, residential areas and other places of the road, keeping the regulation of temperature and humidity environment of people living, maintaining the ecological balance of surface features.
     Phosphorus slag is a kind of waste residue which produced in the process of fetching yellow phosphorus by electric furnace legal institutions, since containing the elements phosphorus and fluorine, holding-up for a long time, it not only brings about environmental pollution but also occupies land resources, leading to waste of resources. Phosphorus slag mainly confined to cement and building material industry in recent years, does not make the best of its resource value. Developing a kind of phosphorus integrative utilization technology, not only accords with the national environment protect and resources economy developing policy but also possesses important social, economic and environmental significances.
     In this paper, through physical and chemistry activation technology, causes the phosphorus dregs vitreous body structure depolymerization and gathers once again under the aqueous phase medium the synthesis by the silicon aluminum long chain primarily ceramics body structure, which is performance low-temperature ceramic permeable material. Pilot study shows that:
     (1)Mechanical grinding increase the pellet relative surface, obtain the good grain-size distribution, cause the adhesion particle to be dispersed, produce the newborn surface, form the surface defect, speed up active SiO2, Al2O3 dissolves, and be advantageous to exterior ion invasion, thus provide the prerequisite for the active display.
     (2)Deploy Na20、SiO2 and Al2O3 of chemical stimulation reasonly can be prepared more than 100MPa compressive strength low-temperature ceramic composite.
     (3)In the activating agent certain circumstances, affect the material properties of the main factors have powder, aggregate, water-cement ratio, mixing ratio, bone glue process and conservation methods. In the best conditions, the use of phosphorous slag prepared low-temperature ceramic permeable material compressive strength more than 40MPa, permeability coefficient more than 4mm/s.
     (4) Phosphorous slag cementations material particles overlap each other and form a skeleton, forming a large number of connected holes, so that low-temperature ceramic permeable material has certain strength but also has good infiltrate water function.
     (5)Low-temperature ceramic material by phosphorous slag exist CSH and hydration products carbonate phase, has microscopic structure which is similar with the opal, and there is no [SiO6], [SiO4] was not isolated, but each [SiO4] around with other [SiO4] connected with a three-dimensional network structure, the reaction system Al3+ion basically occupies tetrahedral coordination position to participate in the formation of three-dimensional network structure.
     (6)The technology economic analysis indicated that the low-temperature ceramic permeable materials has the incomparable competitive advantage, the society, the environmental protection and the economic efficiency are extremely remarkable.
引文
[1]陶有生.关于发展和推广透水路面砖的看法[J].砖瓦.2007(6):43-45.
    [2]戴武斌,曾令可,王慧.透水砖的研究现状及发展前景[J].2007(8):22-24.
    [3]徐都锋.透水性陶瓷砖的生产与发展前景[J].陶瓷.2006(7):116-120.
    [4]王立久.伟晶石高性能陶瓷透水砖的研制[J].玻璃与搪瓷.2008(2):11-13.
    [5]王立华.新型生态环保陶瓷透水砖及其应用[J].应用技术.2007(10):93-94.
    [6]赵润江,师卫华等.透水性铺装材料的发展与应用[J].建筑工程.2008(9):72.
    [7]马养志.透水砖的生产工艺与发展前景[J].砖瓦.2004(4):47-49.
    [8]于伟蓉,覃维祖.环氧树脂微孔透水材料的制备和性能初步研究[J].新型建筑材料.2008(10):63-65.
    [9]汪金根,许海英.沥青混凝土透水路面的研究和实践[J].城市道桥与防洪.2004(5):43-45.
    [10]陈平,王瑞生.绿色环保型渗水砖的研制[J].中国陶瓷工业.2003(10):13-15.
    [11]王武祥.透水性混凝土路面砖的种类和性能[J].砖瓦.2003(5):30-33.
    [12]徐鸣,王亚娟.透水砖的发展潜力[J].砖瓦世界.2007(5):3-6.
    [13]饶玲丽,曹建新,张洪波等.粉煤透水砖的制备研究[J].2006(9):42-44.
    [14]廖奇丽,江伟辉,虞澎澎等.工艺参数对陶瓷透水砖性能影响的研究[J].新型建筑材料.2007(4):29-32.
    [15]殷海荣,武丽华,陈福等.环保型陶瓷透水砖的研制[J].新型建筑材料.2006(3):23-25.
    [16]殷海荣,陈福,薛立莎等.利用废玻璃研制瓷质砖及陶瓷透水砖[J].中国陶瓷.2005(12):20-23.
    [17]陈福,赵恩录,曾雄伟等.利用废玻璃制备环保型陶瓷透水砖[J].建筑玻璃与工业玻璃.2007(4):20-24.
    [18]靳洋.透水透气环保型彩色混凝土路面砖[J].砖瓦世界.2005(1):16-18.
    [19]陈霞,曾力,方坤河.磷渣粉火山灰活性研究[J].混凝土.2006(12):43-45.
    [20]刘自润.综合利用磷渣的探析[J].四川水泥.2004(3):41-51.
    [21]陈豪立.黄磷炉渣的综合利用途径[J].贵州化工.1999(4):7-24.
    [22]盛广宏.磷渣在水泥中的应用研究[J].水泥技术.2004(1):18-21.
    [23]马云龙.透水砖透水性和强度的影响因素[J].FoSHAN CERAMICS.2005(5):10-13.
    [24]Li D X, Shen J L. Influence of admixtures on the propertites of phosphorous slag content[J]. Cem Concr Res.2001,31(1).
    [25]Savoly. Foaming agent composition and process:US,57 14001 [P].1998-02-03.
    [26]张文静,丁跃远等.混凝土透水砖透水持久性研究[J].新型建筑材料.2006(6):20-23.
    [27]张仁寿,张晓玲,曾薇.高炉矿渣和电炉磷渣配料生产节能型优质硅酸盐水泥熟料[J].建材发展导向.1993(4):12-17.
    [28]袁选标.磷渣作硅质原料生产425R普通硅酸盐[J].水泥工程.1994(5):19-25.
    [29]徐光亮,黄书谋,沈威.掺磷渣硅酸盐水泥熟料形成动力学的研究[J].重庆环境科学.1994(3):50-53.
    [30]张保如.磷渣在水泥生料配料中的机理及应用[J].四川水泥.2000(3):1-4.
    [31]吴秀俊.电炉磷渣做混合材制造低热磷渣硅酸盐水泥的试验研究(上)[J].建材发展导向.1990(02):1-9.
    [32]冷发光.磷渣掺合料对水泥混凝土性能影响的试验研究[J].四川水利发电,2001,(04):75-84.
    [33]刘勇.磷渣高性能混凝土在工程中的应用[J].云南建材,2001, (01):30-34.
    [34]殷海荣.利用水淬磷渣研制陶瓷墙地砖[J].陶瓷工程.1998,32(4):21-22
    [35]杨家宽等.黄磷渣微晶玻璃制备及显微结构分析[J].矿产综合利用.2003,(2):41-43
    [36]王泓.利用磷渣制白炭黑[J].化工环保.2000,20(5):22-24
    [37]D. M. Roy. AdvancedCementSystem. IncludingCBC, DSP, MDF.9thInternational Congress on the Chemistry of Cement 1992. pp367-380.
    [38]司志明.MDF水泥复合材料的研究和发展[J].山东建材学院学报.1994.8(4):81-83.
    [39]陈鹏,刘树奇等.MDF水泥材料的研究和应用[J].化学建材.1991(5):28-31.
    [40]曾新强.MDF水泥材料的性能和用途。山西建筑[J].1992(3):31-36.
    [41]朱逢吾等.MDF水泥研究概况和应用前景[J].材料导报.1993(2):64-68.
    [42]王复生.硅酸盐DSP水泥的初步研究[J].建材新科技.1995(4):1-4.
    [43]潘国耀.用超细粉煤灰配制DSP材料的研制[J].武汉工业大学学报.1995.17(4): 4-7.
    [44]柯劲松.DSP材料的水化特性与高强机理探讨[J].中国建材科技.1996.5(4):21-24.
    [45]黄从运.新型DSP材料的研究[J].武汉工业大学学报.1995.17(3):36-38.
    [46]Glukhovsky V D. High Strength Slag—alkaline Cements [A].7th Inter Congr Chem [C]. Prais:Architectural Press,1980.164—168.
    [47]Roy A. Activated of Ground Blast—furnace Slag by Alkali—metal and Alkaline—earth Hydroxides[J]. J Am ceram Soc.1992,75(12):445-457.
    [48]Glukhovsky VD. Slag—alkaline Cement and Concrete:Structure. Properties, Technological and Economical Aspects of Use[J]. Silic Ind,1983.48(10): 197-200.
    [49]Wang SLJ, Serivener KL, Pratr PL. Factors affecting the strengthof alkali-activated slag [J]. Cem Cencr Res.1994.24(6):1033-1043
    [50]Malvlepszy J. Some aspects of alkali activated cement materials settling and hardening In[J]:Yang Nanru. Preceding of Third international Symposium on Cement and Concrete Beijing:The Chinese Silicate Society.1993:1043-1046
    [51]Shi Caijun. Research on alkali-activated cement system in China[J]:a review Advanced in Cement Research,1993.5(17):1-7
    [52]JosephDavidovits. PropertiesofGeopolymerCements[A]. Proceedings First International Conference on Alkaline'Cement and Concrete[C]. KIEV Ukraine.1994.131-149.
    [53]Chen Xiaolan, Yan Nanru. Influence of ploymeric structure of granulated blast furnace slag on their hydraulic activities. In:Yan Nanru,Huang Shiyuan, Jiang Jiafen, eds.2nd. International Syposium on cement and concrete:Vol 1. Beijing:The Chinese ceramic Society,1989,346.
    [54]袁润章,高琼英,欧阳世翕.矿渣结构与水硬活性及其激发机理[J].武汉工业大学学报,1987,(3):297-303.
    [55]禹尚仁,王悟敏.无熟料硅酸钠矿渣水泥的水化机理[J].硅酸盐学报,1990,18(2):104-106.
    [56]蒲心诚,甘昌成等.高强碱矿渣混凝土的结构与性能[J].混凝土与水泥制品,1991, (6):4-8.
    [57]Zhou Huanhai, Wu Xuequan, Xu Zhongzi, at el. Kinetic study on hydration of alkali-activated slag. Cem Concr Res,1993,23 (6)
    [58]J. Davidovits. Early high-strength mineral polymer[P]. USP., No,4509985, April 9,1985.
    [59]Della M. Roy. New strong cement materials:chemically bonded ceramics[J]. Science,1987(235):651-658.
    [60]J. Davidovits. Method of bonding fiber reinforcement on concrete and steel structures and resultant products, USP., No.5,925,449, July20,1999.
    [61]J Davidovits.Mineral polymers and methods of making them, USP., No.4, 349,386, September 14,1982.
    [62]J Davidovits. Process for obtaining a geopolymeric alumino-silicate and products thus obtained SUP., No.5,342,595., August 30,1994.
    [63]J Davidovits. Geopolymers:inorganic polymeric new materials[J]. J. of Thermal Analysis,1991,37:1633-1656.
    [64]Jdavidovits. Method for obtaining a geopolymeric binder allowing to stabilize, solidify and consolidate toxic or waste materials, USP., N.5,539, 140, July23,1996.
    [65]J Davidovits. Alkaline alumino-silicate geopolymeric matrix for composite materials with fiber reinforcement and method for obtaining same, USP., No.5,789,307, August25,1998.
    [66]JDavidivits, proceedings First International Conference on Alkaline Cements and Concretes,1994,131.
    [67]Zosin AP, Priimak TI,Avsaragov KB. Geopolymer materials based on magnesia-iron slags for normalization and storage of radioactive wastes [J]. Atom Energy,1998,85(1):510—514.
    [68]Jeffery D, Hartgrrink, Elia Beniash, Samuel I. Stupp. Self-Assemble and mineralization of peptide amphiphile nanofibers[J]. Science,2001, (294): 1684—1688.
    [69]Roy D W. Proceedings of Conference on hydraulic cement and concrete association, London,1976.
    [70]吴其胜.碱矿渣水泥的研究与发展[J].中国建材科技.1999(1)1-4.
    [71]杨南如.一类新的胶凝材料[J].水泥技术.2004(3):11-17.
    [72]袁鸿昌等.地聚合物材料的发展及其在我国的应用前景[J].硅酸盐通报.1998(2): 46-51.
    [73]张书政.地聚合物[J].材料科学与工程学报.2003.21(3):430-436.
    [74]郑娟荣.地聚物材料的研究进展[J].新型建筑材料.2002(2):11-12.
    [75]袁玲.土聚水泥研究与发展现状[J].房材与应用.2002.30(2):21-34.
    [76]代新祥.土聚水泥的应用与研究现状[J].水泥.2001(10):11-14.
    [77]代新祥.土聚聚合物水泥[J].新型建筑材料.2001(6):34-35.
    [78]倪文等.地质聚合物—21世纪的绿色胶凝材料[J].新材料产业.2003(5):24-27.
    [79]马鸿文.矿物聚合物材料研究现状与发展前景[J].地学前沿.2002.9(4):398-407.
    [80]冯秀平.钙—硅—磷体系CBC材料的聚合度研究[J].河海大学学报.1997.25(5):23-33.
    [81]杨南如.碱胶凝材料形成的物理化学基础(Ⅰ)[J].硅酸盐学报.1996.24(2):209-215.
    [82]杨南如.碱胶凝材料形成的物理化学基础(Ⅱ)[J].硅酸盐学报.1996.24(4):459-464.
    [83]郑娟荣.碱偏高岭土胶凝材料的凝结硬化性能研究[J].湖南大学学报,2004.31.(4):60-63.
    [84]任玉峰,马鸿文,王刚金矿尾砂矿物聚合材料的制备及其影响因素[J].岩矿测试.2003,6(2):103-108
    [85]张召述.用工业废渣制备玻璃基废弃物复合材料的研究[J].新型建筑材料.2003,(3):45-47
    [86]张召述.固体废弃物资源化的新技术方向--CBC复合材料.云南省科学技术论坛论文集.2003,404-407
    [87]李顺.低质粉煤灰活化技术研究:[硕士学位论文].昆明:昆明理工大学生物与化学工程学院,2005
    [88]刘守庆.低质粉煤灰活化制备水泥基材料工艺研究技术研究:[硕士学位论文].昆明:昆明理工大学生物与化学工程学院,2004
    [89]秦俊虎,张召述等.铸造废砂和粉煤灰制备CBC复合材料工艺研究[J].铸造.2005,(11):1138-1141.
    [90]贺茂云,张召述.低质粉煤灰活化技术研究分析[J].粉煤灰-2005(6):
    [91]刘帆,张召述.CBC复合材料性能研究[J].粉煤灰.2007.19(105):24-26.
    [92]付凌雁,张召述.铝土矿尾矿活化制备水泥基材料研究[J].化学工程.2007,35(6): 41-44.
    [93]韦华,张召述.磷渣制备CBC复合材料研究[J].材料开发与应用.2007,22(3):15-18
    [94]周亮亮,张召述.黄磷炉渣制备化学键合陶瓷复合材料工艺研究[J].化工矿物与加工.2007,36(7):24-27.
    [95]贺茂云.磷渣活化制备低温陶瓷木材基础研究[硕士论文].昆明:昆明理工大学,2006.
    [96]秦俊虎.粉煤灰制备CBC复合材料基础研究[硕士论文].昆明:昆明理工大学,2006.
    [97]刘帆.铝土矿选尾矿活化制备低温陶瓷胶凝材料的研究[硕士论文].昆明:昆明理工大学,2007.
    [98]付凌雁.拜耳法赤泥活化制备碱激发胶凝材料的研究[硕士论文].昆明:昆明理工大学,2007.
    [99]韦华.磷渣活化制备CBC复合材料研究[硕士论文].昆明:昆明理工大学,2008.
    [100]史才军.磷渣活性激发的研究[硕士论文].南京:南京工学院,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700