聚合物基废弃物复合材料的制备与老化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物基废弃物复合材料(PMCMW)是复合材料的重要组成部分,它的独特之处在于它的原材料95%以上采用废弃物复合而成。它的制备工艺及应用研究是我国《社会发展科技计划》中的一个重点领域。
     本文首先针对PMCMW基体—低密度聚乙烯(LDPE)薄膜的老化进行了实验及表征,进而对以此种废弃薄膜为基体,以工业废砂为增强材料的热塑性聚合物基废弃物复合材料进行了制备和老化稳定性实验。再次,针对工业粉尘,研究用不饱和聚酯树脂为基体,将它配以玻璃纤维作为增强材料同时添加固化剂等进行了热固性聚合物基废弃物复合材料工艺制备及强度的测试。主要结论如下:
     1.对LDPE薄膜进行大气曝露老化、人工加速老化及高温热老化,周期取样,测定薄膜的拉伸强度、断裂延伸率,发现在薄膜老化初期,拉伸强度和断裂延伸率都表现为先增加后减小。红外光谱分析较清晰地表明了LDPE分子老化的微观特征变化:分子的断裂,氧化不明显;人工加速老化和高温热老化的作用后的分子老化特征,可初步表示LDPE薄膜的老化中后期特点:分子以断裂和支化为主,从而使氧的侵入更加容易,薄膜变色及变脆,拉伸强度、断裂延伸率等快速下降。而从DSC及TG曲线中则反映:随着老化的加深,LDPE的熔点及分解温度不断下降,热稳定性变差。
     LDPE薄膜的老化是可以表征的,其中红外光谱分析是表征LDPE老化的一个有利手段和工具,它可以清晰地反映薄膜分子链的氧化、断裂及支化程度,另外,在老化的中后期,也可以用外观变化、断裂延伸率、拉伸强度、熔点等参数来进行表征。
     通过以上实验及规律,发现已使用至少在4个月之内LDPE薄膜的老化并不严重,只是处于老化的初级阶段,完全可以作为热塑性PMCMW的基体。
     2.收购使用不超过半年的LDPE农薄为PMCMW的基体,经破碎后与一定量的工业固体废砂混合,通过螺杆挤出机挤出,模压制块,制取PMCMW试块,测试试块的抗弯强度,发现在砂含量小于60%以内,复合材料的抗弯强度稳定,且能达20Mp以上,砂含量再增加时,材料的抗弯强度下降。其后,对不同废砂含量的材料进行高温热老化及人工加速老化,发现温度对材料的强度的提高有一定的作用,但处理温度不宜超过80℃,此时处理时间不宜超过9天,60℃的热处理对材料的抗弯强度及抗拉强度的保持更有利,但时间也不宜超过2星期。人工加速老化实
    
    昆明理工大学硕士研究生毕业学位论文
    摘要
    验会使材料强度大大下降,且废砂含量在50%范围内,砂含量的增加能使材料的
    抗老化速度变慢。
     3.对废砂与塑料的质量百分比为1:1的PMCMW进行防光老剂1、防光老剂2的
    添加,一方面,对防光老剂1和防光老剂2作为颜料,观察其添加量对材料强度
    的影响,结果发现,防光老剂1、防光老剂2的添加量分别在3%和5%之内时对材
    料的强度影响不大;另一方面,对防光老剂1、防光老剂2作为紫外光屏蔽剂,
    观察它们对复合材料抗热及人工加速老化的性能,结果发现,防光老剂1和防光
    老剂的添加对减缓材料的老化速度有一定的作用。添加防光老剂1比添加防光老
    剂2的对材料的抗热及人工加速老化有效,而且防光老剂l的含量不宜超过2%。
    防光老剂2的抗老化作用比防光老剂1差,且含量不宜超过3%。添加防光老剂1
    对材料的抗老化作用是可以看到的。
     4.用不饱和聚酷树脂(UP)(191和196)进行基体选择制备热固性聚合物基废
    弃物复合材料,发现以196为基体时,材料的机械性能更加稳定。添加不同量的
    粉尘和玻璃纤维,发现粉尘:UP质量比在3.5一5范围内,纤维质量百分含量在
    10%一15%时,复合材料的抗弯强度高。另外,预成型料的预热温度在65一75℃,
    预热时间在50一60min时对材料的强度较有利。另外模压压力,保压时间,脱模剂
    含量,交联剂的含量等等对复合材料的机械强度都有较大的影响,并有待进一步
    的探索。
Polymer Matrix Composites Made of Wastes (PMCMW) is the important component of compound material, and its unique part is that more than 95% of its raw material is wastes . In our country, its preparing technology and application study are one of the emphatic domains in "the society-development plan of science and technology". This paper firstly is directed against the matrix of PMCMW -the low density polyethylene ( LDPE ) film , to carried on the ageing experiments and figuring, and then to prepare the thermoplastic PMCMW with these wastes LDPE films as the matrix and the industrial residues as the strengthened material ,and carried on the ageing the stability experiment .What's more, for the industrial dust, to study with the Unsaturated Polyester (UP) resin serve as the matrix, and at the same time added the glass fiber as the fillers and the curing agent etc. to make the thermosetting compound material, then to test the intensity of this compound. The major conclusions are as these follows:
    1 . Taking a sample of LDPE film in period after it had been the progress of the atmosphere ageing , the man-made acceleration ageing with xenon lamp and high temperature ageing, then measure the pulling intensity of LDPE film and the percentage of rupture elongation, the discovery is that at the initial stage of the film weathering, pulling intensity and the percentage of rupture elongation all result in the increase first and reducing then. The spectrum analyses of infrared Spectroscopy's clearly shows Characteristics such as the scission of the molecule chain, and the weak oxygenation. The characteristics after man-made accelerated ageing with xenon lamp and thermal ageing shows the later stage of LDPE ageing: the LDPE molecule chain had ruptured and branching, which made it easier for oxygen's attack, the film's color changed and it became fragile, the fracture strength and the elongation at break descend quickly etc. And from DSC and TG's curve shows that with the further ageing of film, the melt point and the heat decomposition temperature of LDPE constantly descended, the heat stability becomes worse and worse.
    The figuring of LDPE ageing can be made by some ways. Amid the ways, the spectrum analyses of infrared Spectroscopy is one of the best ones, which can clearly shows the characteristics of the LDPE ageing: scission, branching and oxygenation ;on the other hand, at the later ageing of LDPE film, the figuring of LDPE ageing can be made by the parameter of the fracture, the elongation at break and the melt point etc.
    
    
    
    
    By way of above experiment and law, we can find that after 4 months weathering, the characteristics of LDPE film is not serious, the film is only be the primary stage of the ageing, it absolutely can be the matrix of the thermoplastic PMCMW.
    2. Purchase some waste LDPE films which were used less than half a year as the thermoplastic PMCMW matrix, after fell to pieces , the LDPE film is mixed with industry solid sand , squeeze out of the screw-type extruder to make the thermoplastic PMCMW , tested the bending strength of the thermoplastic PMCMW. It find that when the sand molar percent is within 60%, the bending strength of this compound material can reach more than the 20Mp, but when the sand molar percent increases, the material bending strength descends. Then the thermoplastic PMCMW t carries on the heat ageing and man-made acceleration ageing with xenon lamp. It finds that the temperature can raise the intensity of material to a limited degree, but if the temperature of the ageing is 80 degrees, the ageing time should within 9 days and if the temperature of the ageing is 60 degrees, the ageing time should within 2 weeks. The xenon lamp accelerated ageing experiment can make material intensity descend quickly, and within the 50% of sand molar percent, the more sand molar percent can mark down the speed of ageing.
    3. Add the antiager 1 and antiager 2 to the thermoplastic PMCMW which the ratio of sand and matrix is 1/1 .On the one hand, the antiager 1 and antiager 2 can serve as a kind of pigment
引文
[1] (英)R·P谢尔登著,陈义芳、顾文华等译.聚合物复合材料.北京:轻工业出版社,1987
    [2] 周达飞.材料概论.化学工业出版社,2001
    [3] 金岚.环境生态学.高等教育出版社,1992
    [4] 吴鸿钧.城市垃圾处理技术及应用前景.环境保护.2000,12
    [5] 城市固体废物管理与城市可持续发展.中国石化出版社.2000,1
    [6] 张翼飞.我国城市已陷入垃圾包围中.经济参与报.2000-12-25(4)
    [7] http://www. cas. ac. cn
    [8] 李如燕,孙可伟,杨月红.中国资源综合利用,2001,4:5-9
    [9] http://www. kumust. edu. cn
    [10] 张召述等.用城市垃圾制备多基体复合材料的研究.[J]再生资源研究.2002,5
    [11] 林启昭.高分子复合材料其应用..北京:中国铁道出版社,1988
    [12] 魏月贞.[M]复合材料.北京:机械工业出版社,1987
    [13] W.V. Titow, B.J. Lanham. Reinforced Thermoplastics,Applied Science Publisher Ltd. London(1975).
    [14] 徐长庚.[M]热塑性复合材料.四川:四川科学技术出版社,1987
    [15] 张亚娟.[J]复合材料老化方法研究进展.工程塑料应用.2002,1
    [16] 陶婉蓉等[M]高性能聚合物基复合材料.上海科学技术出版社.1979
    [17] 中国科学院,高分子学术会议会刊(1962)科学出版社,P.102
    [18] 化学工业部合成材料老化研究所.[M]高分子材料老化与防老化.北京:化学工业出版社,1979
    [19] (日)栗原裙福次著,吴三硕译.[M]塑料的老化.北京:国防工业出版社,1977
    [20] B. Baum: [J] Appl. Polymer Sci., 2,281(1959)
    [21] 晨光化工厂.[M]塑料测试.北京:燃料化学工业出版社.1973
    [22] Furizu, [J]durability of building materials, Vol. 1.No.4,1983.
    [23] P.G.Kellhert等, [J]Appl. Polymer sci. (1967) 11(1), 137-144.
    [24] W.Lincoin Hawkins, Polymer Stabilization, (1972)
    [25] W.L.霍金斯著,吕世光译.[M]聚合物的稳定化.北京:轻工业出版社.1981.
    
    
    [26] 李世瑨,赵德仁主编.聚烯烃.[M]海市科学技术编译馆,1963
    [27] B.C.施弗里娜,H.H.蕯莫蓬特基著,陈嘉桢译.[M]高压聚乙烯.化学工业出版社,1960
    [28] 赵德仁.[M]聚乙烯.上海科学技术出
    [29] (英)N.S.Allen著,张培克,陈用烈译.聚烯烃的降解与稳定.烃工业出版社.
    [30] 谢绍国.塑料实验室光源曝露试验方法研究.[J]合成材料老化与应用.1994,4:6-11.
    [31] 叶苑梣.聚丙烯在不同气候区域的大气老化相关性.[J]老化与应用
    [32] 叶苑梣等.聚乙烯自然和人工气候老化相互关系的探索.[J]老化与应用
    [33] 叶苑梣.聚烯烃类塑料耐候性的评价和相关性问题.[J]老化与应用
    [34] (日)高分子学会.[M]高分子材料的试验方法及评价.化学工业出版社
    [35] 刘振海主编.[M]热分析导论.北京:化学工业出版社.1991
    [36] 董炎明编.[M]高分子材料实用剖析技术.北京:中国石化出版社.1997
    [37] 荆煦瑛等.[M]红外光谱实用指南.天津:天津科学技术出版社.1992
    [38] 董庆年编.[M]红外光谱法.北京:石油化学工业出版社.1977
    [39] 岛内武彦著.[M]红外线吸收光谱解析法.北京:科学出版社,1960.
    [40] Jr. Brame, Applications of Polymer Spectroscopy(1978).
    [41] H.W.Siesler & K.Holland-Moritz, Infrared and Raman Spectroscopy of polymers,Marcel Dekker, INC. New York(1980)
    [42] 沈德言,[M]红外光谱法在高分子研究中的应用.科学出版社,1982
    [43] 周大纲,谢鸽成.[M]塑料老化与防老化技术.北京:中国轻工业出版社,1998
    [44] 何曼君、陈维孝、董西侠著.[M]高分子物理.上海:复旦大学出版社,1990
    [45] L.E.尼尔生著,丁佳鼎译.高分子和复合材料的力学性能.北京:轻工业出版社.1981
    [46] 李如燕等.红外显微镜分析法在废弃物复合材料中的应用.[J]昆明理工大学学报.2002,2:42-45.
    [47] 高家武等.[J]高分子热分析曲线集.科学出版社,1990
    [48] (美)A.斯延森.[M]工程光度学与辐射度学,科学出版社,1987
    [49] 于伯龄、姜胶东编著.[M]实用热分析.北京:纺织工业出版社,1990
    [50] Cooper, G.D;Prober, M: [J]Polym. Sci. 44(1960)
    [51] Benham, J. V; Pulukat, T. J: [J]Appl. Polym. Sci. 20(1981)
    
    
    [52] Witt, D. R;Hogan, J. P:[J]Polym. Sci, Polym. Chem. Ed. 8(1970)
    [53] S.K.巴塔查里亚.金属填充聚合物—性能与应用.北京:中国石化出版社.1992
    [54] 姜南,邱怀利等.废膜挤出回收处理中的若干问题.塑料工业,1998,26(1):111-112.
    [55] 杨伏生等.聚合物增强增韧机理研究进展.中国塑料.2001,8(8):6-11.
    [56] M.D.W理查德·逊主编.聚合物工程复合材料 北京:机械工业出版社.1991
    [57] 邬怀仁等,理化分析测试指南.北京:国防工业出版社.1998
    [58] 李炳炎.炭黑生产与应用手册.北京:化学工业出版社.2000
    [59] (德)R.根赫特,H.米勒力主编.塑料添加剂手册.化学工业出版社,2000
    [60] 许凤和.高分子材料力学试验.北京:科学出版社.1988
    [61] 王兴业,唐羽章.复合材料力学性能.湖南:国防科技大学出版社.1988
    [62] 王震鸣.复合材料力学和复合材料结构力学.北京:机械工业出版社.1991
    [63] 周菊兴,董永祺.不饱和聚酯树脂—生产及应用.北京:化学工业出版社.1999.
    [64] 周菊兴,柏孝达.不饱和聚酯树脂.北京:中国建筑工业出版社.1976
    [65] 周梅英.不饱和聚酯树脂固化促进剂.热固性树脂.1990,(2):1
    [66] 段华俊.近年我国UPR现状.热固性树脂.1997,(4):47-51.
    [67] 黄家康.玻璃钢模压成型工艺简述.玻璃钢.1983(3):35-43.
    [68] 罗恒.玻璃钢井盖的研制.贵州科学.2000,12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700