木粉/马来酸酐接枝聚烯烃共混物复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木塑复合材料是由木质纤维材料与热塑性塑料熔融复合形成的一类高性能、高附加值的新型环保材料,它的广泛应用为废旧塑料和木质纤维资源的高效利用提供了一条重要途径。然而,废旧塑料往往是由性质各异的几种非极性聚合物组成的混合物,塑料组分之间、塑料与木质纤维材料之间的相容性差,导致木塑复合材料的力学性能较低。
     本文以组成为80%PP-20%HDPE和80%HDPE-20%PP的聚烯烃混合物模拟聚烯烃类废旧塑料,马来酸酐(MAH)作为功能性接枝单体,过氧化二异丙苯(DCP)为引发剂,在双螺杆挤出机中熔融共混的同时进行接枝改性。考察了工艺参数及MAH用量对熔融指数和接枝率的影响,给出了每种接枝体系的最佳接枝条件。(1)聚烯烃共混物经马来酸酐接枝改性后,其拉伸强度和冲击强度得到提高;对于不同的共混物体系,MAH用量存在着不同的最佳值。(2)利用FTIR和SEM对共混接枝物进行表征,结果表明,通过接枝改性,在聚烯烃共混物中引入了极性酸酐基团,共混体系中PP和HDPE的相容性得到改善。(3)利用旋转流变仪对共混物流变性能的研究表明,80%PP-20%HDPE共混物接枝后更容易发生熔体结构破坏;随着MAH用量增加,共混物的分子量分布变宽;80%PP-20%HDPE共混物在低频区域出现“肩状倾向”、弹性增加和“拖尾”现象;80%HDPE-20%PP共混物随着MAH用量增加弹性特征越来越显著。(4)流变研究和挤出试验结果显示,与单一聚烯烃接枝物相比,共混接枝物的加工性能获得改善。
     以接枝改性的聚烯烃共混物作为基体,采用两步挤出法制备了木塑复合材料。研究了MAH用量、木粉填充量和木粉目数对复合材料的力学性能和尺寸稳定性的影响,结果表明, (1)聚烯烃共混物经过接枝改性后,木塑复合材料的力学性能得到显著提高,80%PP-20%HDPE基和80%HDPE-20%PP基木塑复合材料分别在MAH用量为1.0%和0.1%时综合力学性能最佳。(2)木粉填充量为70%时,复合材料的综合力学性能最好;当木粉目数为30-50时,复合材料的拉伸和弯曲性能最好,而冲击强度在60-80目时最佳。(3)聚烯烃共混物经过接枝改性后,木塑复合材料的吸水率和吸水厚度膨胀率显著降低,吸水速率下降。80%PP-20%HDPE基和80%HDPE-20%PP基木塑复合材料的24小时吸水率和吸水厚度膨胀率分别在MAH用量为1.0%和0.1%时最低。木塑复合材料的吸水率和厚度膨胀率都随着木粉含量增加而增加,随着木粉目数的增大而降低。(4)通过SEM观察断面形态,发现聚烯烃共混物经过接枝改性后,木粉与基体之间的界面结合得到改善。(5)利用共混与马来酸酐接枝相结合的方法对混合废旧塑料进行改性,木粉/混合废旧塑料复合材料的力学性能和尺寸稳定性都得到显著改善。
     运用旋转流变仪对木塑复合材料的流变性能和蠕变行为进行了研究,分析了MAH用量、木粉填充量和木粉目数对复合材料的性能的影响。结果表明, (1)聚烯烃共混物经过接枝改性后,复合材料的"Payne"效应不显著,说明界面结合增强;增加木粉含量和木粉目数,都会使复合材料的“Payne”效应变显著。(2)木塑复合材料的黏弹性行为偏离于聚烯烃共混物体系,表现出“似固体行为”;基体经过接枝改性后,木塑复合材料的储能模量、损耗模量和复数黏度都降低,频率对储能模量和损耗模量的影响增加,体系表现出强烈的剪切变稀行为。(3)随着木粉含量的增加,复合材料的储能模量和复数黏度都显著升高,似固体行为越来越显著;随着木粉目数的增加,复合材料的储能模量和复数黏度略有下降。(4)木塑复合材料的蠕变变形随着温度的升高而增加;基体经过接枝改性后,复合材料的蠕变变形显著降低,变形速率减慢,卸载后的残余应变也大大降低;随着木粉填充量的增加和木粉目数的减小,复合材料的蠕变变形降低,但填充量过多会因弱界面结合问题而导致变形增大。
     综上所述,利用熔融接枝法在聚烯烃共混物中引入极性酸酐基团,不但改善了聚烯烃共混物中PP和HDPE的相容性,而且提高了木粉与聚烯烃共混物之间的界面结合强度。这表明共混接枝改性的方法是利用混合废旧塑料制备高性能木塑复合材料的一种可行的方法。
Wood plastic composites (WPC), usually made from wood fiber and thermoplastic, are environmentally friendly materials with good performance and high added value. The wide application of composites provides an alternative for effective utilization of waste plastic and natural fiber resources. However, the waste plastics are usually mixtures of various nonpolar polymers bearing the different properties. The compatibility between the compositions in the resulting WPC is weak thereby causing poor mechanical properties.
     The mixture of virgin PP and PE with varying proportions was compounded to simulate the mixed plastic wastes. Grafting maleic anhydride (MAH) onto 80%PP-20%HDPE and 80%HDPE-20%PP blends were performed in a twin screw extruder at the melt state in the presence of dicumyl peroxide (DCP) as initiator. The effects of extruding parameters and MAH content on melt flow index and grafting degree were investigaged and the optimized grafting conditions for each system were obtained. (1) Both the tensile strength and impact strength of grafted blends increased at the optimum MAH content; (2) Characterizing the grafted blends using FTIR and SEM techniques revealed that MAH can be grafted onto the PP/HDPE blends and the compatibility between PP and HDPE was improved. (3) The rheological analysis of PP/HDPE blends using the rotational rheometer showed that the melt structure of 80%PP-20%HDPE blends were easier to fail due to grafting and the blends exhibited a broader molecular distribution with increasing MAH content. A "shoulder shape tendency", increased elasticity, and trail phenomenon were observed at the low frequencies for 80%PP-20%HDPE blends. The elasticity of 80%HDPE-20%PP was obvious increased with the MAH content. (4) Rheological study and extrusion processes showed that the processibility of grafted blends was improved compared with the individually grafted polyolefin.
     The MAH grafted PP/HDPE blends were used as a polymer matrix to prepare the WPC by two-step extrusion. The effects of MAH and wood flour content, and particle size of wood flour on the mechanical properties and dimensional stability of WPC were respectively investigated. The results are summarized as below:(1) Mechanical properties of the resulting WPC were improved due to grafting. The optimum MAH contents were 1.0%and 0.1%for the 80%PP-20%HDPE based and 80%HDPE-20%PP based composites, respectively. (2) Addition of 70%wood flour provides the resulting WPC the good mechanical properties. The WPC obtained a highest tensile and flexural properties at the wood flour size of 30-50 meshes; however, is the size of 60-80 meshes was optimum for the impact strength of resulting WPC. (3) The water uptake and swelling of composites were significantly reduced due to grafting of matrix. For the 80%PP-20%HDPE based composites, the water uptake and swelling reach the lowest value after 24h immersion at 1.0%MAH level, while for 80%HDPE-20%PP based composites, the MAH content is 0.1%. The water uptake and swelling of composites increased with wood flour content and reduced with increase wood flour mesh. (4) The fractured WPC surfaces observed using SEM indicated an improved interfacial bonding between wood flour and matrix due to matrix grafting. (5) As using the mixed plastic wastes instead of origin PP/HDPE blends, the resulting WPCs exhibited a comparable improvement in the physical and mechanical properties.
     The rheological and creep behavior of WPC were investigated using the rotational rheometer at varying MAH content, wood flour content, and wood flour size. The results showed that, (1) Grafting the PP/HDPE blends eliminated the uPayne effect" of WPC, which confirmed the improved interfacial bonding. The "Payne effect" of WPC became observable with increasing wood flour content and wood flour mesh. (2) The WPC exhibited a solid-like behavior, which did not occur in the case of blends alone. The storage modulus, loss modulus and complex viscosity of WPC decreased due to MAH grafting. With increasing frequency, the storage modulus and loss modulus increased and the composites therefore exhibited a shear thinning behavior. (3) The storage modulus and complex viscosity of WPC elevated as increasing wood flour content suggesting that the "soild-like behavior" was more significant. The storage modulus and complex viscosity of WPC reduced with decreased wood particle size. (4) Increasing the environmental temperature resulted in an increased creep deformation of WPC. Grafting modification of PP/HDPE blends apparently reduced the creep of the resulting WPC. The creep deformation was generally reduced with increasing wood flour content and particle size of wood flour, except at the high wood concentrations due to the weak interfacial bonding.
     Summarily, incorporation of MAH into PP/HDPE blends via grafting reaction in the extruder faciliated the compatibility between the plastic compositions in the blends. The interfacial bonding between the grafted plastic blends and wood flour was also improved thereby. These results demonstrate that grafting blends with anhydride is a feasible approach to improve the properties of wood/plastic blend composites and provide an alternative strategy for utilizing the recycled waste plastics.
引文
[1]肖泽芳,赵林波,谢延军等.木材-热塑性塑料复合材料的进展[J].东北林业大学学报,2003,31(1):39-41
    [2]王立,宋国君,王海龙等.热塑性木塑复合材料研究进展[J].化学推进剂与高分子材料,2006,4(3):10-16
    [3]郑玉涛,陈就记,曹德榕.改进植物纤维/热塑性塑料复合材料界面相容性的技术进展[J].纤维素科学与技术,2005,13(1):45-55
    [4]M. Laantera, J.J. Lindberg, A. Sneck, et al. Degradation of the Polymer Structure of Wood by Wetting and Drying. Viscoelasticity and Morphology of the Composite Cell Structure[J]. Macromolecular Science:Part A,1993,30(9&10):715-726
    [5]廖双泉,邵自强,马凤国等.剑麻纤维蒸汽爆破处理研究[J].纤维素科学与技术,2002,(1):45-49
    [6]A. K. Bledzki, S. Reihmane, J. Gassan. Properties and modification methods for vegetable fibers for natural fiber composites[J]. Journal of Applied Polymer Science,1996,59(8): 1329-1336
    [7]赵义平,刘敏江,张环.热塑性树脂/植物纤维复合材料的纤维改性方法[J].中国塑料,2001,15(12):17-20
    [8]李华,王芳.植物纤维的碱法处理[J].山西化工,2002,22(2):18-19
    [9]李兰杰,胡娅婷,刘得志等.木粉的碱化处理对木塑复合材料性能的影响[J].合成树脂及塑料,2005,22(6):53-56
    [10]胡玉洁.天然高分子材料改性与应用[M].北京:化学工业出版社.2003,52-77
    [11]S.R. Shukla, G.V.G. Rao, A.R. Athalye. Improving graft level during photoinduced graft-copolymerization of styrene onto cotton cellulose [J]. Journal of Applied Polymer Science, 1993,49:1423-1430
    [12]B. Liao, Y.H. Huang, G.M. Cong. Influence of modified wood fibers on the mechanical properties of wood fiber-reinforced polyethylene [J]. Journal of Applied Polymer Science, 1997,66:1561-1568
    [13]张召述,赵焱.偶联剂在废弃物复合材料中的应用研究[J].昆明理工大学学报,1998,23(2):58-63
    [14]杨明.塑料添加剂应用手册[M].南京:江苏科学技术出版社,2002
    [15]X. Colom, F. Carrasco, P. Pages, et al. Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites [J]. Composite Science and Technology,2003,63: 161-169
    [16]K. Oksman, C. Clemons. Mechanical properties and morphology of impact modified polypropylene-wood flour composites[J]. Journal of Applied Polymer Science,1998, 67:1503-1513
    [17]揣成智,李树,崔永岩等.软木纤维增强PP复合材料的研究[J].塑料科技,2001,(1):11-16
    [18]M. Kazayawoko, J.J. Balatinecz, L.M. Matuana. Surface modification and adhesion mechanismsin wood fiber polypropylene composites[J]. Journal of Materials Science,1999, 34(24):6189-6199
    [19]揣成智,李树,蔺艳琴.聚丙烯/接枝木纤维复合材料相容性及性能的研究[J].中国塑料,2000,14(5):23-28
    [20]P. Jandura, B.V Kokta, B. Riedl. Cellulose fibers/polyethylene hybrid composites:Effect of long chain organic acid cellulose esters and organic peroxide on rheology and tensile properties [J]. Reinforced Plastics and Composites,2001,20(8):697-717
    [21]N.E. Zafeiropoulos, C.A. Baillie, J.M. Hodgkinson. Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part Ⅱ:The effect of surface treatments on the interface[J]. Composites:Part A,2002,33:1185-1190
    [22]P.W. Balasuriya, L. Ye, Y.M. Mai. Mechanical properties of wood flake-polyethylene composites. Part I:Effects of processing methods and matrix melt flow behaviour [J]. Composites:Part A,2001,32:619-629
    [23]J. George, M.S. Sreekala. A review of interface modification and characterization of natural fiber reinforced plastics composites [J]. Polymer Engineering and Science,2001,41 (9):1471-1485
    [24]王超,何继敏.木塑复合材料注射成型的研究进展[J].工程塑料应用,2008,36(6):81-84
    [25]王清文,王伟宏等.木塑复合材料与制品[M].北京:化学工业出版社,2007:115-180
    [26]刘玉强,赵志曼.木塑复合材料及其发展[J].化工新型材料,2005,33(3):59-61
    [27]薛平,张明珠,何亚东等.木塑复合材料及挤出成型特性的研究[J].中国塑料,2001,15(8):53-59
    [28]L.M. Matuana, C.B. Park, J.J. Balatinecz. Characterization of microcellular foamed PVC/cellulosic-fibre composites [J]. Cellular Plastics,1996,32(5):449-469
    [29]L.M. Matuana, C.B. Park, J.J. Balatinecz. Processing and cell morphology relationships for microcellular foamed PVC/Wood fiber composites[J]. Polymer engineering and science 1997,37(7):1137-1147
    [30]L.M. Matuana, F. Mengeloglu. Studies on the foamability of rigid PVC/wood-flour composites. ANTEC 20 Conference Proceedings,2001:6-12
    [31]王澜,董洁,卜雅萍.聚氯乙烯/稻壳粉木塑发泡制品的研究[J].塑料,2005,34(5):1-7
    [32]薛平,贾明印,王哲,丁筠.PVC/木粉复合材料挤出发泡成型的研究[J].工程塑料应用,2004,32(12):66-70
    [33]D.P. Kamdem, H.H. Jiang, W.N. Cui. Properties of wood plastic composites made of recycled HDPE and wood flour from CCA-treated wood removed from service [J]. Composites:Part A,2004,35:347-355
    [34]Y.H. Cui, S. Lee, B. Noruziaan, et al. Fabrication and interfacial modification of wood/recycled plastic composite materials[J]. Composites:Part A,2008,39:655-661
    [35]K. Jayaraman, D. Bhattacharyya. Mechanical performance of wood fiber-waste plastic composite materials [J]. Resources, Conservation and Recycling,2004,41(4):307-319
    [36]A. Ashori, A. Nourbakhsh. Characteristics of wood-fiber plastic composites made of recycled materials[J]. Waste Management,2009,29:1291-1295
    [37]N.T. Dintcheva, F.P.L. Mantia. Recycling of the light fraction from municipal post-consumer plastics:effect of adding wood fibers[J]. Polymers for Advanced Technologies, 1999,10(10):607-614
    [38]黄彦三,陈欣欣,黄清吟等.木粉/塑料复合材料之理学性质及劣化特性探讨[J].台湾:林产工业,2000,19(2):249-254
    [39]W.T. Peng, Y.S. Huang, Y.S. Chen. Research and Development of Wood/Plastic Composite Materials (Ⅰ) Physical and Mechanical Properties of the Composites of Sander Dust, Sawdust, Shaving Fines and Polypropylene. Bull Taiwan For Res Inst New Series,1994, 9(2):161-190
    [40]王正,赵行志,郭文静.回收塑料-木材纤维复合材料的工艺及性能[J].北京林业大学学报,2005,27(1):1-5
    [41]王清文,高华,王海刚等.用废旧塑料混合物制备的木塑复合材料及其制备方法[P].中国发明专利,2007,申请号200710144992.5
    [42]V. Hristov, J. Vlachopoulos. Influence of Coupling Agents on Melt Flow Behavior of Natural Fiber Composites. Macromolecular materials and engineering,2007,292,608-619
    [43]V. Hristov, E. Takacs, J. Vlachopoulos. Surface Tearing and Wall Slip Phenomena in Extrusion of Highly Filled HDPE/Wood Flour Composites. Polymer Engineering and Science,2006,10:1204-1214
    [44]H. Azizi, I. Ghasemi. Investigation on the Dynamic Melt Rheological Properties of Polypropylene/Wood Flour Composites [J]. Polymer Composites,2009,30(4):429-435
    [45]M.M. Sain, J. Balatinecz, S. Law. Creep Fatigue in Engineered Wood Fiber and Plastic Compositions[J]. Journal of Applied Polymer Science,2000,77:260-268
    [46]B. Xu, J. Simonsen, WE. Rochefort. Creep Resistance of Wood-filled Polystyrene/High-Density Polyethylene Blends[J]. Journal of Applied Polymer Science,2001,79:418-425
    [47]A.K. Bledzki, O. Faruk. Creep and impact properties of wood fibre polypropylene composites:influence of temperature and moisture content[J]. Composites Science and Technology,2004,64:693-700
    [48]B.D. Park, J.J. Balatinecz. Short Term Flexural Creep Behavior of Wood Fiber Polypropylene Composites[J]. Polymer Composites,1998,19(4):377-382
    [49]S.N. Maiti, M.R. Hassan. Melt rheological properties of PP-wood flour composites[J]. Journal of Applied Polymer Science,1989, (37):2019-2032
    [50]N.E. Marcovich, N.M. Reboredo, J. Kenny, et al. Rheology of particle suspensions in viscoelastic media. Wood flour polypropylene melt[J]. Rheology Acta,2004,43:293-303
    [51]T.Q. Li, M.P. Wolcott. Rheology of Wood Plastics Melt, Part1:Capillary Rheometry of HDPE Filled With Maple[J]. Polymer Engineering and Science,2005,549-559
    [52]T.Q. Li, M.P. Wolcott. Rheology of Wood Plastics Melt, Part 2:Effects of Lubricating Systems in HDPE/Maple Composites[J]. Polymer Engineering and Science,2006,464-473
    [53]T.Q. Li, M.P. Wolcott. Rheology of Wood Plastics Melt, Part 3:NonLinear Nature of the Flow[J]. Polymer Engineering and Science,2006,114-121
    [54]S.Y. Lee, H.S. Yang, H.J. Kim, et al. Creep behavior and manufacturing parameters of wood flour filled polypropylene composites[J]. Composite Structures,2004,65:459-469
    [55]B.A. Acha, M.M. Reboredo, N.E. Marcovich. Creep and dynamic mechanical behavior of PP-jute composites:Effect of the interfacial adhesion[J]. Composites:Part A,2007,38: 1507-1516
    [56]李刚等.浅论聚烯烃接枝改性的影响因素[J].现代塑料加工应用,1999,11(3):5-9
    [57]张玉清等.聚丙烯的接枝共聚改性[J].化工新型材料,1997,25(11):8-13
    [58]P. Ghosh, B. Chattopadhyay, A.K. Sen. The functionalization of polypropylene by maleic anhydride[J]. Polymer,1998,39:193-199
    [59]W.Y. Chang, C.H. Hu. Molecular characterization of maleic anhydride functionalized polypropylene[J]. European Polymer Journal,1996,32:385-391
    [60]余维畅.溶液法马来酸酐接枝线性低密度聚乙烯的研究[J].汕头科技,1994,(3):37-42
    [61]施德安,柯卓.聚丙烯熔融接枝马来酸酐反应机理的研究[J].应用化学,2001,18(11):865-868
    [62]赵建青,薛锋,黄涛等.聚乙烯固相接枝马来酸酐的研究[J].塑料工业,1998,26(1):72-74
    [63]余坚,何嘉松.聚烯烃的化学接枝改性[J].高分子通报,2000,(1):66-72
    [64]张凯,张晓红,陈伟.聚烯烃功能化进展[J].合成树脂及塑料,2005,22(2):66-69
    [65]贾金兰.马来酸酐溶液法接枝聚丙烯的探讨[J].应用化工,2009,38(7):1043-1045
    [66]Sachin N. Sathe, G.S. Srinivasa Rao, Surekha Devi. Grafting of maleic anhydride onto Polypropylene:Synthesis and characterization[J]. Journal of Applied Polymer Science, 1994,2(53):239-245
    [67]G. Ruggeri, M. Aglietto, et al. Some aspects of polypropylene functionalization by free radical reactions[J]. European Polymer Journal,1983,19(10-11):863-866
    [68]杨小波,詹晓力,陈丰秋.聚丙烯固相接枝聚合及接枝机理研究进展[J].石油化工,2003,(32):69-72
    [69]童身毅,解孝林张良钧.马来酸酐接枝聚丙烯研究[J].合成树脂及塑料,1994,11(1):11-17
    [70]刘生鹏,张文祥,舒攀等.马来酸酐固相接枝改性聚丙烯研究[J].化学与生物工程,2010,27(8):39-41
    [71]冯钠,黄锐,李书娟等.预处理方法对固相接枝的影响[J].合成树脂及塑料,2006,23(3):25-27
    [72]董缘,兰新哲.PP无纺布辐射接枝MMA的研究[J].合成纤维工业,2007,30(1):5-7
    [73]徐国亮,缪培凯,赵春娥等.低能电子束预辐射接枝LDPE膜的力学性能及热性能[J].高分子材料科学与工程,2010,26(5):85-88
    [74]B. Pan, K. Viswanathan, C.E. Hoyle. Photoinitiated Grafting of Maleic Anhydride onto Polypropylene[J]. Polymer Science, Part A,2004,42(8):1953-1962
    [75]傅和青,黄洪.马来酸酐熔融接枝聚丙烯及降解机理研究[J].高校化学工程学报,2007,5(21):808-813
    [76]D. Shi, J.H. Yang, Z.H. Yao, et al. Functionalization of isotactic polypropylene with maleic anhydride by reactive extrusion:mechanism of melt grafting[J]. Polymer,2001,42(13): 5549-5557
    [77]丁永红,承民联LLDPE熔融接枝MAH功能化的研究[J].塑料科技,2001,(12):1-5
    [78]Y. Guldogan, S. Egri, Z.M.O. RZaev, et al. Comparison of Maleic Anhydride Grafting onto Powder and Granular Polypropylene in the Melt by Reactive Extrusion[J]. Journal of Applied Polymer Science,2004,92(6):3675-3684.
    [79]金鼎铭,段宏义,李彦峰等.马来酸酐熔融接枝聚丙烯及其共混物[J].合成橡胶工业,2008,31(1):66-69
    [80]黄新光,万欣,蔡绪福PE/PP共混物熔融接枝马来酸酐的研究[J].塑料工业,2004,32(2):23-25
    [81]F. Berzin, B. Vergnes, S.V. Canevarolo, et al. Evolution of the Peroxide-Induced Degradation of Polypropylene along a Twin-Screw Extruder:Experimental Data and Theoretical Predictions[J]. Journal of Applied Polymer Science,2006,99:2082-2090
    [82]徐钰珍,方征平,朱彦等.高密度聚乙烯与丙烯酸的熔融接枝研究[J].中国塑料,2004,18(2):26-30
    [83]俞强,林明德.聚烯烃弹性体与马来酸酐的熔融接枝[J].塑料工业,2002,30(4):20-22
    [84]Y. Li, X.M. Xie, B.H. Guo. Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene[J]. Polymer,2004, (42):3419-3425
    [85]J.M. Lusichi, B. Boutevin, N. Torres. In situ compatibilization of HDPE/PET blends[J]. Journal of Applied Polymer Science,2001,79(5):874-878
    [86]郭晓晖,黄健,张明等.热引发官能化HDPE、PP、EPDM及其增韧PA6研究[J].中国塑料,2002,16(12):37-42
    [87]瞿金平,胡汉杰.聚合物成型原理及成型技术[M].北京:化学工业出版社,2001.
    [88]任杰,李申,任天赋.反应挤出研究进展[J].建筑材料学报,2006,9(1):66-71.
    [89]M. Xanthos反应挤出原理与实践[M].瞿金平译.北京:化学工业出版社,1999:5-30.
    [90]付东升,张康助,孙福林等.反应性挤出原理及应用研究进展[J].现代塑料加工应用,2003,15(5):52-55
    [91]陈卫丰,严海标,柯清泉等.聚合物反应挤出加工技术及其应用[J].塑料科技,2002,(3):23-25
    [92]王益龙,郭继宁,张航空等.反应式挤出机的设计及应用[J].现代塑料加工应用,2000,12(1):34-36
    [93]司林旭,郑安呐,朱中南.双螺杆反应挤出模型的研究[J].高分子材料科学与工程,2002,18(1):26-29
    [94]王益龙,刘安栋.反应挤出技术研究进展[J].现代塑料加工应用,2004,16(2):35-39
    [95]高玉平等.接枝功能化聚烯烃[J].塑料,1999,28(1):29
    [96]童丽松,冯之榴等,ABS树脂接枝马来酸酐的研究[J].高分子材料科学与工程,1998,14(3):91
    [97]王益龙,赛锡高,黄葆同等.反应挤出粉料PE接枝MA的研究[J].高分子材料科学与工程,1993,9(1):105
    [98]王益龙,吴菲菲.工艺条件对反应挤出接枝产品纯度的影响[J].中国塑料,2002,16(12):79-82
    [99]Y.J. Sun, G.H. Hu, M. Lambla. Free radical grafting of GMA onto PP in a co-rotating twin screw extruder[J]. Journal of Applied Polymer Science,1995,57(9):1043
    [100]D. Suwanda, R. Lew, S.T. Balke. Reactive extrusion of polypropylene I:Controlled degradation[J]. Journal of Applied Polymer Science,1988,35(4):1019-1032
    [101]C. Tzoganakis, J. Vlachopoulos, A.E. Hamielec. Production of controlled rheology polypropylene resins by peroxide promoted degradation during extrusion[J]. Polymer Engineering and Science,1988,28(3):170-180
    [102]A. Pabedinskas, W.R. Cluett, S.T. Balke. Modeling of polypropylene degradation during reactive extrusion with implications for process control[J]. Polymer Engineering and Science,1994,34(7):598-612
    [103]L. Incarnato, P. Scarfatoa, L. Di Maio, et al. Structure and rheology of recycled PET modified by reactive extrusion[J]. Polymer,2000,41(18):6825-6831
    [104]王益龙,蹇锡高,张鸿金等PE-MA对聚乙烯/碳酸钙增容作用的研究[J].高分子材料科学与工程,1993,9(5):46
    [105]H. Gao, Y.M. Song, Q.W. Wang, et al. Rheological and mechanical properties of wood fiber-PP/PE blend composites[J]. Journal of Forestry Research,2008,19(4):315-318
    [106]王益龙,黄葆同等.聚烯烃接枝马来酸酐产品的组成和性能[J].合成树脂及塑料,1995,12(1):42
    [107]刘容德等LLDPE与MAH熔融接枝反应的研究[J].塑料科技,1997,(4):14
    [108]孙谨,吴莲宝.非水滴定(下)[M].北京:科学出版社,1985,641-650
    [109]袁锦瑶,高峰,刘建威,等.聚烯烃接枝马来酸酐接枝率的测定—聚乙烯接枝[J].现代塑料加工应用,1993,(3):26-30.
    [110]N.G. Gaylord, M. Mehta, V. Kumar, et al. High density polyethylene-g-maleic anhydride preparation in presence of electron donors[J]. Journal of Applied Polymer Science,1989, 38 (2):359-371.
    [111]王益龙,蹇锡高,张鸿金.粒料LDPE熔融挤出反应接枝马来酸酐的研究[J].中国塑料,1993,7(1):34-38
    [112]陈淼灿,刘涛,赵玲等.非水滴定和傅立叶红外光谱在聚丙烯马来酸酐接枝物表征中的应用[J].功能高分子学报,2005,18(2):334-339
    [113]M. Sclavons, P. Franquiner, V. Carlier, et al. Quantification of the Maleic anhydride grafted onto polypropylene by chemical and viscosimetric titrations, and FTIR spectroscopy[J]. Polymer,2000,41(6):1989-1999
    [114]G. Premamoy, C. Bibha, A.K. Sen. Modification of low density polyethylene (LDPE) by graft copolymerization with some acrylic monomers[J]. Polymer,1998,39(1):193-201
    [115]L.U. Bing, T.C. Chung. New maleic anhydride modified PP copolymers with block structure:Synthesis and application in PP/polyamide reactive blends[J]. Macromolecules, 1999,32(8):2525-2533
    [116]A.J. Oostenbrink, R.J. Gaymans. Maleic anhydride grafting on EPDM rubber in the melt[J]. Polymer,1992,33(14):3086-3088
    [117]P. Potschke, K. Wallheinke. Blend of thermoplastic polyurethane and maleic anhydride grafted polyethylene, Ⅰ:Morphology and mechanical properties[J]. Polymer Engineering and Science,1999,39(6):1035-1048.
    [118]B.D. Roover, M. Sclavons, V. Carlier, et al. Molecular characterization of maleic anhydride functionalized polypropylene [J]. Journal of Polymer Science Part A:Polymer Chemistry,1995,33(5):829-842.
    [119]C.Q. Li, Y. Zhang, Y.X. Zhang. Melt grafting of maleic anhydride onto low-density polyethylene/polypropylene blends [J]. Polymer testing,2003,22:191-195
    [120]G. Moad. The synthesis of polyolefin graft copolymers by reactive extrusion[J]. Progress in Polymer Science,1999,24(1):81-142
    [121]L.A. Utracki. Polymer Alloys and Blends[M]. New York:Carl Hanser,1989:131
    [122]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社,2003:5-6
    [123]左瑞霖,张广成,何宏伟等.聚乙烯的硅烷交联技术进展[J].塑料,2000,29(6):41-46
    [124]高歌,王静媛,马荣堂等PP/PA1010共混物的形态结构及力学性能的研究[J].高分子材料科学与工程,1999,15(1):114-117
    [125]舒文艺,金日光PVC/PP共混体系的亚微形态研究[J].高分子材料科学与工程,1992,3(3):57-60
    [126]徐配弦.高聚物流变学及其应用[M].北京:化学工业出版社,2003:8-11
    [127]P. Cassagnau, F. Melis. Non-linear viscoelastic behavior and modulus recovery in silica filled polymers[J]. Polymer,2003,44:6607-6615
    [128]G.R. Zeichner, P.D. Patel. Proceedings of the Second World Congress of Chemical Engineering, Montreal, Quebec, Canada,1981,333
    [129]薛平,王哲,贾明印等.木塑复合材料加工工艺与设备的研究[J].人造板通讯,2004,9-13
    [130]L.M. Matuana, J.J. Balatinecz, R.N.S. Sodhi, C.B. Park. Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy[J]. Wood Science and Technology,2001,35(3):191-201
    [131]M. Kazayawoko, J.J. Balatinecz, R.T. Woodhams. Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes[J]. Journal of Applied Polymer Science,1997,66(6):1163-1173.
    [132]H.N. Dhakal, Z.Y. Zhang, M.O.W. Richard. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites[J]. Composites Science and Technology,2007,67 (7-8):1674-1683
    [133]J.Z. Lu, Q.L. Wu, I.I. Negulescu. Wood-fiber/High-Density-Polyethylene composites: coupling agent performance [J]. Journal of Applied Polymer Science,2005,96:93-102
    [134]王海刚,宋永明,王清文等.针状木纤维-HDPE复合材料的力学性能[J].林业科学,2006,42(12):108-113
    [135]K. Oksman, C. Clemons. Effects of elastomers and coupling agent on impact performance of wood flour-filled polypropylene [J]. Journal of Applied Polymer Science, 1998;67(9):1503-13
    [136]P. Gatenholm, H. Bertilsson, A. Mathiasson. The effect of chemical composition of interphase on dispersion of cellulose fibres in polymers. I. PVC-coated cellulose in polystyrene[J]. Journal of Applied Polymer Science,1993;49(2):197-208
    [137]丁筠,薛平,武志怡等.纤维表面处理对PVC/木纤维复合材料性能的影响[J].工程塑料应用,2004,32(9):29-31
    [138]刘玉慧,白鸿博,温安华等.改性木纤维/PVC复合材料界面及性能的研究[J].当代 化工,2007,36(4):438-442
    [139]S. Rangaraj. Durability assessment and modeling of wood thermoplastic composites[D]. Washington:Washington State University,1999
    [140]K.B. Adhikary, S.S. Pang, M.P. Staiger. Dimensional stability and mechanical behaviour of wood plastic composites based on recycled and virgin high density polyethylene (HDPE)[J]. Composites:Part B,2008,39:807-815
    [141]李坚等.木材科学[M].北京:高等教育出版社,2002
    [142]Q.F. Lin, X.D. Zhou, G.C. Dai. Effect of Hydrothermal Environment on Moisture Absorption and Mechanical Properties of Wood Flour-Filled Polypropylene Composites[J]. Journal of Applied Polymer Science,2002,85:2824-2832
    [143]P.J. Herra Fraco, L.T. Drzal. Comparsion of methods for the measurement of fiber/matrix adhesion in composites[J]. Composites,1992,23:2
    [144]黄玉东,魏月贞.复合材料界面研究现状(中)[J].纤维复合材料,1994,1:1
    [145]P. Cassagnau. Payne effect and shear elasticity of silica-filled Polymers in concentrated solutions and in molten state[J]. Polymer,2003,44:2455-2462
    [146]C. Gauthier, E. Reynaud, R. Vassoille et al. Analysis of the non-linear viscoelastic behavior of silica filled styrene butadiene rubber[J]. Polymer,2004,45:2761-2771
    [147]A. Lion, C. Kardelky. The Payne effect in finite viscoelasticity:constitutive modelling based on fractional derivatives and intrinsic time scales[J]. International Journal of Plasticity,2004,20:1313-1345
    [148]M.I. Aranguren, E. Mora, J.V. DeGroot, et al. Effect of reinforcing fillers on the rheology of polymers melts[J]. Journal of Rheology,1992,36(6):1165-1182
    [149]G. Wu, Y.H. Song, Q. Zheng, el al. Dynamic rheological properties for HDPE/CB composite melts[J]. Journal of Applied Polymer Science,2003,88(9):2160-2168
    [150]F. Romani, R. Corrieri, V. Braga, et al. Monitoring the chemical crosslinking of propylene polymers through rheology[J]. Polymer,2002,43(4):1115-1131
    [151]M.I. Aranguren, E. Mora, J.V. DeGroot, et al. Effect of reinforcing fillers on the rheology of polymers melts[J]. Journal of Rheology,1992,36(6):1165-1182
    [152]M.J. Wang. Effect of polymer filler and filler-filler interactions on dynamic properties of filled vulcanizates[J]. Rubber Chemistry and Technology,1998,71(3):520-583
    [153]V. Hristov, J. Vlachopoulos. Effects of Polymer Molecular Weight and Filler Particle Size on Flow Behavior of Wood Polymer Composites [J]. Polymer Composites,2008,831-839
    [154]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2000
    [155]B.E. Read, P.E. Tomlins. Creep and physical aging of injection molding, fiber reinforced polypropylene[J]. Polymer Engineering and Science,1997,37:1572-1581
    [156]P.E. Tomlins, B.E. Read. Creep and physical aging of polypropylene:a comparison of models[J]. Polymer,1998,39:355-367
    [157]B.A. Acha, M.M. Reboredo, N.E. Marcovich. Effect of coupling agents on the thermal and mechanical properties of polypropylene-jute fabric composites[J]. Polymer International,2006,55:1104-1113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700