环境科学钻探技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境科学钻探是取得古地理、古气候、古环境变迁及环境污染程度等实物资料的唯一技术手段。通过对样心进行物理、化学及生物分析,能够正确演绎古气候及环境变化的规律,为国家经济区域规划提供决策依据。
     环境科学钻探孔深一般在500m以上,需要全孔取心。取出的岩心要求完整、未扰动、未受污染、代表性好,但目前的钻探技术仍无法满足要求。主要表现在取心技术和钻井液技术研究滞后,不适应环境科学钻探的技术要求。
     本研究根据环境科学钻探的特点和存在的主要问题,重点开展取心技术和钻井液护壁护心技术研究,以解决环境科学钻探工程中取心率低、孔壁稳定性差这两大技术难题。科技部和国土资源部立项给予经费支持。
     经过充分论证,提出了以射流式取心技术和环保型钻井液技术为主攻方向的技术思路。重点通过研制新型射流式取心钻具和环保型钻井液体系(EPM)来实现提高岩心采取率和孔壁稳定性的预期目标。
     射流式取心钻具的研究内容包括射流元件的研究、抗涡动钻头的研究及隔水装置的研究。
     环保型钻井液体系的研究内容包括环保型钻井液材料生物毒性检测方法及标准的研究,优质环保处理剂的研制或遴选以及环保型钻井液体系配方的试验研究。
     现场示范应用表明:射流元件设计合理、结构紧凑、效果显著,对内管中岩心起到了“悬浮”保护作用;抗涡动钻头钻进中稳定性好,对岩心起到了稳定“树心”的预期功效;隔水装置实现了对冲冼液流量分配的控制,避免了冲洗液对岩心根部的冲蚀。环保型钻井液体系(EPM)组分简单,无毒性、现场配浆维护简便,降失水、防塌、润滑功能显著,能够有效封堵裂隙漏失。其触变性能优良,有助于维护岩心的完整。EPM体系完全满足了环境科学钻探工程对钻井液综合性能的要求。射流式耽心钻具和环保型钻井液体系(EPM)两大成果的联合作用,使取心率从原来常规技术的40%提高到90%以上,而且钻进中孔壁稳定、起下钻顺畅。
     总之,开展环境科学钻探技术研究为当前环境科学钻探工程的实施提供了及时有力的技术支撑。射流式取心技术和环保型钻井液技术解决了环境科学钻探工程取心率低和护壁护心差两大技术难题,填补了国内空白,促进了环境科学钻探技术的进步。
Environmental scientific drilling is the only technical method to obtain real information or sample in the reaserch on the change of palaeogeography, palaeometeorology and palaeoenvironment and the level of environmental contamination. Based on physical, chemical and biological analyses on the sample, the law of palaeometeorological change and enviommental change can be correctly deduced. Environmental scientific drilling will provide a basis for the decision of regional planning for national economy.Environmental scientific borehole is generally deeper than 5oo meters and full hole coring is needed. The core should be complete, undisturbed, uncontaminated and with good representivity. However, the conventional drilling techniques can not satisfy these requirements because of the stagnant research on coring and drilling fluid techniques.Based on the characteristics of environmental scientific drilling and in accordance with the main problems existed, this research project centres on the coring technique and the borehole wall and core protection technique by drilling fluid.This research project is financially aided by the Ministry of Science and Technology and the Ministry of Land and Resources.Based on a full argumentation, a technical line of taking fluidic type coring technique and environmental protective drilling fluid technique as the main research direction was put forward. That is, high core recovery and borehole wall stability would be mainly realized by new type fluidic coring tools and environmental protective drilling fluid system(Epm).The research on fluidic coring tools included fluidic elements, whirl-proof drill bits and water isolating device.The research on environmental protective drilling fluid system included the biotoxicity inspection method and standard of the environmental protective drilling fluid material, the development and selection of high grade environmental protective treatment materials and the research on the formular of the environmental protective drilling fluid system.Field demonstration application indicated that the fluidic elements were reasonably designed, with compact structure and remarkable results. The fluidic elements had a suspension effect on the core in inner tube. During drilling operations the whirl-proof drill bit realized very good stability, and thus stabilizing the core. The
    control of the distribution of drilling fluid flow rate was realized by the water isolating device, and thus the eorsion of drilling fluid to core root was avoided.The environmental protective drilling fluid system(Epm) is simple in component, non-toxic, easy in field preparation and maintenance, and is with remarkable functions of reducing filtrate loss, anti-collapse and lubrication. Thus fracture loss can be effectively sealed. Epm has good thixotropy, conducing to keeping the integrity of core. Field applications indicated that Epm completely satisfied the demands of environmental scientific drilling engineering on comprehensive properties of drilling fluid. The combination of fluidic coring tools and environmental protective drilling fluid system(Epm)increased the core recovery to more than 90 per cent from original 40 per cent by conventional technique, with the results of stable borehole wall during drilling process and smooth tripping.The research on environmental scientific drilling technique provides an effective and timely technical support for the implementation of environmental scientific drilling engineering. The fluidic coring technique and environmental protective drilling fluid technique solved the two main technical problems of low core recovery and poor core and borehole wall protection existed in environmental scientific drilling engineering, filling in the gaps in the country and promoting the progress of environmental scientific drilling techniques.
引文
[1] 张世洪.地磁学、古地磁学和环境科学的研究新进展[J].现代地质,2004,18 (4):415~422
    [2] 苏新,陈芳,于兴河,等.南海陆坡中新世以来沉积物特性与气体水合物分布初探[J].现代地质,2005,19 (1):2
    [3] 马连成.工程环保勘察与钻探施工[J].探矿工程(岩土钻掘工程),2003,30 (增刊):221~222
    [4] 蔡加模.软质岩石风化带的划分与承载力的确定.探矿工程,2000,增刊,83~85.
    [5] 蒋国盛.天然气水合物的勘探与开发.武汉:中国地质大学出版社,2002.81~101
    [6] 马文臣,等.钻井液研究与使用应考虑的环境问题.石油钻采工艺.1998,(3)
    [7] 黄晓东.国外钻井液毒性检测方法述评.石油钻探技术.1995,(12)
    [8] A·K·Wojtanowicz. Environmental Control Potential of Drilling Engineering: A Overview of Existing Technologies. SPE/LADC_(21954). 1991
    [9] 左汝强.深海钻探计划与大洋钻探计划的主要成就.李常茂,赵尔信,马岩,等.国际海洋科学钻探进展.河北:河北燕郊出版社,2005,58~99
    [10] 黄卫东,赵尔信,等.系列原状取心钻具在中国大陆环境科学钻探中的应用[J].探矿工程(岩土钻掘工程),2005,229 (增刊):48~50
    [11] James.L.拉默斯 (美),J.J.阿比,等.钻井液优选技术.石油工业出版社,87~102
    [12] 赵尔信,黄卫东,黄玉文,等.新疆砂岩铀矿的取心与钻进工艺[J].探矿工程 (岩土钻掘工程),2001,28 (增刊):190~192
    [13] 李世忠.有关金刚石钻进原理的研究.探矿工程,2000 (5):7~10
    [14] 张艺伟.牙轮钻头振动规律分析.探矿工程,2002 (4):29~31
    [15] 郭铁峰.热压金刚石工具胎体材料的先进设计方法——规划设计法.探矿工程,2002 (6):41~43
    [16] 蔡家品,贾美玲,等.大陆科学钻探用新型镶嵌式钻头研究[J].探矿工程(岩土钻掘工程),2003,30 (增刊):289~290
    [17] 贾美玲.金刚石钻头制造技术探讨[J].探矿工程(岩土钻掘工程),2001,28 (增刊): 256~257
    [18] 李岳.金刚石界面金属碳化物过渡层形成机理的研究.探矿工程,2001 (1):49~52
    [19] 史晓亮.提高金刚石—硬质合金超硬复合体性能的研究.探矿工程,2002 (2):53~56
    [20] Alfred William Eustes. New Technology, Geo Drilling. 1999, 7 (8): 36~40
    [21] J·D·Camming, J·K·S·Diamond Drill Handbook. Canada. Published by the Hunter Roseco, 1980. 102~130
    [22] W. L. Acker. BASIC PROCE DVRES for SOIL SAMPLING and CORE DRILLING U. S. A: Acker Drill Co Inc, 1994, 181~184
    [23] 刘晓阳.松辽盆地第三系含砾砂岩、砂砾岩层钻探取心技术.探矿工程,2002 (3):39~41
    [24] 刘广志.金刚石钻探手册[M].北京:地质出版社,1991,47~89
    [25] 屠厚泽.钻探工艺学.武汉:中国地质大学,1988,201~286
    [26] 赵国隆.勘探工程技术.上海:上海科学技术出版社,2003,98~103
    [27] 肖引学.金刚石单动双管钻具的改进与效果.探矿工程,2003 (增刊):203~205
    [28] Clark. R. K. The impact of environmental regnlations on drilling fluid technology. JPT. 46(9)
    [29] 周名江,等.黑褐新糠虾的急性毒性测试方法及在钻井液毒性评价中的作用.海洋环境科学,2001,(8)
    [30] 易绍金,等.油田化学剂生物毒性的测定及分级标准.油气田环境保护,1996,(3)
    [31] 张保森,等.大庆油田钻井液对中华糠虾的毒性研究.黑龙江省环境报,1999,(1)
    [32] 王永艳,等.油基钻井液毒性评价方法.钻井液与完井液,1999,(12)
    [33] 李长兴,等.大庆油田钻井液遗传毒性试验研究.油气田环境保护,1997,(1)
    [34] 刘光金.影响废弃钻井液浸出毒性的因素.钻井液与完井液,1996,(2)
    [35] 王芹珠,杨增家.有机化学.清华大学出版社,76~106,387~401
    [36] 李克间,苏义脑.国外大位移钻井技术.北京:石油工业出版社,1999,36~49
    [37] 徐同台,洪增云,潘世奎.水平井钻井液与完井液.石油工业出版社,477~482
    [38] 陈家琅,刘永建,岳湘安.钻井液流动原理.北京:石油工业出版社,1994,18~40
    [39] 张春光,徐同台,侯万国.正电胶钻井液.石油工业出版社,73~86
    [40] 潘才元.高分子化学.中国科学技术大学出版社,302~303
    [41] 吴竞择,罗肇丰.90年代以来钻井技术与发展趋势.西南石学院,1997,19 (2)
    [42] 徐同台,赵忠举,徐云英.钻井液完井液新技术、新进展及对21世纪的展望.钻井液完井液,2000,17 (4),6~10
    [43] 徐同台,刘玉杰,申威,等.防漏堵漏技术.北京:石油工业出版社,1996,1~4
    [44] 陈家琅,刘永建,岳湘安.钻井液流动原理.北京:石油出版社,1997,421~425

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700