木质—橡胶功能性环保复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的快速发展,废弃轮胎的“黑色污染”已经成为当今世界的突出问题和关注的热点。将废弃轮胎橡胶与木材制造功能性环保复合材料是合理利用废弃轮胎、解决“黑色污染”、节约木材资源的有效途径。
     本论文以落叶松(Larlx gmelini)木刨花和废旧轮胎橡胶为原料,采用异氰酸酯(Polymeric Methylene Diphenyl Diisocyanate,简称PMDI)和脲醛胶(Urea-Formaldehyde Resin,简称UF)混合胶粘剂研制开发出低成本、环保木质-橡胶功能性复合材料;深入系统研究了制备工艺和技术,探索了异氰酸酯、脲醛胶、木刨花与橡胶颗粒的配比水平、橡胶颗粒的尺寸、密度等因子对木质-橡胶复合材料物理力学性能的影响规律;运用多种数学统计分析方法,通过大量的实验和理论分析,对木质-橡胶复合材料性能的影响因子进行了优化,提出了最佳生产工艺;运用扫描电镜(SEM)分析手段研究了木质-橡胶复合材料的微观结构及其与材料力学性能的关系;运用现代测试手段对木质-橡胶复合材料的阻尼减震和隔声性能进行了检测分析,探索了其影响规律。主要研究结论如下:
     1.木质-橡胶复合材料的材料性能的主要影响因素为:木材与橡胶的配比水平、密度和异氰酸酯/脲醛胶的施胶量,其中:木材与橡胶的配比水平和密度对材料性能的影响极其显著,木材配比比例和密度越高,材料力学性能越好;PMDI/UF的施胶量对材料性能的影响较显著;橡胶颗粒尺寸对材料性能的影响极小;
     2.甲醛释放量(FE)的显著性影响顺序为:木刨花与橡胶颗粒配比水平>脲醛胶树脂>异氰酸酯胶粘剂>橡胶颗粒尺寸,以全新的思想和理念开辟一条降低甲醛的捷径,取得甲醛释放量为7.1mg/100g的良好效果;
     3.根据复合材料力学性能和生产成本及效益对复合材料因子进行优化分析,获得制备木质-橡胶复合材料最佳优化组合为:木刨花与橡胶颗粒混合水平为60/40、异氰酸酯的水平为6%、脲醛胶的水平为10%、橡胶颗粒水平为5mm。这为木质-橡胶复合材料的工业化生产提供了科学依据和指导;
     4.通过工艺参数对MOR、MOE、IB影响的三维效果图的分析,得到密度、热压温度和时间工艺参数对木质-橡胶复合材料力学性能的影响规律、二次回归模型方程和最佳实验条件。研究发现:木质-橡胶复合材料的最佳制备工艺为:温度:170℃、时间:300Sec.、密度:1000ku m~(-3);
     5.木质-橡胶复合材料的微观结构特征为:在木刨花之间,木刨花和橡胶颗粒之间可以形成良好的结合界面;对复合材料施加负荷过程中,复合材料形成密度剖面;木刨花/纤维破坏通常发生在高密度层或施胶量高的层中;木刨花/纤维拉长或从复合材料基体中拔出通常发生在低密度层或施胶量低的层中;
     6.木质-橡胶复合材料比普通人造板和常规的复合地板具有更好的阻尼减震和隔声效果,并且随着复合材料中橡胶颗粒配比水平的增加阻尼减震和隔声效果更显著。橡胶颗粒的大小对复合材料的阻尼减震和隔声效果也有一定的影响,可以根据木质-橡胶复合材料应用场所的不同以及对阻尼减震和隔声效果要求的不同,调整复合材料中橡胶颗粒的水平和橡胶颗粒的大小。
With soaring development of automobile industry, problems of polluted environment and lack of resource are more and more remarkable in the globe. It is one efficient way to reducing "black pollution" and saving forest resources, which using waste tire and wood make new composite materials.
    Main purpose of the thesis was to that material comprising of larch (Larlx gmelini) wood particle and waste tire rubber, adopting a polymeric methylene diphenyl diisocyanate (PMDI) and urea-formaldehyde (UF) combination binder system manufacture low cost, environmental wood-rubber functional composite. Manufacturing technology was complete studied. Preceding parameter including PMDI/UF, wood particle-to-rubber crumb ratio, and size of rubber crumb, density, on the physical and mechanical properties of the composite panel have been fully developed. Optimization of processing variables in wood-rubber composites was performed by using some mathematical and statistic methods, based on a large number of trials, and optimal board manufacturing technology was obtained. Microcosmic structure of composite and relation between microcosmic structure and mechanical properties was probed by SEM. It is innovative study to probe the properties of damp shock absorption and sound insulation of wood/rubber composites. The main results and highlight from this study can be summarized as follows:
    1. The effects of main experimental variables, including PMDI, UF, wood particle-to-rubber crumb ratio, and size of rubber crumb, density, on the physical and mechanical properties of the composite panel have been fully investigated. The results indicated that the wood particle-to-rubber crumb ratio and density are the most significant variable that impacts on the composite performance. The physical and mechanical properties of the composite will be predominant with increacing wood particle-to-rubber crumb ratio and density, followed by the level of PMDI usage. The UF resin content and size of rubber crumb have a less influence on the panel properties.
    2. In terms of formaldehyde emission (FE) of the composite, the results showed that the ratio of wood particle and rubber crumbs is the most significant variable, followed by the UF content, The amount of PMDI has a less influence, while the size of rubber crumb has no influence on composite properties. The formaldehyde emission value (FE) was greatly reduced in the rubber-wood composite panel, and 7.1 mg/100g was obtained in this study.
    3. Based on the mechanical properties and cost analysis of composite panel and the optimal parameters of manufacturing composite panel were 60/40 wood particles/rubber crumbs, 6% PMDI, 10% UF, and 5-mm rubber crumbs. These results provide basic and useful information for commercial production of wood/rubber composite panel in the future.
    4. The board performance was evaluated by measuring internal bond (IB) strength, modulus of rupture (MOR) and modulus of elasticity (MOE). Based on the analyses of board properties, board density, pressing time and pressing temperature were identified as independent variables that had significant influence on board performace. A mathematical simulation or response surface models were developed to predict the board properties (MOR, MOE and IB). The suggested optimal board manufacturing conditions were about 170℃, for pressing temperature, 300 seconds for pressing time, and 1000 kg m~(-3) for board density.
    5. Microcosmic properties of structure in composite: interface areas in composite were performed between wood particle and wood particle, between wood particle and rubber crumb; Vertical density profile of wood/rubber composite panel was formed proceeding load affect on composite; wood particles/fibers usually were destroy in heavy vertical density profile and high level of PMDI/UF; wood particles/fibers usually were draw out or pull out from matrix in light vertical density profile and low level of PMDI/UF; 6. With advanced experimental methods and test facilities, damp shock absorption and sound insulation of composite panel were investigated. Testing results exhibited that wood/rubber composite panel has better damp shock absorption and sound insulation properties than wood-based particleboard. An increase in the quantity of waste tire rubber in the composite panel significantly improves damp shock absorption and sound insulation properties. The size of rubber crumbs also has certain influence on these board properties. Therefore, adjusting the quantity and size of rubber crumbs in the composite panel allows producing different quality panels for different applications.
引文
1 白川,真也.使用高黏度黏结剂的橡胶木质复合板的成型加工装置的开发[J].林产试验场报,2002,16(5):25-28.
    2 陈占勋.废旧高分子材料资源及综合利用[M],北京:化学工业出版社,2001,35-54.
    3 董诚春.废轮胎资源综合利用[M].北京:化学工业出版社,2003,21-30.
    4 杜官本.脲醛树脂胶合制品释放甲醛的机理及降低途径[J].粘接,1991,12(4):13-16.
    5 傅政编著.橡胶材料性能与设计应用[M].北京:化学工业出版社,2003,6-9.
    6 高振华.异氰酸酯室温下与醇、水反应及较高温度下与木纤维素反应的研究[D].东北林业大学博士论文:2003,5.
    7 葛明裕.加热法制造木塑复合材料[J].林业科学,1983,31(1):64-71.
    8 宫晓颐,高分子材料回收,化工百科全书[M].北京:化学工业出版社,1996,15:317-325.
    9 顾继友,高振华.异氰酸酯稻草刨花板制造工艺的研究[J].林产工业,2000,(3):14-18.
    10 顾继友,高振华,谭海炎等.刨花板的厚度膨胀率平行性现象[J].林业科学,2002b,38(5):128-134.
    11 顾继友,高振华,谭海炎等.制造工艺因素对刨花板吸水厚度膨胀率的影响.林业科学,2003,39(1):132-139.
    12 顾继友,高振华,谭海彦等.异氰酸酯树脂胶粘接刨花板制板工艺研究[J].木材工业,1999,13(5):7-10.
    13 顾继友,高振华,王逢瑚等.刨花板厚度方向变形研究Ⅲ-刨花板厚度方向变形模型与规律的确定[J].林业科学,2002a,38(4):134-140.
    14 顾继友,朱丽滨,小野扩邦.低甲醛释放脲醛树脂固化反应历程的研究[J].林产化学与工业,2005,6(4):11-16.
    15 顾继友,朱丽滨.脲醛树脂化学构造与胶接性能、甲醛释放量及固化特性关系的研究[J].中国胶粘剂,2003,13(3):1-4.
    16 顾继友.胶粘剂与涂料[M].北京:中国林业出版社,1999,79-91.
    17 韩豫东,顾继友.刨花板用异氰酸酯乳液胶粘剂的研究[J].林产工业,2001,7(3):22-25.
    18 郝丙业,刘正添.应用DSC研究脲醛树脂胶和异氰酸酯混合胶的固化过程[J].木材工业,1993,7(2):2-6.
    19 花军,陆仁书,林楠.异氰酸酯胶麦秆刨花板施胶量的研究[J].林产工业,2001,5:(5)36-42.
    20 花军,濮安彬,陆仁书.异氰酸酯胶麦秸刨花板生产成本[J].木材工业,2001,(47)1:35-37.
    21 花军,濮安彬,陆仁书.异氰酸酯胶麦秸刨花板[J].木材工业,2000,32(1):36-39.
    22 花军.异氰酸酯胶麦秆刨花板施胶量的研究[J].林产工业,2001,41(5):36-42.
    23 华冬.异氰酸酯胶粘剂在麦秸板制造中作用的研究[J].建筑人造板,2001,61(1):31-33.
    24 姜治云.我国废旧轮胎资源循环利用的现状及其发展前景[J].中国轮胎资源综合利用,2005,6(6):6-8.
    25 蒋兴华.李锋华.聚合物基泡体复合材料的隔声原理与加工性能[J].合成材料老化与应用,2002(3):32-35
    26 晶山.我国废旧橡胶利用大有可为[J].中国化工信息,2001,3(13):13-14.
    27 李光沛 环保阴燃胶的开发[J]林产工定,2002,29(3):24-26,31.
    28 李坚木质人造板的尺寸稳定化[J]中国木材,1992,(4):14-17.
    29 李坚.木塑复合材料制造中抑制单体挥发的研究[J].东北林学院学报,1982,19(1):123-125
    30 李凯夫.人造板甲醛释放机理与检控[J].木材工业,1988,8(2):23-25.
    31 李凯夫等.麦草特性与制板工艺的研究[J].林产工业,1990,(1):32-34.
    32 李如林.我国废旧轮胎回收利用行业的现状及发展对策[J].中国资源综合利用,2003,12(3):3-6.
    33 李小平,自波主编.人造板胶粘剂合成及其应用[M].哈尔滨:东北林业大学出版社,1997,124-129.
    34 梁基照,蒋兴华.聚合物基复合材料隔声性能的研究[J].工程塑料应用,2003,31(8):45-48.
    35 刘玉海,赵辉,李国平等编著.异氰酸酯[M].化学工业出版社,2003,254-267.
    36 卢庆曾,季仁和主编.国外木工胶粘剂文集[M].北京:中国林业出版社,1991,312-335.
    37 陆文达.木材改性工艺学[M].东北林业大学出版社,1993,276-282.
    38 马大猷.噪声与振动控制工程手册[M].北京:北京机械工业出版社,2002.
    39 毛东兴.高效吸声泡体玻璃性能的实验研究[J].噪声与振动控制,1999(6):30-34.
    40 钱小瑜.我国木材资源可持续发展商榷[J].人造板通讯,2005,13(5):8-9.
    41 任重远,李邦.聚丙烯酸酯木塑复合材料[J].复合材料学报,1994,4(3):7-12.
    42 山下晋一,金子东编.交联剂手册[M].北京:化学工业出版社,1990,479-482.
    43 石锐.异氰酸酯胶粘剂生产刨花板的工艺[J].林产工业,1988,5(13):5-8.
    44 苏珊.全球废旧轮胎再利用[J].生态经济.2004,(6):62-65.
    45 陶绪泉,崔慧,张立云等.脲醛树脂胶粘剂研究进展[J].粘接,1998,19(5):19-22.
    46 汪多仁.异氰酸酯MDI制造及市场概况[J].弹性体,1997,5(1):59-60.
    47 王恺.木质纤维复合材料——一种有发展前景的复合材料[J].木材工业,1994,3(2):32-35.
    48 王伟宏 陆仁书等.异氰酸酯胶麦秸刨花板密度对力学性能的影响[J].林产工业,2002,29(2):19-20.
    49 王伟宏,陆仁书.EMDI-UF混合胶刨花板制造工艺条件的研究[J].林产工业.2004,31(1):33-36.
    50 王伟宏.UF-MD1混合胶低毒刨花板胶接机理和工艺理论的研究[D].东北林业大学.博士学位论文:2002,64-65.
    51 王正,郭文静,高黎,木塑复合刨花板性能、应用及发展趋势[J].人造板通讯,2005,13(3):21-25.
    52 魏清林,武玺.废旧轮胎的回收利用[J].山西建筑,2004,30(7):126-129.
    53 沃德IM著.固体高聚物的力学性能[M].中国科学院化学研究所高聚物力学性能组译.北京:科学出版社,1980,523-526.
    54 吴人洁.复合材料[M].天津:天津大学出版社,2000,12-14.
    55 徐滨雁.木质复合材料研究概况[J].林业科技情报,2002,(4):42-43.
    56 杨庆贤.从木/塑复合材料的微观形貌探索增强机理[J].福建林学院学报,1992,12(4):412-416.
    57 杨庆贤.复合新材料-木质塑料的研究[J].化学世界,1989(4):158-161.
    58 杨庆贤.木/塑复合材料的生产配方与工艺研究[J].复合材料学报,1994,5(4):9-13.
    59 杨庆贤.木/塑复合材料及其增强机理的研究[J].复合材料学报,1990,3(4):77-81.
    60 杨正东,李刚,田力学.浅谈我国刨花板生产现状及发展[J].人造板通讯,2005,12(4):15-17.
    61 叶可舒.对我国轮胎工业发展形式的思考[J].轮胎工业,2003,(3):17-18.
    62 于文吉,周月,任丁华,王天佑,梁京河.异氰酸酯麦秸均质板的制造工艺[J].木材工业,2001,9(3):3-4.
    63 俞伯璋.新型的绝热吸声减振材料一多孔聚合材料[J].新型建筑材料,1999,3(4):9-11
    64 虞兆年.涂料工艺第二分册[M].北京:化学工业出版社,1996,102-105.
    65 庾晋,白杉.废旧轮胎回收利用现状和利用途径[J].再生资源研究,2003,5:32-34.
    66 张军,赵书兰,郭亚,等.改性聚丙烯阻燃泡沫材料的吸声性能的研究[J].噪声与振动控制,1997(3):36
    67 张双保.玻璃纤维增强木质复合材料.北京林业大学博士论文:1999,6-7.
    68 张洋,华毓坤.麦秸刨花板的吸水厚度变化模型[J].南京林业大学学报,2001,25(6):64-67.
    69 章敬泉,王京刚.常温下粉碎废旧轮胎的研究[J].环境工程,2003,(4):23-26.
    70 中华人民共和国国家标准委员会主编.刨花板[S].GB/T4897-2003.北京:中国标准出版社出版,2003.
    71 中华人民共和国国家标准委员会主编.人造板及饰面人造板理化性能试验方法[S].GB/T17657-1999.北京:中国标准出版社出版,1999.
    72 中华人民共和国国家标准委员会主编.室内装饰装修材料—造板及其制品中甲醛释放限量[S].GB18580-2001.北京:中国标准出版社出版,2001.
    73 周定国.国外人造板甲醛散发研究现状[J].世界林业研究.1995,(5):9-17.
    74 周广荣.水性高分子—异氰酸酯胶粘剂的改性研究.东北林业大学博士论文:2004,36-38.
    75 朱蓓丽,罗晓辉.驻波管中的隔声量测试方法[J].噪声与振动控制,2000,6:41-43.
    76 朱利平,顾丽莉.合成脲醛树脂胶粘剂研究现状与前景[M].全国第二届石油化工技术学术研讨会论文集.陕西:陕西人民教育出版社,2002,24-26.
    77 朱元鼎.我国人造板工业现状与发展[J].林产工业,1998,25(9):1-3.
    78 Ceorg E., Myers. How mole ratio of UF resin affects formaldehyde emission and other properties: a literature critique [J]. Forest Products Journal, 1989, 39(5):35~91.
    79 Dabiri M, Salimi S, Ghassempour A, et al. Optimization of microwave-assisted extraction for alizarin and purpurin in Rubiaceae plants and its comparison with conventional extraction methods [J]. Sep. Sci. 2005, (28) :387~396.
    80 Deppe H.J. Technical progress in using isocyanate as an adhesive in particleboard manufacture proceeding [J]. 11th Washington State Univ. International symposium on particleboard. Pullman, WA, 1977, (5) :13-31.
    81 Frick T., Motter B. PMD1 as an additive to UF and MU Resins for Particleboard Production:35th International Particleboard composite materials symposium Washington State University Pull-man. Washington, USA, 2001, (23): 45~49.
    82 Grigoriou A.H. Straw-wood composites bonded with various adhesive systems [J]. Wood Science and Technology, 2000, (34) :355~365.
    83 Gu J.Y, Gao Z.H. Discuss on Producing Agro-Residues Composite with Isocyanate Resin [J].Journal of Forestry Research, 2002, (13) :74~76.
    84 Gu J.Y., Gao Z.H. Discuss on Utilizing Agricultural Residues as Materials of Composite Producing [M]. Symposium on utilization of agricultural and forestry residues, Nanjing PR China: 2001,269~271.
    85 Han S., Yang D.J., Kim, Young K. L. Possibility of using waste tire composites reinforced with rice straw as construction materials Bioresource Technology, 2004, (95) :61~65.
    
    86 Hawk. R.N., Sun. B.C., Gale. M.R. Influence of mat moisture content on strength properties of polyisocyanate bonded hardboard. Forest Prod. J. 1992, 42(11):61~68.
    
    87 Hawke, R.N. Effect of fiber mat moisture content and resin level on properties of polyisocyanate consolidated wood composites [D]. Master's Thesis. Dept. of Forestry and Wood Product. Michigan Tech. Univ., Houghton, MI. 1993,31 ~32.
    
    88 Hse C.Y. Method of bonding particle board and the like using polyisocyanate/phenolic adhesive [P].US4209433.1980, (6):24~31.
    
    89 Hsu, Wu.I.E. Adhesive systems and products formed using sameand methods for producing said adhesive systems and products [P].US6297313.2001, 10~12.
    
    90 ISMAIL.H., JAFFRI R.M., ROZMAN H.D. Oil Palm Wood Four Filled Natural Rubber Composites-The Effects of Various Bonding Agents[J]. Intern. J. Polymeric Mater,2001(49):311-322.
    
    91 JOHNS W. E. Is there an Isocyanate in your future? 14~(th) International Particle-board/Composite Materials Symposium in Proc. Washington state University, Pullman, WA, 1980, 177~184.
    
    92 JOHNS WE. Isocyanate bonded aspen flakeboard. Forest Prod, 1981, 31(1):15~20.
    
    93 Jones N. Optimising the properties of straw based particleboard [D]. M. phil thesis. University of Wales, Bangor 1997, (10) : 127~131.
    
    94 Kazahavics A.A. The rate of formaldehyde emission from chipboard. Holzforschung, 1979, 3(5):155~158.
    
    95 Mabutzky R. The properties of UF-resins with low formaldehyde content and particleboards bound with these resins: part 1: Influence of the molar ratio on the properties of uncondensed resins. Holzforschung, 1979, (37) : 303~307.
    
    96 MARRA A. Technology of wood bonding principles in practice [M].New York: Van Nostrand Reinhold, 1992,621~624.
    
    97 Meyer J.A. Wood—Polymer Materials in American chemical society Advances in chemistry Series [M]. American Chemical Society .Washington: 1984,154~156.
    
    98 Miller T.R, Rosthauser J.W. Aqueous mixed PMD1/phenolic resin binders for the production of wood composite products [D],US6416696,2002,7.
    
    99 Montgomery D.C. Design and Analysis of Experiments [M]. 中国统计出版社,1998,591~632.
    
    100 Mospreuve H., Knaub P. Proceedings of Polyurethane World Congress[C]. Canada: Vancouver,1993. 297.
    
    101 Myers G. E. How mole ratio of UF resin affects formaldehyde emission and other properties: A literature critique [J]. For. Prod., 1984, 34(5):35~42.
    
    102 Nguyen T, Gaul J.M. Preparation of molded lignocellulosic compositionsusing an emulsifiable polyisocyanate binder and an emulsifiable carboxyfunctional siloxane internal release agent [D].US4528154.1985, 7.
    
    103 Pizzi A, Walton T. Non-emulsifiable, water-based, diisocyanate adhesive systems for exterior plywood, part1: novel reaction and mechanisms and their chemical evidence. Holzforschung,1992, 46(6): 541-547.
    
    104 Pizzi A. Wood Adhesive -Chemistry & Technology [M]. Marcel Dekker. New York: 1983. 295.
    
    105 Pizzi A., Valenzuela J., Westermeyer C. Non-emulsifiable, Water-Based, Mixed Diisocyanate Adhesive Systems for Exterior Plywood [J]. Holzforschung, 1993, 47(1) 68~71.
    
    106 Robert N., Hawke. Effect of fiber mat moisture content on strength properties of ployisocyanate-bonded hardboard [J].Forest Products Journal, 1992, (42):11-12.
    
    107 ROWEL.RM, ELLI. SWD. Bonding of isocyanateato wood.K.N.E dwards(ed) in America chemical Society Symposium Seris 192.Washington, D.C Chap-ter 19,1981:26284
    
    108 Rowlands R.E., Deweghe V.R., Laufenberg P. Fiber~reinforced wood composites [J]. Wood Fiber and Science, 1986, 18(1): 39~57.
    
    109 Song, X.M., Hwang, J.Y. A study of the microscopic characteristics of fracture surface of MDI bonded wood fiber-recycled tire rubber composites using scanning electron microscopy. Wood Fiber Science 1997, 29(2):131 ~141.
    
    110 Song, X.M., Hwang, J.Y. Mechanical properties of composites made with wood fiber and recycled tire rubber [J]. Forest Prod. J., 2001 51(5):45~51.
    
    111 WANG, X. Characterization of interactions and interfacial properties of wood/polyurethane composites [D]. Dept. of Forestry and Wood Products. Michigan Tech. Univ., Houghton, MI,1991,46~48.
    
    112 Youngquist J.A., Rowell, R.M. Opptunities for combining wood with non-wood materials. In: Proc. Of the 23~(th) inter. Particleboard/Composite Materials Symp. Washington state Univ., Pullman,WA. 1989,141~157.
    
    113 Younguist J.A, Rowell R.M. Can chemical Modification Technology Add Value to Your Products [J]? Twenty second International Particleboard/composites. Materials Symposium, T. M. Maloney Ed. Washin State University, 1988: 111~121.
    
    114 Kasai K. Munshi J A. Lai M L, et al. Viscoelastic damper hysteretic model, theory, experiment and application [A]. Proceeding of ATC-17-1 on Seismic Isolation Passive Energy Dissipation and Active Control [C]. California: [s. n.] , 1993. 521—532
    
    115 Bolton J S, Green E R. Normal incidence sound transmission through double-panel systems lined with relatively stiff, partially reticulated polyurethane foam. Applied Acoustics, 1993, 39:23~ 51.
    
    116 Sgard F C, Atalla N, Nicolas J. A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings. Journal of the Acoustical Society of America, 2000, 108(6): 2865~2872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700