某矿优势植物对重金属的累积及耐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对陇南徽县矿区自然恢复的植被组成调查和优势植物体内重金属积累特征及生物迁移特征筛选出多金属耐性植物野艾蒿,并较为系统地研究了野艾蒿对重金属的吸收与富集特征。揭示了矿山植被在自然恢复状态下,其优势植物对重金属的累积;研究了矿区土壤和野艾蒿植物中重金属的含量分布;评价植被恢复的土壤改良和目标植物的吸收重金属状况。主要研究结果如下:
     (1)陇南矿区自然定居的20种植物,隶属12个科15个属。矿区植被组成以菊科蒿属最多,禾本科次之,少数物种种群优势度明显,贡献了群落生态功能的大部分。其中野艾蒿、针叶蒿、小蓬草、碱茅、黄蒿、醉马草、苦苣菜、车前草8种植物综合优势比占到90%以上,表现为矿区的优势植物,野艾蒿在矿区植被入侵定居表现突出,数量、生物量和高度在矿区植被中占优势。
     (2)8种优势植物地上部分重金属累积量和生物迁移系数各不相同。从重金属累积量来看,野艾蒿、针叶蒿、碱茅属于Pb和Zn的耐性植物,野艾蒿、小蓬草、黄蒿、苦苣菜属于Cu的耐性植物,野艾蒿、针叶蒿、小蓬草、碱茅属于Cd的耐性植物。从植物体内重金属的生物迁移系数来看,小蓬草、碱茅属于Pb的耐性植物,野艾蒿、碱茅、苦苣菜属于Zn的耐性植物,野艾蒿、针叶蒿、黄蒿属于Cu的耐性植物,野艾蒿、针叶蒿、小蓬草、苦苣菜属于Cd的耐性植物。
     (3)综合来看,碱茅属于Pb和Zn的耐性植物,针叶蒿和小蓬草属于Cd的耐性植物,黄蒿为Cu的耐性植物,而野艾蒿属于多金属耐性植物,可以作为潜在的矿区修复物种,其富集潜力和耐性机理有必要做进一步的探讨和研究。
     (4)三个典型样地中老尾矿废弃地土壤重金属的含量均为最高。野艾蒿对锌和铅的富集量较大,各样地土壤中Zn、Pb的含量之间有显著性差异。不同样地中野艾蒿和土壤Cu、Zn和Pb的含量之间呈极显著正相关,野艾蒿对重金属的吸收、富集有随土壤中重金属含量升高而增加的趋势。
     (5)野艾蒿的不同部位在不同样地中累积不同重金属的能力不同。除老尾矿废弃地野艾蒿中铅的含量地上部分小于地下部分外,其它环境下重金属含量都表现为地上部分大于地下部分。野艾蒿对4种重金属都有不同程度的转运能力,Zn在不同年限废弃地的生物富集系数均为最大,野艾蒿对Cu、Cd的转移系数较大,它能吸收富集多种重金属并且具有耐重金属的特性。
     (6)野艾蒿对重金属Cu、Zn、Pb、Cd的吸收积累的数据分析比较表明,它不属于超富集植物,是富集植物。但在复合污染条件下,野艾蒿对Pb的吸收达到1 000 mg/kg以上,具备超富集植物的特征和潜能,且生物量较大,生长速度快,作为重金属污染的修复植物具有较好的应用前景。
Based on a field survey and analysis on habitats and vegetation and soil of Sha Ba Pb/Zn mined wastelands in Hui Xian of Gan Su province. In this paper, a mine of Hui County District composed of natural recovery of vegetation surveys and the advantages of heavy metal accumulation in plants and biological characteristics of migration of the characteristics of selected wild plants polymetal argyi patience, and a more systematic study of the field of Heavy Metal Uptake argyi and Enrichment characteristics. Mine revealed the natural recovery of vegetation in the state, the dominant plants on the accumulation of heavy metals; study of a mineral soil and wild plants argyi the distribution of heavy metals; evaluation of vegetation restoration and soil improvement goals of the plants to absorb heavy metals in the situation. The main results are as follows:
     (1)The results showed that 20 species belonging to 12 families and 15 genera of higher plants were found on the Sha Ba Pb/Zn mined wastelands. In vegetation composition of compositae in most gramineous times, a few species superiority, the contribution of the ecological function of community. Artemisia vulgaris、Tripolium vulgare、Erigeron annuu、Puccinellia chinampoensis、Herba Artemisiae Annuae、Digitatia ssp、Lexeris denticulata、Plantago asiatica comprehensive advantages of eight kinds of plants than accounted for more than 90% performance advantage for the mining plant.
     (2)8 kinds of advantages on the ground part of plant accumulation of heavy metals and biological factors vary migration. Judging from the accumulation of heavy metals,Artemisia vulgaris、Tripolium vulgare、Puccinellia chinampoensis Pb and Zn belong to the patience of plants, Artemisia vulgaris、Erigeron annuu、Herba Artemisiae Annuae、Lexeris denticulata patience are Cu plants, Artemisia vulgaris、Tripolium vulgare、Erigeron annuu、Puccinellia chinampoensis plant belonging to Cd patience. Heavy metals from the body of the biological plant migration coefficient shows that Erigeron annuu、Puccinellia chinampoensis patience are Pb plants, Artemisia vulgaris、Puccinellia chinampoensis、Lexeris denticulata are Zn plants, Artemisia vulgaris、Tripolium vulgare、Herba Artemisiae Annuae are Cu tolerance of plants, Artemisia vulgaris、Tripolium vulgare、Erigeron annuu、Lexeris denticulata belonging to Cd patience.
     (3)Taken together, Puccinellia chinampoensis Pb and Zn are patience plants, Tripolium vulgare and Erigeron annuu are Cd punta patience grass plant, Herba Artemisiae Annuae patience for Cu plants, and Artemisia vulgaris are Pb, Zn, Cu, Cd patience polymetal plants, can serve as a potential mining area restoration species, its mechanism of accumulation potential and patience there is a need for further exploration and study.
     (4)The concentrations of heavy metals in soils decreased with increasing abandoned times. Artemisia vulgaris had a better absorption capacity for zinc and lead. Correlation is significant at 0.01 level between concentrations of Cu,Zn and Pb in plants and soils.The percentage composition of heavy metals in plant increased with their amounts in soils.
     (5)Artemisia vulgaris in different parts of the same ground in the ability of different metals accumulated. Besides old tailings Artemisia vulgaris spoils the amount of lead in the field of underground part, other than the environment for heavy metal content is greater than the underground sections. Part Artemisia vulgaris field of 4 kinds of metals have different degrees of Zn, transport capacity in different period of biological enrichment coefficients spoils for maximum, Cu, Artemisia vulgaris Cd to transfer coefficient is larger, it can absorb enrichment of heavy metals and resistance properties.
     (6)Showing by comprehensive analysis that, Artemisia vulgaris is not a hyperaccumulator is a plant-rich. However, under the conditions of complex pollution, the absorption of Pb Artemisia vulgaris to 1 000 mg/kg, have more summarized.the features and potential, and biomass, fast growth, as heavy metal pollution repair plant has a good application prospect.
引文
[1]李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报, 2004, 24(1): 95~100.
    [2] WHO/IPCS.Inorganic Lead [M].Geneva: WHO/IPCS, 1995.
    [3] R.P.格默尔著.工业废弃地上的植物定居[M].北京:科学出版社,1987.
    [4]涉谷政夫编著.土壤污染的机理与解析[M].北京:高等教育出版社,1988.
    [5] Castrol-Larrgoitia J, Kramar U, Pucheh H. 200 years of mining activities at La Paz/San Luis Potosi-Moxico-consequences for environment and geo-Chemical exploration[J].Geo-chemical Expor, 1997,58(5):81~91.
    [6] Merington G.The transfer and fate of Cd, Cu, Pb and Zn from two historic metallifercus mine in the U.K[J].Applied Geochemistry,1994,9(4):677~687.
    [7]李社红.北疆资源开发环境污染问题研究[M].北京中国科学院研究生院,2002,9.
    [8] Mohan K W. Ecological succession and the rehabilitation of disturbed terrestrial Ecosystems [J]. Plant and Soil, 1999, 213:195~220.
    [9] Salt D E. Review of plant physiology and plant molecular biology [J].Phytoremediation Annual 1998, 49:643~648.
    [10]黄国强,李凌,李鑫钢等.土壤污染的原位修复.环境科学动态,2000,(3):25-27.
    [11]夏星辉,陈静生.土壤重金属污染治理方法研究进展.环境科学,1997,16(3):118-122.
    [12]李永涛,吴启堂.土壤污染治理方法研究.农业环境保护,1997,16(3):118-122
    [13]丁园.重金属污染土壤的治理方法.环境与开发,2000,13(2):25-28
    [14]将建国,吴学龙,王伟等.重金属废物稳定化处理技术现状及发展.新疆环境保护,2000, 22(1):6-10
    [15]钱署强,刘铮.污染土壤修复技术介绍.化工进展,2000,20(4):10-12
    [16] Robert RD, Marrs RH, Skeffington RA. et al. Ecosystem development on naturally colonized China clay wastes I. vegetation changes and overall accumulation of organical matter and nutrients. Ecol. 1981, 69:153-161.
    [17]夏汉平,束文胜.香根草和百喜草对铅锌尾矿重金属的抗性与吸收差异研究[J].生态学报2001,21(7):1121-1129.
    [18]毕德,吴龙华,骆永明等.浙江典型铅锌矿废弃地优势植物调查及其重金属含量研究[J].土壤,2006,38(5):591-597.
    [19]宋书巧,周永章.矿业废弃地及其生态恢复与重建[J].矿产保护与利用,2001,(5):43~49.
    [20]陈波,包志毅.生态恢复设计在城市景观规划中的应用[J].中国园林,2003,07:44~47.
    [21]陈芳清,张丽萍,谢宗强.三峡地区废弃地植被生态恢复与重建的生态学研究[J].长江流域资源与环境,2004,13(3):286~291.
    [22] Prakash K. Suitability of Rhizobia-inoculated wild legumes Argyrolobium flaccidum Astragalus graveolens Indigofera gangetica and Lespedeza stenocarpa in providing a vegetational cover in an un-reclaimed limestone quarry[J].Plant and Soil,1995,177:139~149.
    [23] C.D.Grant. Selection of Species Suitable for Derelict Mine site Rehabilitation in New South Wales Australia [J].Water, Air, &Soil Pollution, 2002, 139:215~235.
    [24] A S Clemente.Restoration of a Limestone Quarry: Effect of Soil Amendments on the Establishment of Native Mediterranean Sclerophyllous Shrubs[J].Restoration Ecology, 2004, 12 (1):20~28.
    [25] Rao A V,Tak R.Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM)-fungi in Indian arid zone[J].Journal of Arid Environments,2002,51(1):113~119.
    [26] C.Martinez-Ruiz,Fernandez-Santos.Natural revegetation on topsoiled mining-spoils according to the exposure[J].Acta Oecologica,2005,28:231~238.
    [27] Duque, J.F.Matin. A geomorphological design for the rehabilitation of an abandoned sand quarry in central Spain[J].Landscape and Urban Plann,1998,42:1~14.
    [28] Arvid Odland.Thirteen years of wetland vegetation succession following a permanent drawdown Myrkdalen Lake Norway [J].Plant Ecology, 2002, 162(2):185~198.
    [29] Philip J Burton. Determining the Optimal Sowing Density for a Mixture of Native Plants Used to Revegetate Degraded Ecosystems [J].Restoration Ecology, 2006, 14(3):379~390.
    [30]李晋川,王文英.安太堡露天煤矿新垦土地植被恢复的探讨[J].河南科学,1999,17:92~95.
    [31]杨修,高林.德兴铜矿矿山废弃地植被恢复与重建研究[J].生态学报,2001,21(11):1932~1941.
    [32]张志权,束文胜.引入土壤种子库对铅锌矿废弃地植被保护恢复的作用[J].植物生态学报,2000,24(5):336~374.
    [33]王宏镔,文传浩.云南会泽铅锌矿矿渣废弃地植被重建初探[J].云南环境科学,1998,17(2):43~46.
    [34]蒋高明,Putwain P D.英国圣海伦斯Bold Moss Tip煤矿废弃地植被恢复试验研究[J].植物学报,1993,35(12):951~962.
    [35] Mench,Michel. Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments [J].Plant and Soil, 2003, 249(1):187~202.
    [36] C.Pamukcu, F.Simsir. Example of reclamation attempts at a set of quarries located in IzmirTurkey[J]Journal of Mining Science,2006,42(3):304~308.
    [37]张志权,束文胜.豆科植物与矿业废弃地植被恢复[J].生态学杂志,2002,21(2):47~52.
    [38]胡振琪,张光灿.煤矸石山的植物种群生长及其土壤理化特性的影响[J].中国矿业大学学报,2003,32(5):491~495.
    [39] MartineRuiz C, FernandezSantos B. Effect of substrate coarseness and exposure on plant succession in uranium-mining waste [J].Plant Ecology,2001,155(1):79~89.
    [40] S.L.Petersen,B.A. Roundy. Bryant Revegetation Methods for High-Elevation Roadsides at Bryce Canyon National Park, Utah [J].Restoration Ecology, 2004,12(2):248~257.
    [41] Orrock ,Brent J. Seed predation, not seed dispersal, explains the landscape-level abundance of an early-successional plant[J].Journal of Ecology,2006,94(4):838~845.
    [42]郝战庆,郭水良.长白山北坡草本植物分布与环境关系的典范对应分析[J].生态学报, 2003,23(10):2000~2008.
    [43] Margus Pensa,Arne Sellin.An Analysis of Vegetation Restoration on Opencast Oil Shale Mines in Estonia[J].Restoration Ecology,2004,12(2):200~206.
    [44] Karen D,Holl.Long-term vegetation recovery on reclaimed coal surface mines in the Eastern USA[J].Jourual of Applied Ecology,2002,39(6):960~970.
    [45] Darina Hodacova,Karel Prach.Spoil Heaps from Brown Coal Minings:Technical Re-clamation Versus Spontaneous Revegetation[J].Restoration Ecology,2003,8(2):103~111.
    [46]李青丰,曹江营.准格尔煤田露天矿植被恢复研究[J].中国草地,1997,(2):23~25.
    [47]束文胜,蓝崇玉.采石场废弃地的早期植被与土壤种子库[J].生态学报,2003,23(7):1305~1312.
    [48]马世俊主编.现代生态学透视.北京:科学出版社,1990.
    [49] Gemmell R P. Natural Colonization of Industrial Wasteland [M]. London: Edward Arnold, 1998.
    [50]李勤奋,杜卫兵.金属矿区芒草种群对重金属的积累及其土壤特性的关系[J].生态学杂志2006,25(3):255~258.
    [51]崔爽,周启星,晁雷.某冶炼厂周围8种植物对重金属的吸收与富集作用[J].应用生态学报2006,17(3):512~515.
    [52]黄娟,吴彤.油页岩废渣地12种木本植物光合作用的季节变化[J].植物生态学报2006,30(4):666~674.
    [53]王震洪等.植物多样性与生态系统土壤保持功能关系及其生态学意义[J].植物生态学报2006,30(3):392~403.
    [54]弓晓峰,陈春丽,周文斌.鄱阳湖底泥中重金属污染现状评价[J].环境科学2006,27(4):732~735.
    [55]郝蓉,白中科,赵景逵,等.黄土区大型露天煤矿废弃地植被恢复过程中的植被动态[J].生态学报2003.23(8):1470~1476.
    [56]昝启杰,王军勇,王海荪.深圳福田红树林无瓣海桑与海桑群落的重金属累积和循环[J].环境科学,2002,23(4):81~88.
    [57]关文彬,曾德慧,姜凤歧.中国东北西部地区沙质荒漠化过程与植物动态关系的生态学研究:植被的分类[J].应用生态学报2000,11(6):907~911.
    [58]王向林,等.生态与艺术的结合——德国景观设计师彼·拉茨的景观设计优化与实践[J].中国园林,2001,(03):50~53.
    [59]刘小明,等.风景过程主义之父——美国风景园林大师乔治·哈格里夫斯[J].中国园林, 2001,(03):56~59.
    [60] Brooks R R, Lee J, Reeves R D.Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants [J].Geochem.Explor.,1977, 7: 49~57.
    [61] Chaney R L.Phytoremediation of soil metals[M].Curr.Opin.Biotechnical.1997,8:279~284.
    [62] Keller C, Hammer D, Kayser A. Root development and heavy metal phytoextraction efficiency: Comparison of different plant species in the field [J]. Plant Soil, 2003,249:67~81.
    [63] Chaney R L.Phytoremediation of soil metals[M].Curr.Opin.Biotechnical.1997,8:279~284.
    [64]韦朝阳,陈同斌,黄泽春,等.大叶井口边草一种新发现的富集砷的植物[J].生态学报,2002,22(5):777~778.
    [65]夏汉平,束文圣.香根草和百喜草对铅锌尾矿重金属的抗性与吸收差异研究[J].生态学报,2001, 21(7): 1121~1129.
    [66]夏汉平,黄娟,孔国辉.油页岩废渣场的生态恢复[J].生态学报2004,24(12):2887~2893.
    [67] Fent K. Ecotoxicological problems associated with contaminated sites [J].Toxicology letters, 2003,140-141:353~365.
    [68] Ye Z H, Wong J W C, Wong M H. Lime and pig manure asameliorants for revegetating lead/zinc mine tailings: agreenhouse study [J]. Biores Tech ,1999, 69:35-43.
    [69] Ye Z H, Yang Z Y, Chan G Y.Growth response of Sesbania rostrata and Scannabina to sludgeamend lead/zinc mine tailings: A greenhouse study [J]. Environmental Geology, 2001, 26: 449-455.
    [70]束文圣,杨开颜,张志权等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J].应用与环境生物学报,2001,7(1):7-12. SHU Wen-sheng,YANG Kai-yan,ZHANG Zhi-quan et al.Flora and heavy metals in dominate plants growing on an ancient Copper spoil heap on Tonglushan in HUBEI province,China[J]. Chinese Journal of Applied and Environmental Biology,2001,7(1):7-12.
    [71] Kabata-pendias A, Pendias H.Trace elements in soils and plants [M].2nd edition.London: CRC Press,1992:67~68.
    [72] Brooks R R, Lee J, Reeves R D.Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants [J]. Plant and Soil.,1977, 7: 49-57.
    [73] Fazeli MS,Khosravar F,Hessini M.Enrichment of heavy metals in paddy crops irrigated by paper mill influents near Nanjanfud Mysone District Karnatake India[J]. Environmental Geology,998, 34(4):297~302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700