生物碳素材料表面界面特性与血液相容性关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物碳素材料以优良的化学稳定性、减摩耐磨性和良好的生物相容性被广泛的生物医用材料。生物碳素材料的血液相容性一直是研究的重点。考虑到植入材料与血液的相互作用主要发生在材料的表面,因此人们试图通过对生物材料表面界面特性进行表征,探讨这些参数与材料血液相容性的关系,从而为材料设计中构成成分的选择和材料制备中工艺方法和工艺条件的控制提供依据。
     本文就是通过对生物碳素材料的表面特性表征和血液相容性评价,通过灰色关联分析来探讨这些表面参数和血液相容性评价指标之间的相关关系,寻求影响生物碳素材料血液相容性的首要因素,并对生物碳素材料表面界面特性对其血液相容性的影响机理进行了探讨。
     本文利用等离子体浸没离子注入-粒子束增强沉积技术(PⅢ-IBED)制备了类金刚石薄膜,利用微波等离子体化学气相沉积技术(MPCVD)制备金刚石薄膜。利用原子力显微镜、拉曼光谱、红外光谱和润湿角检测技术监测生物碳素材料的表面粗糙度、含氢量、杂化比和表面能量等性质,利用体外动态凝血时间、血小板消耗率和溶血率对所制备的生物碳素材料进行血液相容性评价。
     为了探讨在众多的表面界面参数中,哪些是主要参数,哪些是次要因素;哪些参数对血液相容性影响大,哪些参数发挥的影响小;哪些参数对结果起到
    
    生物碳素材料表面界面特性与血液相容性的关系
    强化作用,哪些参数对结果加以抑制。所以最后本文首先定性分析两者之间的
    相关关系,并从机理上对这些表面界面参数对血液相容性的影响做了分析和探
    讨,然后利用灰色关联分析的方法定量的分析了两者之间的关系。
     通过实验,本文得到结论如下:
     (a)类金刚石的厚度与Sp,的含量成正比,厚度增加sp,成分增加。氢原
    子的引入有利于sp3结构的形成。
     (b)邓氏关联度不宜用于分析多目标决策的因素分析问题,本文采用的
    改进的灰色关联度分析方法能够克服邓氏关联度的缺陷,用于多目标决策因素
    分析得到较好的效果。
     (c)含氢量是影响生物碳素材料抗凝血性能的首要因素。生物碳素材料
    表面界面特性与抗凝血性能的关联程度依次是:
     含氢量>界面张力>色散极性比>表面粗糙度>杂化比习隋界表面张力
     (d)表面粗糙度是影响血小板粘附或者凝聚的首要因素。生物碳素材料
    对血小板粘附或聚集影响程度依次为:
     表面粗糙度>临界表面张力>色散极性比>界面张力>杂化比>含氢量
     (e)界面张力是影响红细胞的首要因素。生物碳素材料对溶血率影响程
    度依次为:
     界面张力>杂化比>表面张力>含氢量>色散极性比习临界表面张力
     (f)纤维蛋白原向生物碳素材料表面转移电子的能力是另为一个需要来
    表征和评价的重要表面参数
     (g)具有良好血液相容性的生物碳素材料应该具有以下性质:表面张力
    极性分量高、光滑表面、含氢量和sp3成分适当,表面张力和界面张力在一定
    的血液相容性区域。
Carbonaceous materials have been widely used as biomaterials for their steady chemical properties, favorable abrasive wear resistance and biocompatibility. Allowing for that implanted materials interact with blood mainly by their surface, it is of great importance to find out the relationship between surficial or interfacial properties and hemocompatibility of carbonaceous biomaterials. It will help to provide advice for selection of composition in materials design and control of technics in materials preparation.
    In this paper, a lot of surficial properties are measured and hemocompatibility evaluations of carbonaceous biomaterials are carried out, whereafter the relationship between them is analyzed using Grey System Theory. Among the surficial properties, the chief one is obtained by analyzing the mechanism that affect the haemocompatibility of carbonaceous materials.
    Diamond-like Carbon Film (DLC) was prepared by means of plasma immersion ion implant-ion beam enhanced deposition (PIII-IBED), and Diamond Film was prepared by Microwave Plasma Chemical Vapor Deposition (MPCVD). The surface roughness, H%, the ratio of sp2/sp3 and surface energy of each carbonaceous biomaterial was measured by atomic force microscopy (AFM), IR
    
    
    
    spectroscopy, Raman spectroscopy, and contact angle technology. The haemocompatibility of carbonaceous materials was evaluated by Kinetic clotting time, Platelet consumption and hemolysis.
    The Grey Interconnect Degree is employed to evaluate the relationship between surface properties and hemocompatibility.
    The results of experiment are listed below.
    (a) It is found in preparation process of diamond-like film that the ratio of sp3 increases as the film grows. As one can see, the value of ID/IG decreases as the hydrogen content rises, indicating the increasement of the ratio of sp3.
    (b) Deng' Grey Interconnect Degree is not feasible to analyze the relationship between surface properties and hemocompatibility of carboneaous biomaterials, while the improved grey interconnect degree introduced in this paper can achieve a favorable result.
    (c) Hydrogen content is the chief factor that affects the kinetic clotting time of the carboneaous biomaterials.
    (d) Surface roughness content is the chief factor that affects the platelet consumption of the carboneaous biomaterials.
    (e) Interfacial tension is the chief factor that affects the hemolysis ratio of the carboneaous biomaterials.
    (f) It is important to evaluate the capability of carboneous biomaterials to resist the transition of fiberinogen's electron. It may be another crucial surface property that affacts the biomaterials' hemocompatibility.
    (g) A carboneous biomaterial with favorable hemocompatibility may bear such surface properties as high polar fraction in surface tension, smooth surface, appropriate hydrogen content, sp3, surface tension and interfacial tension.
引文
[1] Yang Dazhi,Liu Jingxiao,Wang Weiqiang et al. Proceedings of 98 Workshop on Tissue Engineering(Tianjin, China, 1998) p. 136
    [2] Fumabashi H, Miyamoto Y, lsono Y et al. Preparation and characterization of a pentablock copolymer of the ABACA type. Macromolecules, 1983; 16:1
    [3] Feijen J. Thrombogenesis caused by blood-foreign surface interaction. In: Kenedi RM,Courtney JM,Gaylor JDS, Gilchrist I, eds. Artificial Organs. London:Macmillan, 1977:235-247
    [4] Bruck SD. Properties of Biomaterials in the Physiological Environment. Boca R.aton, FL: CRC Press,1980
    [5] Andrade JD,Coleman DL, Didisheim P et al. Blood-materials interactions-20 years of frustration. Trans Am. Soc. Artif. Intern.Organs 1981;27:659-662
    [6] Szycher M. Thrombosis,hemostasis, and thrombolysis at prosthetic interfaces. In:Szycher M,ed.Biocompatible Polymers,Metals and Composites.Lancaster, PA: Technomic, 1983: 1-33
    [7] Murabayashi S, Nose Y. Biocompatibility:bioengineering aspects. Artif. Organs 1986; 10114-121
    [8] Hoffman AS. Modification of materials surface to affect how they interact with blood,Ann.NY Acad.Sci.,1987;516:96
    [9] Baier R E,Loeb G I and Wallace G T.Fed Proc,1971,30:1523
    [10] Lyman D J and Kim S W, et al.TASAIO,1974,20:480
    [11] 刘贵昂,王天民,王欲知.类金刚石薄膜的辐射及其发展.材料导报.2000;14(12):28-30
    [12] Kim S W and Lee E S.J Polym Sci:Polymer Symp,1979;66:429
    [13] Courtney JM, Sundaram S, Forbes CD. Extracorporeal circulation: biocompatibility of biomaterials. In: Frobes CD, Cushieri A, eds. Management of bleeding disorders in surgical pratice. Oxford: Blackwell Scientific, 1993:236-273
    [14] Brash JL. Role of plasma protein adsorption in the response of blood to foreign surfaces. In: Sharma CP, Szycher M, eds. Blood Compatible Materials and Devices.Lancaster, PA:Technomic, 1991:3-24
    [15] Forbes CD, Prentice CRM. Thrombus formation and artificial surfaces. Br Med Bull 1978;34:201-207
    [16] Basmadjian D,Sefton MV, Baldwin SA. Coagulation on biomaterials in flowing blood: Some theoretical considerations.Biomaterials, 1997; 18(23):1511
    [17] Chandra p.sharma, Michael Szycher, Blood Compatible Materials and Devices(Technomic Publishing Company, Pennsylvania, U.S.A., 1991) p. 136
    [18] Andrade JD,Hlady V. Protein Adsorption and Materials Biocompatibility:A Tutorial
    
    Review and Suggested Hypotheses,Advanced in Polymer Science 79,Springer Verlag Berlin Heidelberg 1986
    [19] Plow EF, Marquerie GA. Participation of ADP in the binding of fibrinogen to thrombin-stimulated platelets.Blood 1980;56:553-555
    [20] Kornechi E, Niewiarowski S, Morielli TA, Kloczewiak M. Effects of chymotrypsin and adenosine diphosphate on the exposure of fibrinogen receptors on normal human and Glangmann's thrombasthenic platelets.J.Biol.Chem. 1981;256:5696-5701
    [21] Di Minno G, Thiagarajan P, Perussia B et al. Exposure of platelet fibrinogen-binding sites by collagen, arachidonic acid and ADP: inhibition by a monoclonal antibody to the glycoprotein Ⅱb-Ⅲa complex. Blood. 1983;61:140-148
    [22] Young BR, Lambrecht LK, Albrecht RM, Mosher DF et al.Platelet-protein interactions at blood-polymer interfaces in the canine test model. Trans. Am. Soc Artif. Intern. Organs. 1983; 29:442-446
    [23] Needleman SW, Hook JC. Platelets and leukocytes.In:Colman RW, Hirsh J, Marder VJ,eds. Hemostasis and Thrombosis:Basic principles and clinical practice. Philadelphia: Lippincott, 1982:716-725
    [24] Walsh PN. Platelet-coagulant protein interacions. In Colman RW, Hirsh J, Marder VJ,eds. Hemostasis and Thrombosis:Basic principles and clinical practice. Philadelphia: Lippincott, 1982:404-420
    [25] E-Ruckenstein and S.V.Gourisankar, J. Colloid Interface Sci., 1984; 101:436-451
    [26] Paul L,Sharma CP. Preferential adsorption of albumin onto a polymer surface: an understanding,J. Colloid interface Sci., 1981;84:546
    [27] 顾汉卿,生物医学材料学,天津科技出版社,1993;1:138-181
    [28] Alfred K Cheung, Charles J Parker, Linder Wilcox et al.Activation of the alternative pathway of complement by cellulosic hemodialysis membranes.Kindney Int, 1989;36:257
    [29] Clifford J Holmes. Hemodialyzer performance:biological indices. Artif Organs, 1995; 19(11): 1126
    [30] Lu DR,Park K. Effect of surface hydrophobicity on the conformationai changes of adsorbed fibrinogen.Journal of Colloid and Interface Science, 1991,144(1):271-281
    [31] 俞耀庭,生物医用材料,天津大学出版社
    [32] Bonfied T L,Colton E and Anderson J M. J Biomed Mater Res,1989,23:535
    [33] Sangen O,Aikawa K,Nakano H et al.Interaction of Tissue Cells with Polymer Surfaces I.Hokolou HimeJi Koguo Daigaku, 1984;37(A):27
    [34] Kaelble DH,Moacanin J.A surface energy analysis of bioadhesion,Polymer, 1977;18:475
    [35] Bauschmidt P, Schaldach M. The electrochemical aspects of the thrombogenicity of a material,J.Biomeg., 1997; 1:261
    [36] Bauschmidt P, Schaldach M. Alloplastic materials for heartvalve prosthesis, Med. &Biol, Eng. & Cmput.,1980;18:496
    
    
    [37] Toshio Hata,"Yasuaki kitazaki and takanori Saito",J.Adhesion,1987;21:171-194
    [38] Feng L,Andrade JD.Protein adsorption on low temperature isotropic carbon:V.How is it related to its blood eompatibility, J.Biomater.Sci.Polymer Edn.,1995;7:286
    [39] Feng L,Andrade JD.Protein adsorption on low temperature isotropic carbon:I.Protein conformational change probed by differential scanning calorimetry, J. Biomater.Mater. Res., 1994; 28:340
    [40] E.Nyilas, W.A.Morton, R.D.Cummin, D.M.lederman et al, Trans.Amer.Soc. Artif. Int. Organs, 1975;J.Biomed. Mater.Res.Symp., 1977;8:51
    [41] D.H.Kaeble and Moacania, J.Polymer, 1977; 18:475
    [42] B.D.Ratner, A.S.Hoffman, S.R.Hanson et al,J.Poly.Sci,Poly.Symp.,1979;66:363-375
    [43] Eley D,spivey D.The semiconductivity of organic substances.part 6,Trans Faraday Soc. 1960; 56:1432
    [44] Ratner BD,Johnston AB,Lenk TJ.Biomaterial surface,J.Biomed.Mater.Res., 1987;21:59
    [45] 王传华等,生物材料诱发血栓形成机制的研究进展,国外医学生物医学工程分册,1998:21(1):1-7
    [46] 陈俊英等,掺杂氧化钛薄膜的制备与血液相容性研究,生物医学工程学杂志,1999;17(2):146-150
    [47] J.M. Courtney, N.M.K. Lamba, S. Sundaram et al.Biomaterials for blood-contacting applications,Biomaterials. 1994; 15(10):737-744
    [48] Hoffman AS. Modification of materials surface to affect how they interact with blood, Ann. NY Acad. Sci.,1987;516:96
    [49] Courtney JM, Sundaram S, Forbes CD. Extracorporeal circulation: biocompatibility of biomaterials. In: Frobes CD, Cushieri A, eds. Management of bleeding disorders in surgical pratice. Oxford: Blackwell Scientific, 1993:236-273
    [50] Bauschmidt P, Schaldach M. The electrochemical aspects of the thrombogenicity of a material,J.Biomeg., 1997; 1:261
    [51] Feng L,Andrade JD.Protein adsorption on low temperature isotropic carbon:V.How is it related to its blood compatibility, J.Biomater.Sci.Polymer Edn., 1995;7:286
    [52] Feng L,Andrade JD.Protein adsorption on low temperature isotropic carbon:I.Protein conformational change probed by differential scanning calorimetry, J. Biomater.Mater. Res., 1994; 28:340
    [53] Hae-Suk Jung, Hyung-Ho Park, Seong Sik Pang, et al. The investigation of thermal effect on the properties of pulsed laser deposited diamond-like carbon films. Thin solid films 1998, 332:103
    [54] S. Kaplan, F. Jansen, and M. Machonkin. Characterization of amorphous carbon-hydrogen films by solid-state nuclear magnetic resonance. Appl.Phys.Lett, 1985,47(7):750.
    [55] Kenji K. Hirankuri, Takumi Minorikawa, Gernot Friedbacher, et al. Thin film characterization of diamond-like carbon films prepared by r.f. plasma chemical vapor
    
    deposition. Thin solid film,1997,302:5
    [56] Niranjan Gophinathan, Carolyn Robinson, Francis Ryan. Characterization and properties of diamond-like carbon films for magnetic recording application. Thin Solid Films, 1999,355:401
    [57] Callegari, D.A. Buchanan, H. Hovel, et al.Thermal stability and electrical properties of hydrogenated amorphous carbon film. Appl. Phys. Lett, 1994,64(26):3637
    [58] Mennella V, Monaco G, Colangeli L, teal. Raman spectra of carbon - based materials excited at 1064 nm. Carbon, 1995,33:115.
    [59] Scheibe H J, Drescher D, Alers P. Raman characterization of amorphous carbon films. Fresenius J Anal Chem, 1995, 353:695.
    [60] M.A. Tamor, W.C. Vasell, J. Appl. Phys. 1994,76(6):3823
    [61] M. Yoshikawa, Mater. Sci. Forum 1989,52:365
    [62] Tay B K, Shi X, Tan H S, te al. Raman studies of terahedral amorphous carbon films deposited by filtered cathodic vacuum arc, Surf Coat Technol, 1998,105:155.
    [63] Fallon P J, Veerasamy V S,Davis C A, et al.Properties of filtered ion beam deposited diamondlike carbon as a function of ion energy.Phys Rev B, 1993,48(7):4777
    [64] Chalker P R. Characterisation of Diamond and diamond-like films, in Diamond and diamond-like films and coatings. New York, Plenum press, 1991:127
    [65] N.Savvides, J. Appl.Phys.,59(12):4133
    [66] Y.Huai, M. Chaker, J.N. Broughton, et al. Study of density in pulsed-laser deposited amorphous carbon films using x-ray reflectivity. Appl. Phys. Lett. 1994,65(7): 830
    [67] R. W. Lamberton, S. M. Morley, P.D. Maguire et al. Monitoring laser-induced micro-structural changes of thin film hydrogenated amorphous carbon (a-C:H) using Raman spectroscopy. Thin Solid Film. 1998,333:114-125
    [68] 刘恩峰,郭天榜,党耀国.灰色系统理论及其应用.科学出版社,1999
    [69] 肖新平,关于灰色关联度量化模型的理论研究与评论.系统工程理论与实践.1997,8:76-81
    [70] 李学全.灰色关联度量化模型的进一步研究.系统工程,1995,59-62
    [71] 肖新平,谢录臣,黄定荣.灰色关联度计算的改进及其应用.数理统计与管理,1995,14(5):27-30
    [72] 周冰,张承勋,吕安林.医学综合评价性问题的定性分析与定量灰关联分析研究.生物医学工程学杂志.1998;15(2):163-166
    [73] 孟波,王浣尘,付徽.一种有限方案模糊多目标决策方法.控制与决策.1993;8(5):377-380
    [74] 许海燕,孔桦,蔺嫦燕等.聚氨酯基纳米碳复合材料表面的血液相容性研究.中国医学科学院学报.2000;2:201-205
    [75] 肖铁卉,李晶华.血小板活化因子的研究进展,安徽中医学院学报.2002;21(2):61-64
    [76] 奚廷裴,雷学会,田文华等.血小板在生物材料表面粘附机理研究.透析与人工器官,
    
    1994;5(2):1-5
    [77] 吴熹,陈凡,马旺扣等.新一代人工心脏瓣膜材料血液相容性的实验研究,江苏医药杂志.2001;27(3):175-177
    [78] 王春仁,生物材料表面血浆蛋白的吸附.国外医学生物医学工程分册.1995;18(6):334-339
    [79] 阮长耿,血小板基础与临床研究进展.生物学通报.2002;37(4):1-4
    [80] 胡国栋,聚氨酯的血液相容性评价.国外医学生物医学工程分册.2002;25(6):271-284
    [81] D.D. Deligianni, N. Katsala, S. Ladas, et. al. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials. 2001; 22:1241-1251
    [82] Niranjan Gopinathan, Carolyn Robinson, Francis Ryan. Characterization and properties of diamond-like carbon films for magnetic recording application. Thin Solid Film. 1999; 355-356:401-405
    [83] X. M.tang, J. Weber, Y. Baer. Influence of hydrogen on the structure of amorphous carbon. Physical review. 1993; 48(14)124-128
    [84] 尹光福,梯度生物碳素材料的制备和血液相容性关系的研究.四川大学博士论文.
    [85] 唐五湘,T型关联度及其计算方法.数理统计与管理.1995;14(1):34-39
    [86] 王坚强,一种新的灰色关联度计算方法及其应用.系统工程理论与实践.1997;11:119-123
    [87] D.D. Deligianni, N. Katsala, S. Lads, et al. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials. 2001; 22:1241-1251
    [88] A. Dorner, C. Schurer, G. Reisel. et al. Diamond-like carbon-coated:influence of the coating thickness on the structure and the abrasive wear resistance. Wear. 2001; 249: 489-497

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700