自捻纺纱纱线结构及其力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究课题紧密结合自捻纺纱工艺,对自捻纺成纱基本原理进行了理论分析和合理推导,得到了自捻捻度与单纱条捻度之间的关系以及捻回角与纤维机械性能的关系。对自捻纱线不同相位条件下两根单纱条汇合的规律进行研究,得到自捻捻度分布的特征。通过对自捻捻度函数的合理表征,得到影响自捻纱线强度不匀率的直接因素是自捻纱线的捻度不匀率。通过一系列对自捻纺纱一般规律的研究,利用实测的结果进行分析验证,得到关于自捻纺纱的规律、纱线结构和性能的关系。在此基础上侧重于对自捻纺成纱技术的应用性研究。
     本研究的主要目的是通过对自捻纺成纱机理、纱线结构及其力学性能的研究,揭示出纤维性能、纺纱工艺参数、成纱结构参数以及纱线力学性能之间的相应关系和内在规律,从而实现对自捻纺纱生产工艺的优化控制,为实际生产中工艺参数的选择,最终获得性能优良的纱线质量提供理论和实际依据。
     本课题的研究方法采用理论推导结合实验验证,以及利用实验数据进行分析的基本方法。自捻纺纱线中存在捻向交替的有捻区和无捻区或单纱上有捻而自捻纱线无捻的弱捻区,这就导致了纱线结构的复杂性和多样性;自捻纺成纱中相位差的大小对成纱结构和性能产生重要影响,为了弄清自捻纺成纱过程捻度特征的分布和成纱规律,所以本研究采用一根染色的羊毛条和另一根白色的腈纶条纺纱进行试验分析。利用实验观察获得能够代表和反映纱线结构的参数,最终获得纺纱规律和成纱结构的特征。
     本课题对自捻纺成纱机理、纱线结构和力学性能进行了一系列的研究;讨论了从纤维性能、成纱工艺、纱线结构到纱线性能的有关问题及其相互之间的关系和影响;从自捻纺纱最基本的加捻扭矩平衡的角度,重新构建了自捻捻度与单纱条捻度之间的关系式;从纤维应变能守恒的角度,推导了自捻平衡达到最小总应变能时自捻纱线螺旋角与纤维性能的关系;从相位差的角度着手,推导并验证了不同相位差情况下,两根单纱条有捻和无捻区段汇合的一般规律,推导出了得到最佳纱线性能的相位差;针对自捻纱线断裂强力和断裂伸长率均较低的特点,将不同原料的自捻纱线和环锭纱线进行力学性能的对比,解释了自捻纱线断裂强力和断裂伸长率均较低的原因,并通过复合自捻的方法解决了一些原料不能直接用于自捻纺纱的问题;通过计算不同汇合方式下自捻捻度分布函数,得到各种因素对自捻捻度的影响,通过理论分析和实验验证,得到自捻纺纱最佳纺纱工艺参数的选择;以双股纱赛络纱的力学模型为基础建立了自捻纺纱过程力学模型,得出汇合点的运动规律,为控制汇合点的稳定运动打下理论基础。
     论文根据研究的具体内容共分为六章。首先第一章是研究的背景,着重介绍了自捻纺的研究与应用现状、理论研究已有成果与实验研究的内容,以及自捻纺纱的研究目的和研究内容。接下来的第二章从扭矩平衡的角度,变形能守恒的角度解释与论述自捻成纱机理,不仅推导出了自捻捻度和单纱条捻度之间新的关系式,而且建立了自捻纱捻回角和纤维机械性能之间的关系式,并通过实纺不同纤维所纺自捻纱线测试半周期捻回数进行了验证。第三章研究了自捻纺纱成纱过程不同路程差情况下的捻度分布,分别分析了七种相位自捻纱的成纱过程及捻度分布,通过改变相位对自捻纱两根单纱条有捻纱段和无捻纱段相遇的情况进行具体分析,结果发现当两根单纱条的相位差等于自捻纱线的无捻区长度时,自捻纱线长度方向上没有无捻-无捻段纱线的出现,此时能够获得纱线的最佳拉伸性能。此结果通过实际纺纱测试自捻纱线的断裂强度值进行了验证。通过不同原料腈纶、涤纶、羊毛、苎麻分别进行自捻纺纱和环锭纺纱纱线的力学性能比较,自捻纱线有断裂强力和断裂伸长率均较低的特点,涤纶和腈纶纤维自捻纱线强力利用率较高可以直接用于自捻纺纱,而羊毛和苎麻由于强力利用率只有15-25%只能选择与其他纤维复合进行自捻纺纱。通过对腈/涤、毛/涤、麻/涤三种复合自捻纺纱线的力学性能分析,腈/涤复合自捻时可采用任何比例,而毛/涤复合自捻时涤纶纤维含量百分比要达到60%或以上,麻/涤复合自捻时涤纶纤维含量百分比要达到70%或以上,才能够使得复合自捻纱线的断裂强度和断裂伸长率符合后工序加工的要求。
     论文第四章通过自捻罗拉钳口线至汇合点之间纱条上的捻度分布函数用两种方法进行计算,一种是用路程差的方法,另一种是分别用两根单纱条的捻度分布函数来计算,结果第二种方法所计算的自捻捻度分布函数与实际纺纱测试纱线的捻回数更接近,更符合生产实际。并进一步利用两根单纱条的相位差得到自捻纱的相位差,证实了用角度差表示的相位差更接近于生产实际上的无捻区长度。利用第二种方法所计算得出的捻度分布函数计算得到自捻纺三种汇合方式的捻度不匀率,结果第三种汇合方式的捻度不匀率最低,经过实验验证,所对应的自捻纱断裂强力不匀率亦最低。通过对半周期长度上自捻捻度的计算,分析了自捻纺纱各个结构参数对自捻纱线半周期捻回数的影响以及纺纱工艺参数对自捻纱线半周期捻回数的影响。对于在生产实际上如何采用较优的工艺参数进行自捻纺纱提供了有力的理论和实践依据。
     论文第五章主要以双股纱的力学模型为基础,建立自捻纺纱过程的力学模型,得到了汇合点的运动规律曲线,并通过实际纺纱验证了汇合点的运动轨迹。此模型对于进一步研究自捻纱线在汇合点的运动规律,控制自捻纺纱过程的稳定性和可靠性提供了理论基础。论文第六章对本课题所研究的结论做了归纳与总结,并对今后的研究工作提出了看法和展望。
     本论文从纤维性能、纺纱工艺、纱线结构来预测最终自捻纱性能的研究方法,可以对一些经典纺纱理论问题的研究进行借鉴和改进,丰富了纺织理论,对于更深入地了解自捻纺系统,掌握自捻纱线结构和性能,完善自捻纺理论方面的研究,从而更有效地指导生产实践,都具有一定的理论和现实意义。
This study combined with self-twist spinning process, the spinning mechanism is analyzed theoretically and derived reasonably, so it has got the general rule of self-twist spun yarn. Then the experimental results are analyzed on the self-twist spinning yam, quantitative results of spinning rule, structure and performance are obtained. On the basis of this focus on application research of self-twist spinning technology.
     The main purpose of this study is based on the self-twist spinning mechanism, yarn structure and its mechanical properties, revealing the corresponding relations and internal rules among the fiber properties, spinning process parameter, yarn structure parameters and yam mechanical properties parameters, thus realizing optimization control of production process at the self twist spinning, finally the theoretical and practical basis are provided for the actual production selecting technical parameters and obtaining the excellent yarn quality.
     The research methods of theoretical deduction combined experimental verification are adopted and experimental data analysis are used. As it exists the alternating twisted and untwisted or weaktwist zone which exists twist in single yam but no twists in self-twist yarn. So the yarn structure is complex and various. The image analysis method is adopted on the study on experimental validation. Because the phase of self-twist yarn has a significant impact on yarn structure and properties, a dyed wool strand and another white acrylic strand are adopted to spin. The parameters of reflecting yarn structure are got by the method of image analysis so as to obtain the regularity of yarn spinning and the structure characteristics of spun self-twist yarn.
     The self-twist spinning mechanism, yarn structure and mechanical properties were studied; discussed the relationship and influence from the fiber properties, spinning technology, yarn structure and the yarn properties; from the most basic twisting torque balance at self-twist spinning to construct the relation of the twists of between the self-twist yarn and single yarn; from the fiber strain energy conservation, the relation between helix angle of self-twist yarn and fiber properties is derived when the strain energy reaches the minimum according to the strain energy conservation. From the research of phase difference,,deriving and verifying the common law that twist zone and zerotwist zone of two single strands are converged by different phase difference condition, deduced the phase difference having optimum yarn performance; Self-twist distribution functions in different convergence modes are calculated, all factors are gained to effect on self-twists, through theoretical analysis and experimental verification, get optimum spinning process parameters at self-twist spinning; Used of theoretical calculating formula of breaking strength and elongation of blended yarn, polyester, acrylic, wool, ramie are composed to spun composite self-twist yarn by using different complex ratio of composite yarn, after testing the yarn tensile properties, the larger differences are gained between theoretical calculation and experimental verification and an optimized ratio range is obtained for every sample. A mechanics model is established on the basis of the mechanical model of two-strands, reached movement laws of the convergence point at the self-twist spinning, as the foundation for the stable movement of the convergence point.
     On the basis of the specific content of the research, the paper is divided into seven chapters. The first chapter is the research background, introduced the self twist spinning research present situation, theoretical research achievements and experimental study as well as self unsolved problems at self-twist spinning. The following second chapter, self-twist spinning mechanism is explained by the torque balance, strain energy conservation, not only the new relation between single strand twists and self-twists is derived and the relation between the twist angle and fiber mechanical properties is established. Moreover, the results are verified by testing the twists of self-twist yam. The third chapter studies the self-twist distribution under the condition of different distance at the self-twist spinning process, respectively analyzing the spinning process and twist distributions of seven kinds of phased self-twist yarns, the circumstance which the twistzone and zerozone meet is analyzed by changing the phase, it was found that when the phase difference of two single strand is equal to the length of zerotwist zone, on the length direction it never exits zerotwist-zerotwist zone, at this time self-twist yarns with the best tensile properties are obtained. The results are verified through the actual spinning and testing breaking strength values of self-twist yarns. Compared tensile properties between self-twist yarn and ring spinning yarn made by different materials such as acrylic, polyester, wool, ramie, there are lower breaking strength and breaking elongation in self-twist yarn and polyester and acrylic fibers can be directly used to spin self-twist yarn,but wool and ramie fibers only can be composited with other fibers to spin self-twist yarn so as to meet the processing requirement because of their strength utilization only can reach15-25%. By analyzing the tensile properties of three composite yarn such as acrylic/polyester, wool/polyester, ramie/polyester, any proportion can be used when acrylic and polymer fibers are composited; polyester content percentage should be reached60or more when wool and polyester fibers are composited; polyester content percentage should be reached70or more when ramie and polyester fibers are composited.
     In the fourth chapter, two methods are adopted to calculate twist distribution from the nip of self-twist rollers to the convergence point, one method is by distance difference, another is by the twist distribution functions of two single strands. The result is that the twists with the second method is much closer and more accord with actual production than that with the first method. And further the phase difference is expressed by the angle difference, the phase difference is more close to the length of zerotwist zone. Twist irregularities of three confluence modes with the twist distribution function of the second method are calculated, the results is that the twist irregularity of the third convergence mode keeps the minimum and the corresponding yarn breaking strength unevenness is the lowest. By calculating the twists on the half the cycle, analyzing the effect of the structure parameters and of the spinning processing parameters on the quality of the self-twist yarn. The influence on the twists of self-twist yarn is gained by image analysis and the conclusion is verified through experiments. Provided a strong theoretical and practical basis for production.
     The fifth chapter mainly on the basis of two-strand spinning mechanical model, established a mechanical model of self-twist spinning processes, obtained motion curve of the convergence point. And through the actual spinning verified the trajectory of the confluence point. This model provides theoretical basis for further study on the motion rules of the convergence point and controlling stability and reliability of self twist spinning process. The research conclusions are concluded and summarized in the sixth chapter and the views and the prospect on the future research are put forward.
     The research methods from the fiber properties, spinning technology, yarn structure to final self-twist yarn mechanical are adopted and can be referenced and improved on the research of a number of classic spinning theory, has enriched the textile theory. For more in-depth understanding of self-twist spinning system, grasping the structure and performance of self-twist yarn, improving the theoretical research of self-twist spinning, guiding the producing practice more efficiently, all having its certain theory significance and the practical significance.
引文
[1]狄剑锋.新型纺纱产品开发[M].中国纺织出版社.1998
    [2]姚瑞源,蒋金仙.自捻纺纱[M].纺织工业出版社.1985
    [3]宋绍宗.新型纺纱方法[M].纺织工业出版社.1983.72-103.
    [4]刘国涛,谢春萍,徐伯俊.新型纺纱[M].中国纺织出版社.1999,131-142.
    [5]D.E. Henshaw. Self-twist Yarn[M]. Merrow Publishing Co.,Ltd., Watford, England, 1971.
    [6]B.C. Ellis and GW. Walls. Towards the Better Understanding of Self-twist Structures[J]. Journal of the Textile Institute.1973,64:386-389.
    [7]王兟.自捻纱的捻度理论与实践.华东纺织工学院硕士论文[D].1982
    [8]王兟,张知佑.自捻捻度与纤维条捻度之间理论关系的论证[J].纺织学报.1987(11):691-694.
    [9]G.W. Walls. Oscillating Rollers for Self-twist Spinning[J]. Journal of the Textile Institute.1970,61(6):245-259.
    [10]B.C. Ellis and G.W. Walls. STT Yarns:Technological Aspects of Twisted Self-twist Yarns[J]. Journal of the Textile Institute.1970,61 (6):279-303.
    [11]D.E.A. Plate, A.EMMAQNUEL, Part Ⅱ:The Theoretical Model[J]. Journal of the Textile Institute.1982,3:6-14
    [12]M.Miao, Z.Cai,Y Zhang. Influence of Machine Variables on Two-Strand Spinning Geometry[J]. Textile Reseach Journal.1993,63(2),116-120
    [13]Ji-huan He. Homotopy Perturbation Method:A New Nonlinear Analytical Technique[J]. Applied Mathematics and Computation.2003,135:73-79
    [14]Ji-huan He etc. On Convergence Point of The Two-strand Yarn Spinning[J]. Textile Research Journal 2008,78(11):1022-1024.
    [15]Ji-huan He etc. A Linear Dynamic Model for Two-strand Yarn Spinning[J]. Textile Research Journal.2005,75(1):87-90.
    [16]Ji-huan He. etc. A Nonlinear Dynamic Model for Two-strand Yarn Spinning[J]. Textile Research Journal.2005,75(2):181-184.
    [17]Li-na Zhang and Ji-huan He. Geometry Condition for optimal Two-strand Yarn Spinning. Part I:Sirospun [J]. Textile Research Journal.2009,79(3):243-246.
    [18]Li-na Zhang and Ji-huan He. Periodic and Chaotic Motion in Sirofil Yarn Spinning [J]. FIBRES & TEXTILES in Eastern Europe April/June 2008, Vol.16, No.2 (67):27-29
    [19]Yang R.H. etc. Determination of the Convergent Point in the Rotor-spun Composite Yarn Spinning Process[J]. Textile Research Journal.2009,79(4): 555-557.
    [20]J.W.S. Hearle, Lord P.R. and Sentruk N. Fiber Migration in Open-end Spun Yarns[J]. Journal of the Textile Institute.1972,63:605-617.
    [21]GJ. Riding. Filament Migration in Single Yarns[J]. Journal of the Textile Institute. 1964,55:7-9.
    [22]J.W.S. Hearle and B.S. Gupta. Migration of Fibers in Yarns, Part Ⅲ:A Study of Migration in Staple Fiber Rayon Yarn[J]. Textile Research Journal.1965,35: 788-797.
    [23]姚穆等.纺织材料学[M].中国纺织出版社.1993
    [24]张一鸣,田作鑫.几种麻棉纱结构的研究[J].纺织学报.1993,14(10):4-6.
    [25]查正红,于修业.喷气纱径向结构研究.中国纺织大学学报[J].1998,24(4):82-85.
    [26]于伟东,王锦成.纤维分布和混纺比对毛涤混纺纱毛型感的影响[J].东华大学学报.2001,27(1):25-28.
    [27]J.W.S. Hearle and B.C. Goswami. Migration of Fibers in Yarns. Part Ⅵ:The Correlogram Method of Analysis[J]. Textile Research Journal.1968, 38(8):780-789.
    [28]Y Huh, Y.R. Kim and W.Y. Rye. Three-dimensional Analysis of Migration and Staple Yarn Structure[J]. Textile Research Journal.2001,71(1):81-90.
    [29]王克毅,于伟东.基于单须条分束纺的纱结构及成纱机理[D].东华大学硕士论文.2005.
    [30]Cybulska Maria. Assessing Yarn Structure with Image Analysis Method[J]. Textile Research Journal.1999,69(5):369-373.
    [31]陆凯.塞罗菲尔纺成纱机理探讨[J].纺织学报.2000,21(4):8-11.
    [32]侯秀良,刘启国,朱宝瑜.塞罗纺纱成纱机理探讨[J].毛纺科技.2000,1:34
    [33]J. W. S. Hearl and O.N. Bose. Migration of Fibers in Yarns, Part Ⅱ:A Geometrical Explanation of Migration [J]. Textile Research Journal.1965,35 (8):693-699.
    [34]W. Zurek, I.Frydrych and S.Zakrzewski. A Method of Predicting the Strength and Breaking Strain of Cotton Yarn [J]. Textile Research Journal,1987,57(8): 439-444.
    [35]M.C. Ramesh, R. Rajamaniekam and S. Jayaraman. The Prediction of Yarn Tensile Properties by Using Artificial Neural Networks[J]. Journal of the Textile Institute.1995,86(4):459-469.
    [36]程文红,陆凯.利用人工神经网络进行纺纱技术预报[J].上海毛麻科技.2000,1:19-21.
    [37]严广松.基于密度函数方法的纤维长度分布影响分析[D].东华大学博士论文.2009
    [38]J.F. Bogdan. The Characterization of Spinning Quality[J]. Textile Research Journal.1956,26(9):720-730.
    [39]R. Verbeck. A Statistical Method of Characterizing Spinning Quality[J]. Textile Research Journal.1965,35(1):1-14
    [40]N. Pan. Development of A Constitutive Theory for Short Fiber Yarns. Part I Mechanics of Staple Yarn without Slippage Effect[J]. Textile Research Journal. 1992,62:749-765.
    [41]N. Pan. Prediction of Statistical Strength of Twisted Fibre Structures [J]. Journal of Materials Science.1993,28:107-114.
    [42]N. Pan and Hua Tao. Relationship between Fiber and Yarn Strength[J]. Textile Research Journal.2001,71:960-964.
    [43]D.E. Henshaw. Twist Distribution in Self-twist Yarn[J]. Journal of the Textile Institute.1970,61(6):269-278.
    [44]D.E. Henshaw. Self-twist Yarn[J]. Journal of the Textile Institute.1969,60(11): 443-451.
    [45]L.A. Allen and D.E. Henshaw. Self-twist Spinning:Prototype Development[J]. Journal of the Textile Institute.1970,61(6):260-268.
    [46]B.C. Ellis and G.W. Walls. STT Yarns:Technological Aspects of Twisted Self-twist Yarns[J]. Journal of the Textile Institute.1970,61(6):279-303.
    [47]B.C. Ellis and G.W. Walls. Some Observations in Testing STT Yarns [J]. Journal of the Textile Institute.1970,61,604-606.
    [48]B.C. Ellis and GW. Walls. Twist Distribution in Self-twist Weaving Yarns (STT):Part I:Twist Distribution in Conventional and Repco Yarns[J]. Journal of the Textile Institute.1973,64(4):91-93.
    [49]B. C. Ellis and G.W. Walls. Twist Distribution in Self-twist Weaving Yarns(STT): Part Ⅱ:Magnitude of Twist[J]. Journal of the Textile Institute.1973,64(4):93-95.
    [50]B. C. Ellis and GW. Walls[J]. Twist Distribution in Self-twist Weaving Yarns (STT):PartⅢ:Implications of Twist-level Effects. Journal of the Textile Institute. 1973,64(5):120-122.
    [51]王进美.自捻纺针织绒线工艺与性能研究[J].西北纺织工学院学报.1999,13(3):266-271.
    [52]徐基鸿,倪栋臣.自捻纺纱线结构与产品品种质量关系[J].纺织学报.1982,3(8):471-474.
    [53]李再清等.自捻纱线结构及其强伸性的探讨[J].棉纺织技术.1978,(12):35-40.
    [54]M. R. Mahmoudi and C.A. Lawrence. The Use of Air-jet Technology to Produce Self-twist Yarn Part I:Preliminary Study. Journal of the Textile Institute. 2003,94:141-148.
    [55]M. R. Mahmoudi and C.A. Lawrence. The Use of Air-jet Technology to Produce Self-twist Yarn Part II:The Application of Tandem Jet Twisters. Journal of the Textile Institute.2003,94:149-165.
    [56]王惠中.PCKA-Ⅲ型自动化自捻纺纱机[J].上海纺织科技.1992(5):57.
    [57]王瑞,狄剑锋.平行纺、自捻纺、涡流纺和静电纺的技术分析和发展趋向.天津纺织科技.1993(1):51-53.
    [58]徐廷元.开拓自捻纺纺纱工艺.国际纺织品动态.1996(6):35-36.
    [59]赵建明.皮圈加捻式自捻纺的加捻分析[J].纺织机械.1997(3):22-27.
    [60]T.W. Modelski. Repco Self-twist Spinning[J] J.Text.Inst.1975,66(9):285-289.
    [61]徐铭九.新型纺纱可行性的综合分析与预测.棉纺织技术.1988,16(8):452-458
    [62]A. Tayebi and S. Backer. The Mechanics of Self-plying Structures Part I: Monofilament Strands[J]. Journal of the Textile Institute,1973,64(12):704-710
    [63]A. Tayebi and S. Backer. The Mechanics of Self-plying Structures Part Ⅱ: Multifilament Strands[J]. Journal of the Textile Institute,1973,64(12):711-717
    [64]Judith M. Bennett and R. Postle. A Study of Torsional Stability in Plied Yarns[J]. Journal of the Textile Institute,1979,70(4):142-151
    [65]Judith M. Bennett and R. Postle. The Torque Generated in Single and Multi-Ply Yarns as a Function of Changes in Yarn Tension[J]. Textile Research Journal. 1979,49(9):499-506
    [66]仲岑然,金春奎.混纺纱线横截面结构参数分析[J].纺织学报.2010,31(1):40-43.
    [67]吴安成等.毛纱拉伸性质与温湿度关系[J].毛纺科技.1987(2):13-18.
    [68]于伟东,储才元.纺织物理[M].东华大学出版社.2002.
    [69]Walter J. Hamburger. The Industrial Application of the Stress-strain Relationship [J]. Journal of the Textile Institute.1949,40(7):700-720.
    [70]郁崇文等.双组分纤维混纺纱强伸性能的研究[J].东华大学学报.2002(1):18-20.
    [71]郁崇文.苎麻长纤维与棉的混纺研究[J].中国纺织大学学报.1992(6):53-58.
    [72]沈丕华等.苎麻/棉混纺纱的拉伸性能及混纺比选择[J].纺织学报.2002,23(3):24-25.
    [73]陶丽珍.竹原纤维混纺纱强伸性能与混纺比的关系[J].棉纺织技术.2005,23(6):30-33.
    [74]王先锋,潘福奎.竹炭改性涤纶纤维/棉混纺纱线的力学性能研究[J].现代纺织技术.2008(2):7-10.
    [75]陈美玉等.不同混纺比的竹浆/棉混纺纱线的力学性能研究[J].西安工程科技学院学报.2007,21(1):19-22.
    [76]潘小会等.不同混纺比甲壳素/棉混纺纱性能研究[J].纺织科技进展.2011(3):7-11.
    [77]程隆棣等.壳聚糖/腈纶纤维抗菌纤维混纺比与纱线强度关系研究[J].东华大学学报.2001(8):71-73.
    [78]杨庆斌等.大豆蛋白纤维_涤纶混纺纱混纺比的优化分析[J].青岛大学学报 (工程技术版).2008,23(3):67-71.
    [79]张军英,崔瑞芳.涤麻混纺纱性能与混纺比关系[J].四川纺织科技.2003(4):18-20.
    [80]蒋国华.混纺比与涤麻混纺纱性能关系探讨[J].纺织学报.2002,23(2):41-43.
    [81]练军,王兟.复合纱强伸性能的探讨[J].上海纺织科技.2002,30(4):16-18.
    [82]樊理山等,三组分复合纱线的拉伸断裂特征与力学模型[J].纺织学报.2010,31(3):36-39.
    [83]任秀红等.转杯复合纱的强伸性能[J].纺织学报.2006,27(8):68-70.
    [84]王兟,张知佑.自捻纱条干对自捻捻度的影响[J].棉纺织技术.1983,(9):2-6
    [85]涂平,汪昌瑞.概率论与数理统计[M].华中科技大学出版社.2008.
    [86]张德培.应用概率统计[M].高等教育出版社.2000.
    [87]Yang R.H. and Wang S. Y. A Mathematical Model for Rotor-spun Composite Yarn Spinning Process[J]. Textile Research Journal.2010,80(4):487-490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700