微纳多孔表面的制备及其沸腾传热性能的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面多孔结构强化沸腾传热是一种高效的强化传热技术,能够有效提高传热性能,大幅提高能源利用效率。本文对微纳多孔表面的制备方法进行了实验研究,分析了电镀电流、电镀时间、是否加入表面活性剂等实验条件对微纳多孔表面的结构及其特征物理量的影响,证明了通过控制实验参数能够获得稳定的微纳多孔表面。
     以去离子水为工质,测定了不同微纳多孔表面的沸腾传热性能,分析了孔隙率等特征物理参数对微纳多孔表面沸腾传热性能的影响。通过分析对比微纳多孔表面和光滑表面的沸腾传热性能得出结论:微纳多孔表面的沸腾传热性能相对于光滑表面有显著提高,在同一热流密度下,微纳多孔表面的沸腾传热系数最高可提高到光滑表面的1.7倍,过热度最高可降低13℃左右;而在同一过热度下,沸腾传热系数最高可提高到光滑表面的3.2倍;光滑表面的临界热流密度约为178W/cm2,微纳多孔表面的临界热流密度约为292W/cm2,约为光滑表面的1.64倍,有很明显的提高。
The porous surface structure is a highly efficient heat transfer enhancement, it can effectively improve the heat transfer performance, and significantly improve energy efficiency.Experimental research and exploration were done and finally the optimal experimental approach for electrodeposition was found to got the nanostructured macroporous surfaces, and it is proved that porous surfaces with relatively stable size of the main particle can be obtained using this method.The influence of experimental conditions, such as electroplating current, electroplating time, and with or without surfactant, to the porous layer was analyzed and compared qualitatively. These experimental conditions impact the structure and characteristic parameters of the nanostructured macroporous surfaces markedly.
     Pool boiling tests were performed in water, in order to assess the influence of surface features on boiling. It's been proved that characteristic parameters would evidently affect the boiling heat transfer performance of the nanostructured macroporous surfaces. The superheat can be mostly reduced about 13℃at the same heat flux, and the heat transfer coefficient of the nanostructured macroporous surfaces can be enhanced up to about 1.7 times that of the smooth surface, and while at the same superheat, it can be enhanced up to about 3.2 times. The critical heat flux of the smooth surface and one nanostructured macroporous surface was tested respectively. The results show that the critical heat flux of smooth surface is about 178W/cm2, and for the porous surface sample it is about 292W/cm2. It was a noticeable enhancement, up to about 1.64 times of the smooth surface sample.
引文
[1]殷建平.上世纪70年代两次中东石油危机给我们的警示[J].石油大学学报(社会科学版),2005,20(5):9-12.
    [2]中国工业信息网.中国工业能源消耗仍占全国70%左右,将坚持走新型绿色工业化道路[EB/OL]. (2011-06-14)[2011-12-14]http://www.587766.com/news1/32362.html.
    [3]林宗虎等.强化传热技术[M].北京:化学工业出版社,2006.
    [4]百度百科.节能减排[EB/OL]. (2011-12-10)[2011-12-14]http://baike.baidu.com/ view/981515.htm.
    [5]牛小飞,李志学,徐永明.强化传热技术及其应用[J].广州化工,2009,37(9):43-46.
    [6]李洪亮.强化传热技术及其应用[J].化工设备与防腐蚀,2002,5(2):111-113.
    [7]杨世铭,陶文铨.传热学[M].第三版.北京:高等教育出版社,1998.
    [8]Yimin Xuan, Qiang Li. Heat transfer enhancement of nanofluids[J]. International Journal of Heat and Fluid Flow,2000,21(1):58-64.
    [9]Lazarus Godson, B Raja, D Mohan Lal, S Wongwises. Enhancement of heat transfer using nanofluids—An overview[J]. Renewable and Sustainable Energy Reviews,2010, 14:629-641.
    [10]Liqiu Wang, Xiaohao Wei. Heat conduction in nanofluids[J]. Chaos, Solitons and Fractals,2009,39:2211-2215.
    [11]路慧霞,马晓建,赵凌.脉动流动强化传热的研究进展[J].节能技术,2008,26(148):168-172.
    [12]Herbert Martin Hofmann, Daniela Luminita Movileanu, Matthias Kind, et al. Influence of a pulsation on heat transfer and flow structure in submerged impinging jets[J]. International Journal of Heat and Mass Transfer,2007,50(17-18):3638-3648.
    [13]过增元,黄素逸等.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004.
    [14]Li-Ting Tian, Ya-Ling He, Yong-Gang Lei, Wen-Quan Tao. Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis[J]. International Communications in Heat and Mass Transfer,2009,36:111-120.
    [15]Fujie, Kunio, Nakayama, et al. Heat Transfer Wall for Boiling Liquid[P]. US Patent, USA:4060125,1977.
    [16]Michael M D, lester D E. Liquid Heat Exchanger Interface and Method[P]. US Patent, USA:3990862,1972.
    [17]李冀.多孔表面管在炼油装置上的应用[J].石油炼制与化工,1999,30(11):64-65.
    [18]Milton R M, Buffalo N Y. Heat Exchange System[P]. US Patent, USA:3384154, 1968.
    [19]Albertson, Clarence E. Boiling Heat Transfer Surface and MEthod[P]. US Patent, USA: 4018264,1977.
    [20]Kalaiselvam, S Gugan, et al. Experimental investigation of anodized/spray pyrolysed nanoporous structure on heat transfer augmentation[J]. Journal of Thermal Science, 2009,18(4):358-363.
    [21]谭华玉.烧结丝网复合板多孔表面的制备及其传热性能研究[D].北京:钢铁总院,2005.
    [22]辛道明.沸腾传热及其强化[M].重庆:重庆大学出版社,1987.
    [23]黄崇林,钟经山.表面多孔管强化传热机理[J].装备制造技术,2007,1:70-72.
    [24]B. V. Antohe, J. L. Lage, D. C. Price, and R. M. Weber. Numerical Characterization of Micro Heat Exchangers Using Experimentally Tested Porous Aluminum Layers[J]. International Journal of Heat and Fluid Flow,1996,17:594-603.
    [25]A. Bhattacharya, V. V. Calmidi and R. L. Mahajan. Thermophysical Properties of High Porosity Metal Foams[J]. International Journal of Heat and Mass Transfer,2002, 45:1017-1031.
    [26]M. S. Phanikumar and R. L. Mahajan. Non-Darcy Natural Convection in High Porosity Metal Foams[J]. International Journal of Heat and Mass Transfer,2002,45:3781-3793.
    [27]K. Boomsma and D. Poulikakos. On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam[J]. International Journal of Heat and Mass Transfer,2002,44:827-836.
    [28]K. Boomsma and D. Poulikakos. The Effect of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal[J]. Journal of Fluids Engineering,2002,124: 263-272.
    [29]K. Boomsma, D. Poulikakos, and F. Zwick. Metal Foam as Compact High Performance Heat Exchangers [J]. Mechanics of Materials,2003,35:1161-1176.
    [30]K. Boomsma, D. Poulikakos, and Y. Ventikos. Simulations of Flow through Open Cell Foams Using an Ideal Periodic Cell Structure[J]. International Journal of Heat and Mass Transfer,2003,24:825-834.
    [31]Marto P J, Lepere V J. Pool boiling heat transfer from enhanced surfaces to dielectric fluids[J]. Journal of Heat Transfer,1982,104(2):292-299.
    [32]丁枢华,汪清善,许克强等.表面多孔管烧结研究[J].浙江冶金,1989,18(1):11-17.
    [33]刘阿龙,徐宏等.复合粉末多孔表面管的沸腾传热[J].化工学报,2006,57(4):726-730.
    [34]廖丽华,董清波,申传文等.铝多孔表面换热管强化沸腾换热的研究及应用[J].石化技术与应用,2003,21(3):179-180.
    [35]郑康民.机械加工表面多孔管抗垢性能的研究[D].广州:华南理工大学,1984.
    [36]Renkun Chen, et al. Nanowires for Enhanced Boiling Heat Transfer[J]. Nano Letters, 2009,9(2):548-553.
    [37]Gottzmann C F, et al. High Efficiency Heat Exchangers[J]. Chemical Eng, Progress, 1973,69(7):69-75.
    [38]刘阿龙,徐宏等.烧结型多孔管的污垢特性[J].化工学报,2008,59(10):2448-2454.
    [39]Ralph L. Webb. The Evolution of Enhanced Surface Geometries for Nucleate Boiling [J]. Heat Transfer Engineering,1981,2(3-4):46-49.
    [40]Kurihari H M and Myers J E. Effects of Super Heat and Roughness on the Boiling Coefficients[J]. AICHE,1960,6(1):83.
    [41]支浩,奚正平等.用于热交换的金属多孔表面制备方法[J].稀有金属材料与工程,2009,38(增3):245-249.
    [42]谭华玉等.多孔表面的制造方法及其强化沸腾传热效果的比较[J].流体机械,2006,34(1):80-85.
    [43]The Gates Rubber Company. Liquid heat exchanger interface and method[P]. US Patent, USA:3990862,1976.
    [44]北京化工研究院.用于强化沸腾传热的金属多孔表面金属管的制法[P].中国专利,CN1003522B,1989.
    [45]赵孝保.喷涂多孔表面沸腾传热实验研究[J].南京师大学报(工程技术版),2001,1(3):12-16.
    [46]曾勇等.火焰喷涂型表面多孔管的性能研究[J].化工机械,2010,37(2):141-145.
    [47]曾勇.火焰喷涂铁基复合粉末制备多孔层[D].上海:华东理工大学,2010.
    [48]Albertson and E. Clarence. Boiling Heat Transfer Surface and Method[P]. US Patent, 4018264,1977.
    [49]陈振兴,蔡棋风.化学腐蚀表面多孔管的池沸腾传热研究[J].中南矿冶学院学报,1994,25(2):191-195.
    [50]刘贞贞,赵镇南.机械加工表面多孔管外池沸腾实验研究[J].石油化工设备,2006,35(7):21-24.
    [51]Hasegawa S, et al. Boiling Characteristics and Burnout Phennomena on a Heating Surface Covered with Woven Screen[J]. J. Nucl Sci. Tech.,1975,12(11):722-724.
    [52]天津大学.金属内外表面复合网强化传热管和传热板[P].中国专利,CN1053119A,1991.
    [53]Eric Forrest, Erik Williamson, et al. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings[J]. International Journal of Heat and Mass Transfer,2010,53:58-67.
    [54]Richard Furberg, Bjorn Palm, et al. The Use of a Nano-and Microporous Surface Layer to Enhance Boiling in a Plate Heat Exchanger[J]. Journal of Heat Transfer,2009,131: 11010-1-101010-8.
    [55]Srinivas Vemuri, Kwang J. Kim. Pool boiling of saturated FC-72 on nano-porous surface[J]. International Communications in Heat and Mass Transfer,2005,32:27-31.
    [56]Shanghua Li, Richard Furberg, et al. Nature-Inspired Boiling Enhancement by Novel Nanostructured Macroporous Surfaces[J]. Adv. Funct. Mater.,2008,18:2215-2220.
    [57]冯立明等.电镀工业与设备[M].北京:化学工业出版社,2005.
    [58]曾华樑等.电镀技术问题对策[M].北京:机械工业出版社,2006.
    [59]谢无极.电镀故障精解[M].北京:化学工业出版社,2007.
    [60]郑瑞庭.电镀实践1000例[M].北京:化学工业出版社,2011.
    [61]詹益腾,梁国柱.酸性除油与碱性除油的互补作用[J].电镀与环保,2002,22(2):29-31.
    [62]覃奇贤,刘淑兰.电镀液的电流效率及其测定方法[J].电镀与精饰,2008,30(4):27-29.
    [63]国家标准GB5165-85.
    [64]陈小波.两相毛细泵回路(CPL)的实验研究[D].南京:南京理工大学,2004.
    [65]辛道明,童明伟.液膜沸腾的临界液位和传热[J].重庆大学学报,1984,6(2):47-49.
    [66]林洪桦.测量误差与不确定度评估[M].北京:机械工业出版社,2009.
    [67]王中宇,刘智敏等.测量误差与不确定度评定[M].北京:科学出版社,2008.
    [68]王穗辉.误差理论与测量平差[M].上海:同济大学出版社,2010.
    [69]王宏智.烧结型表面多孔管沸腾传热性能试验研究[D].上海:华东理工大学,2010.
    [70]J. R. Saylor, T. W. Simon, A. Bar-Cohen. The effect of a dimensionless length scale on the critical heat flux in saturated pool boiling[J]. ASME HTD,1989,108:71-80.
    [71]Yongping Yang, Xianbing Ji, Jinliang Xu. Pool boiling heat transfer on copper foam covers with water as working fluid[J]. International Journal of Thermal Sciences,2010, 49:1227-1237.
    [72]A. Bar-Cohen, A. McNeil, Parametric effect of pool boiling critical heat flux in dielectric liquid[M]. NEW YORK:ASME Pool and External Flow Boiling,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700