基于多像灭点进行相机标定的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类从外界环境获取的信息中,80%来自于视觉。人的眼睛将获取的信息传入大脑,由大脑根据知识和经验,对信息进行处理与识别。随着数字技术的出现与发展,计算机视觉替代了人眼与大脑,实现了对周围环境进行简单识别与理解的功能。计算机视觉的研究目标是使计算机具有通过二维图像认知三维环境信息的能力,这种能力将不仅使机器感知三维环境中物体的几何信息,包括它的形状、位置、姿态、运动等,而且能对它们进行描述、存储,识别与理解。而若通过二维图像感知三维世界,传感器的定标(或标定)成为关键技术之一。近年来,随着数字化技术的不断进步,硬件装置价格的不断下降和计算机性能的不断提高,数码相机也得到了普及,许多计算机视觉系统也都以普通数码相机作为获取数据的主要传感器。 因此,数码相机(摄像机)的标定逐渐成为计算机视觉领域以及摄影测量领域的研究热点之一。
     国内外的许多摄影测量及计算机视觉界的专家学者提出多种多样的标定方法。然而,没有哪一种标定方法可以用于所有应用,不同的用途、不同的环境就要采用不同的标定方法。
     本文以基于灭点的标定方法为切入点,首先阐述几种传统相机标定方法与自标定技术以及存在的问题,随后提出了几种既不需要控制场同时精度又较高的基于多像灭点的标定方法。这些标定方法操作简易、灵活,可做到“随时随地”标定相机,若将标定结果用于人工规则建筑物的三维重建,该方法还可进行在线标定。
     本文涉及的主要研究内容集中在四个方面:(1)直线检测与灭点的确定;(2)基于多像灭点的标定方法;(3)基于点线混合的相机标定方法;(4)基于多平面格网的相机标定方法。
     1)直线检测与灭点的确定。灭点是空间平行线在影像上投影的交点。它作为本文所提出的标定方法的重要因素,贯穿文章始末。一般灭点位于影像边界以外,甚至是无穷远处,因此标定前确定灭点的最佳位置至关重要。灭点是直线的交点,本文研究了一种自适应的最小二乘直线模板匹配技术用于高精度的提取影像中的直线信息。由于影像中噪声的存在,使得平行线在影像上未必交于一点,因此,从摄影测量角度出发,研究了一种以影像直线为观测值,建立直线与灭点相关的平差模型确定灭点的方法。该方法既不需要将直线投影到球面坐标,也不需要对大量直线作统计特性分析,当存在大量多余直线观测时,这种平差方法可快速、准确地计算出灭点的最优位置。
     2)基于多像灭点的相机标定。从单像灭点标定方法的误差分析入手,以灭点为桥梁,通过灭点的几何特性将影像中直线观测值与相机方位元素直接关联,并对多像联合建立平差模型,以解求未知的相机内外方位元素。同时,非线性畸变模型和几何约束条件也直接纳入到平差标定模型中,多种类型未知参数统一解求,使标定精度大大提高。
     3)基于点线混合的相机标定。分析了长焦距相机因视场角小在应用灭点标定时遇到的问题,首次研究了专门针对长焦距、小视场角相机的基于点线混合的标定方法。该方法通过一种无位移、多方位的全景摄影方式扩展长焦距相机的视场角,并用基于点的自标定与基于线的平差模型相结合的方法建立统一模型对相机进行标定。
     4)基于平面格网的相机标定。通过分析灭点与灭线的约束特性,利用两个灭点也可进行相机标定。对一个或(多个平行)平面格网或人工建筑物某一立面进行多位移、多角度拍摄,利用多像灭点约束建立标定模型,最后通过矩阵分解得到相机参数矩阵。该方法将三维方向的灭点信息发展到二维方向的灭点信息,且不需要任何物方控制点信息,使灭点标定方法得到进一步推广。
Among the information obtained from outside environment, 80% comes from human visual perception. The information is delivered from eyes to human brain, then is analyzed and recognized by human brain in according with his or her knowledge and experience. With the emergence and envelopment of the Digital Technology, Computer Vision, taking the place of Humans' cerebra and eyes, can realize the simple function of environment recognition and understanding. The aim of computer vision research is to make the computer possess the capability of obtaining 3D environment knowledge from 2D image. This capability refers to not only the objects' geometrical information perception which includes the information of shape, position, pose and motion etc., but also information describing, storing, recognizing and understanding. Sensor calibration is one of the key techniques in three-dimension environment recognition from two-dimension images. Recently, with the rapid development of digital technique, the continuous descending price of hardware device and the promotional performance of computer, digital camera gains prevalence in practical application. Many systems and software of computer vision utilizes digital camera as their main sensor for data acquirement. Subsequently digital camera calibration gradually becomes the hotspot in the research fields of computer vision and photogrammetry.Many experts and researchers in the fields of computer vision and photogrammetry have already proposed various methods about camera calibration. However, none of them can achieve extensive application. For different purpose and distinct application we have to adopt different calibrating methods.This paper begins from the calibration method based on vanishing points. Firstly several types of traditional calibrating methods and self-calibration methods are investigated, and then the existing drawbacks of corresponding calibration methods are addressed. Aiming at these problems, the new calibrating methods are proposed in this paper, which need no control points and can obtain higher precision based on vanishing points of multi-view. These calibrating methods can be easily operated. When these camera-calibrating methods are applied in three-dimension reconstruction of regular buildings, it can also realize on-line camera calibration.Following aspects about these methods are introduced and focused on in this paper including: (1) line detection and vanishing points calculation; (2) camera calibration based on vanishing points of multi-view; (3) camera calibration based on point-line combination. (4) Camera calibration based on multi-planar grid. 1) Line detection and vanishing points calculation.Vanishing point is the intersection of the lines in image, which are parallel lines before projecting into one image. As the most important factor in the proposed calibration methods, vanishing point are addressed through the whole paper. Generally vanishing points locate at the outside of image frame, even extend into the infinite. Therefore, it is crucial for camera calibration to determine the optimal location of vanishing points. Because vanishing points locate at the intersection of lines, in this paper the technique of Self-adaption Least Square Line Modulate Matching is proposed for extracting line information from images with high accuracy. Because of the existence of image noise, the image lines in parallel usually don't intersect into one point in practical. Therefore based on image line observation, the adjustment model of correlation between line and vanishing point is constructed to determine the location of vanishing point from the viewpoint of photogrammetry. This method needn't project lines to sphere coordinates, also needn't analyze statistic property of lines. When a big amount of redundant lines exist, this method can calculate the optimal location of vanishing points rapidly and accurately.
    2) Camera calibration based on vanishing points of multi-view.The single-view calibrating method of vanishing points is illustrated in this paper. Based on error analysis, in according with geometry property, line observation is directly related with camera orientation, through adjustment of multi images, a novel calibrating method of vanishing points based on multi-view can be recommended. At the same time, non-linear radial distortion model and geometry constraints are also introduced to this calibrating model for accuracy improvement.3) Camera calibration based on point-line combination.After analyzing the problems of camera calibrating with long lens, and aiming at the camera calibration with long lens and narrow view angle, one calibrating method based on point-line combination is addressed.4) Camera calibration based on multi-planar grid.In according with the geometry property of vanishing points, it can be seen that only two vanishing points cannot be used to calibrate camera. However, based on the constraints between vanishing point and vanishing line, camera calibration can be easily conducted.
引文
[1] 陈泽志,吴成柯,一种新的手提相机自定标方法,中国图象图形学报,2003,Vol8(A),No.3
    [2] 程效军,胡敏捷,数字相机畸变差的检测,测绘学报,2002.5 Vol.31 Sup.
    [3] 邓刚,张志强,孙济洲,用未定标相机构造三维模型,系统仿真学报,2001.11 Vol.13 Sup.
    [4] 冯文灏.关于近景摄影机检校的几个问题.测绘通报,No.10:1-3,2000
    [5] 冯文灏.工业测量方法及其选用的基本原则.武汉大学学报·信息科学版.Vol.26 No.4:331-336,2001
    [6] 冯文灏.近景摄影测量—物体外形与运动状态的摄影法测定.武汉大学出版社,2002
    [7] 高立志,方勇,林志航等.高精度立体视觉测量中一种通用的摄像机标定技术.机械科学与技术,Vol.17 No.5:808-811,1998
    [8] 高新波,雷云,姬红兵,一种复杂背景下模板检测与定位的新方法,系统工程与电子技术,2004.1 Vol.26 No.1
    [9] 黄任飞,习俊通,马登哲,一种摄像机自动标定方法的设计与实现,测试技术学报,2004 Vol.18 No.2
    [10] 胡翔云.航空遥感影像线状地物与房屋的自动提取.博士学位论文,武汉:武汉大学,2001
    [11] 惠毓伦,施泽生,任意形状二值线图边缘跟踪的实现,青岛大学学报,1994 Vol.7 No.2
    [12] 贾云得,机器视觉,科学出版社,2000
    [13] 金为铣,杨先宏等,摄影测量学,武汉测绘科技大学出版社,1996
    [14] 李弼程,郭志刚,文超,图像的多层次模糊增强与边缘提取,模糊系统与数学,2000 Vol.14 No.4
    [15] 李德仁,郑肇葆.解析摄影测量学.北京:测绘出版社,1992.
    [16] 李德仁.摄影测量与遥感的现状及发展趋势.武汉测绘科技大学学报,Vol.25 No.1:1-5,2000
    [17] 李德仁等.摄影测量与遥感概论.北京:测绘出版社,2001
    [18] 李德仁,周月琴,金为铣.摄影测量与遥感概论.北京:测绘出版社,2001.
    [19] 李华,吴福朝,胡占义.一种新的线性摄像机自标定方法.计算机学报,Vol.23 No.11:1121-1129,2000
    [20] 李华,胡占义,基于射影重建的线性摄象机自标定方法,软件学报,2002,Vol.13,No.12
    [21] 李析,郑南宁,程洪,一种基于Kruppa方法的摄象机线性自标定方法,西安交通大学学报,2003.8 Vol.37 No.8
    [22] 林家明,面阵CCD摄像机光学镜头参数及其相互关系,光学技术,2000.3 Vol.26 No.2
    [23] 卢秀山,冯尊德,王东,张纯连,数码相机检校中的病态性及其解决措施,武汉大学学报(信息科学版),2003.5 Vol.28(Special Issue)
    [24] 吕铁英,彭嘉雄,图象轮廓特征提取新方法研究,中国图象图形学报,1999 Vol.4(A)No.8
    [25] 马颂德,张正友.计算机视觉—计算理论与算法基础.北京:科学出版社,1998
    [26] 孟晓桥,胡占义,摄象机自标定方法的研究与进展,自动化学报,2003.1 Vol.29 No.1
    [27] 邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述.自动化学报,Vol.26 No.1:43-55,2000
    [28] 仇彤,张祖勋,基于松弛法的影像边缘提取,武汉测绘科技大学学报,1994 Vol.19 No.4
    [29] 宋雪峰,杨明,王宏,基于网格状纹理的简易摄像机标定方法,计算机工程与应用,2003.7
    [30] 眭海刚.基于特征的道路网自动变化检测方法研究.博士学位论文,武汉:武汉大学,2002
    [31] 田峰.模式识别技术及其应用.中国科学报,1995年9月27曰
    [32] 田涌涛,王有庆,李从心,李娟,基于共线点的透镜畸变系数标定,上海交通大学学报,2003,Vol.37,No.11
    [33] 武汉大学测绘学院测量平差学科组.误差理论与测量平差基础.武汉大学出版社,2003
    [34] 吴福朝,胡占义,摄象机自标定的线性理论与算法,计算机学报,2001.11 Vol.24 No.11
    [35] 吴福朝,于洪川,袁波,韦穗,摄象机内参数自标定—理论与算法,自动化学报,1999.11 Vol.25 No.6
    [36] 吴军.三维城市建模中的建筑墙面纹理快速重建研究.博士学位论文,武汉:,武汉大学,2003.
    [37] 吴文琪,孙增圻,机器视觉中的摄像机定标方法综述,计算机应用研究,2004,第二期
    [38] 王磊,莫玉龙,戚飞虎,基于Canny理论的边缘提取改善方法,中国图象图形学报,1996.7 Vol.1,No.3
    [39] 王训四,邓善熙,杨永跃,视觉测量中一种平面标定新方法,应用科学学报,2004.7 Vol.22 No.2
    [40] 王兴文,李德仁,射影空间中摄影测量基本几何关系式的建立,武汉测绘科技大学学报,1999.9 Vol.24 No.3
    [41] 王之卓.摄影测量原理.北京:测绘出版社,1980
    [42] 王之卓.摄影测量原理续编.北京:测绘出版社,1986.
    [43] 席文明,芦俊,颜景平,一种摄象机内参数的改进标定方法,仪器仪表学报,2001,6,Vol.22 No.3
    [44] 辛勤,丁明跃,涂吉林,单像机有源形状恢复方法研究,自动化学报,2001.1 Vol.27 No.1
    [45] 许志群,吴海霞,摄影几何基础,高等教育出版社,1986
    [46] 杨长江,孙凤梅,胡占义.基于二次曲线的纯旋转摄像机自标定.自动化学报,Vol.27 No.3:310-317,2001
    [47] 杨长江,汪威,胡占义,一种基于主动视觉的摄象机内参数自定标方法,计算机学报,1998.5 Vol.21 No.5
    [48] 杨烜,梁德群.基于区域一致性测度的多尺度边缘检测方法.自动化学报,Vol.25 No.6:757-762,1999
    [49] 杨敏,沈春林,基于单平面模板的摄像机定标研究,数据采集与处理,2003.Mar,Vol.18
    [50] 游素亚,徐光祜.立体视觉研究的现状与进展.中国图象图形学报,Vol.2 No.1:17-24,1997
    [51] 袁野,田中旭,欧宗瑛,一种基于主动视觉的线性自标定方法,小型微型计算机系统,2003.11,Vol 24 No.11
    [52] 袁野,田中旭,一种基于平面直线的摄象机标定方法,上海交通大学学报,2004.4 Vol.38 No.4
    [53] 郑南宁.计算机视觉与模式识别[M].北京:国防工业出版社,1998.23-31.
    [54] 章毓晋.图像工程下册—图像理解与计算机视觉.北京:清华大学出版社,2000
    [55] 张备伟,吴福朝,基于正交平面的摄像机自定标,计算机工程与应用,2001
    [56] 张艳珍,欧宗瑛,一种新的摄像机线性标定方法,中国图象图形学报,2001 Vol.6(A),No.8
    [57] 张庆英,葛动元,岳卫宏,江霞,肖维红,摄像机标定精度研究中的图像及数据处理问题,疆大学学报(自然科学版),2004 Vol.21 No.1
    [58] 张永军,张祖勋,张剑清,利用二维DLT及光束法平差进行数字摄像机标定,武汉大学学报(信息科学版),2002,Vol.27 No.6
    [59] 张祖勋,张剑清,数字摄影测量学,武汉,武汉测绘科技大学出版社,1996
    [60] 张祖勋,张剑清,张世兴.单像房屋三维重建,2001年海峡两岸自动化工程测量研讨会论文集,2001
    [61] 张祖勋,张剑清。数字摄影测量学的发展和应用.测绘通报,No.6:12-17,1996
    [62] 张祖勋,张剑清,张力.数字摄影测量学发展的机遇与挑战.武汉测绘科技大学学报,Vol.25 No.1:7-11.2000
    [63] 张祖勋,张剑清,胡翔云,基于物方空间几何约束最小二乘匹配的建筑物半自动提取方法,武汉大学学报(信息科学版) 2001
    [64] 张祖勋.吴军.张剑清.建筑场景三维重建中影像方位元素的获取方法武汉大学学报(信息科学版)2003.03
    [65] 张祖勋,数字摄影测量的发展与展望,地理信息世界Vol.2 No.3,2004
    [66] 周德龙,潘泉,张洪才.图象模糊边缘检测的改进算法.中国图象图形学报,2001,6(4):353-358.
    [67] 祝海江,吴福朝,基于一组对应消失线的度量重建,软件学报,2004.Vol.15,No.5
    [68] A bdel-A ziz Y I, Karara H M. Direct linear transformation into object space coordinates in close-range pho togrammetry. In: Proc. Syrup. Close-Range Photogrammetry. 1971. 1~18
    [69] Almansa, A. Desolneux, A. Vamech, S. Vanishing point detection without any a priori information. Pattern Analysis and Machine Intelligence. Volume: 25, Issue: 4, 2003
    [70] Baillard, C., Schmid, C. , Zisserman, A. and Fitzgibbon, A. Automatic line matching and 3D reconstruction of buildings from multiple views. ISPRS Conference on Automatic Extraction of GIS Objects from Digital Imagery, IAPRS Vol. 32, Part 3-2W5(1999)
    [71] Brauer-Burchardt, C. Voss, K. Robust vanishing point determination in noisy images. Pattern Recognition, 2000 Vol. 1
    [72] Canny, J. A Computational Approach to Edge Detection. IEEE trans, on Pattern Analysis and Machine Intelligence, Vol PAMI-8, No 6, 679-698, 1986
    [73] Caprile, B., Torre, V., 1990. Using vanishing points for camera calibration. Int. J. Computer Vision, 4(2): 127-140
    [74] Carsten Rother. A new approach to vanishing point detection in architectural environments. Image and Vision Computing 20(2002) Vol: 20, Issue: 9-10, p647-655
    [75] C Harris, M Stephens. A combined comer and edge detector [A]. In: Proceedings of the 4th Alvey Vision Conference, Marchester, 1988. 147~151
    [76] Changming Sun, Uncalibrated three-view image rectification, Image and Vision Computing, Vol: 21, Issue: 3, 2003
    [77] Collins, R. T. Weiss, R. S. Vanishing point calculation as a statistical inference on the unit sphere. Computer Vsion, 1990
    [78] Criminisi, A., Reid, I. and Zisserman, A. Single view metrology. Proceedings of the 7th International Conference on Computer Vision, Kerkyra, Greece (1999)
    [79] Daniilidis, Konstantinosa; Emst, Jorga. Active intrinsic calibration using vanishing points. Pattern Recognition Letters. Vol: 17, Issue: 11, 1996
    [80] Demirdjian, D., Zisserman, A. and Horaud, R. Stereo Autocalibration From One Plane. Proceedings of the European Conference on Computer Vision (2000)
    [81] Du, F. Brady, M. Self-calibration of the intrinsic parameters of cameras for active vision systems. Computer Vision and Pattern Recognition, 1993
    [82] E. Lutton, H. Maitre, J. Lopez-Krabe, Contribution to the determination of vanishing points using hough transform. IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 16, No. 4 April 1994
    [83] Eklundh and Henrik I. Christensen 2001. Computer vision: past and future. R. Wilhelm (Ed.): Informatics. 10 Years Back. 10 Years Ahead, LNCS 2000, pp. 328-340, Springer-Verlag Berlin Heidelberg, 2001
    [84] Faugeras, Q. T. Luong and S. Maybank. Camera self-calibration: Theory and experiments. Computer Vision-ECCV'92, Lecture Notes in Computer Science, Vol. 588, Springer-Verlag, pp. 321-334, 1992
    [85] Fengjun Lv, Tao Zhao, Ram Nevatia Self-Calibration of a camera from video of a walking human. International Conference on Pattern Recognition, Quebec City, Canada, August 2002, pp. Ⅲ: 639-644
    [86] Fraser, Clive S. Digital camera self-calibration. ISPRS Journal of Photogrammetry and Remote Sensing. Vol: 52, Issue: 4, August, 1997
    [87] Grammatikopoulos, L., Karras, G., Petsa, E., 2003. Camera calibration approaches using single images of man-made objects. Proc. 19th CIPA Int. Syrup., Antalya, pp. 328-332.
    [88] Grammatikopoulos, L., G. Karras, E. Petsa, Camera calibration combining images with two vanishing points, ISPRS2004 CONGRESS
    [89] Grossmann, E; Santos-Victor, J Uncertainty analysis of 3D reconstruction from uncalibrated views, Image and Vision Computing, Vol: 18, Issue: 9, 2000
    [90] GuoQig WEI, SongDe MA, Two plane camera calibration: a unified model. Proceedings CVPR '91., IEEE Computer Society Conference on
    [91] Hartley R. Euclidean reconstruction from uncalibrated views. Applications of Invariance in Computer Vision, LNCS 825, 237-256, 1994
    [92] Hartley R. Self-calibration of stationary cameras. International Journal of Computer Vision, 22(1): 5-23, 1997
    [93] Hartley R and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, June 2000
    [94] Heuvel, F.A. van den Exterior Orientation using Coplanar Parallel Lines. 1997. Proceedings of the 10th Scandinavian Conference on Image Analysis, Lappeenranta, ISBN 951-764-145-1, pp.71-78
    [95] Heuvel, F.A. van den Vanishing Point Detection for Architectural Photogrammetry. 1998. International archives of photogrammetry and remote sensing. Vol.32 part5,ISSN 0256-1840
    [96] Heuvel, F.A. van den Estimation of interior orientation parameters from constraints on line measurements in a single image. 1999. International Archives of Photogrammetry and Remote Sensing, Vol. 32,Part 5W11,pp. 81-88
    [97] Heuvel, F.A. van den 3D Reconstruction from a Single Image Using Geometric Constraints. ISPRS Journal of Photogrammetry & Remote Sensing, Jaargang: 53, 6, ISSN
    [98] Heuvel, F.A. van den. A Line-photogrammetry mathematical model for the reconstruction of polyhedral objects. Proceedings of SPIE, Vol. 3641, pp60-71, 1999
    [99] Jefferey A. Shufelt, Performance Evaluation and Analysis of Monocular Building Extraction from Aerial Imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, No. 4, April 1999
    [100] J.K.Kearney, Xiaoli Yang, Shenzhi Zhang, Camera Calibration Using Geometric Constraints. Computer Vision and Pattern Recognition, 1989.
    [101] Jian-Gang Wang, Eric Sung. Pose determination of human faces by using vanishing points. Pattern Recognition (2001) Vol: 34, Issue: 12, p2427-2445
    [102] J.Bouguet, 2004. Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/
    [103] K.Achour *, M.Benkhelif, A new approach to 3D reconstruction without camera calibration, Pattern Recognition. Vol.34 Issue: 12. 2001
    [104] Kanatani,K. Statistical analysis of focal-length calibration using vanishing points. Robotics and Automation, IEEE Transactions on. Vol: 8, Issue: 6, 1992
    [105] Leung.J.C.H, NcLean.GF. Vanishing Point Matching. Image Processing, 1996. Proceedings., International Conference on,Vol.2,p305-308, Switzerland,Sep. 1996
    [106] Liebowitz, D., Criminisi, A., Zisserman A., Creating architectural models from images. Eurographics '99, Computer Graphics Forum, 18(3), pp. 39-50.
    [107] Liebowitz, D. and Zisserman, A. Combining Scene and Auto-calibration Constraints. Proceedings of the 7th International Conference on Computer Vision, Kerkyra, Greece (1999)
    [108] Liebowitz, D. Camera Calibration and Reconstruction of Geometry from Images. PhD thesis (2001)
    [109] Ling-Ling Wang, Wen-Hsiang Tsai Camera Calibration by Vanishing Lines for 3-D Computer Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991 (Vol.13, No.4)
    [110] M A Sid-Ahmed, T B Mohamed. Dual Camera Calibration for 3D Machine Vision Metrology [J]. IEEE Trons. Instrm. Meas, 1990, (39): 512-516.
    [111] McLean,G.F. Kotturi,D. Vanishing point detection by line clustering. Pattern Analysis and Machine Intelligence, IEEE Transactions on. Volume: 17, Issue: 11, 1995
    [112] Minagawa,A. Tagawa,N. Moriya,T. Gotoh,T. Line clustering with vanishing point and vanishing line. Image Analysis and Processing, 1999. Proceedings. International Conference on, 1999
    [113] M. Pollefeys and L. Van Gool. A stratified approach to self-calibration. Proc. 1997 Conference on Computer Vision and Pattern Recognition, IEEE Computer Soc. Press, pp. 407-412, 1997
    [114] M. Pollefeys and L. Van Gool. Stratified self-calibration with the modulus constraint. IEEE transactions on Pattern Analysis and Machine Intelligence, 1997
    [115] M. Pollefeys. Self-Calibration and Metric 3D Reconstruction from Uncalibrated Image Sequences. PhD Thesis, (Belgium), 1999
    [116] M. Pollefeys.; Koch, R.; Vergauwen, M.; Van Gool, L. Automated reconstruction of 3D scenes from sequences of images. ISPRS Journal of Photogrammetry & Remote Sensing Vol.55, Issue: 4 2000 251 267
    [117] Parodi,P. Piccioli,G. 3D shape reconstruction by using vanishing points. Pattern Analysis and Machine Intelligence, IEEE Transactions on. Vol.18, Issue.2, 1996.2
    [118] Paul E. Debevec. Modelling and Rendering Architecture from Photographs: A hybrid geometry-and image-based approach, SIGGRAPH, 1996
    [119] P. Sturm and Stephen J. Maybank. On Plane-Based Camera Calibration: A General Algorithm, Singularities, Applications. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, USA. 432-437, 1999
    [120] Q TLuong , O Faugeras. Self-calibration of moving camera from point correspondences and fundamental matrices [J ] . International Journal of Computer Vision , 1997 , 22(3) :261~289
    [121] R.Cipolla and E.Boyer. 3D model acquisition from uncalibrated images. In Proc.IAPR Workshop on Machine Vision Applications, Japan, 1998
    [122] R.Cipolla., Drummond, T., Robertson, D.P., 1999. Camera calibration from vanishing points in images of architectural scenes.Proc. 10th BMVC, pp. 382-391.
    [123] Rother C, 2000. A new approach for vanishing point detection in architectural environments. Proc. 11th BMVC, pp. 382 391.
    [124] R.Y. Tsai. An efficient and accurate camera calibration technique for 3D machine vision. Proc. IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, FL: 364-374, 1986
    [125] R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine visionmetrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, Vol. RA-3, No. 4, August, pp. 323-344, 1987
    [126] S.Barnard, Interpreting perspective images. Artificial Intelligence, Vol.21, 1983,435-462
    [127] Schaffalitzky,F; Zisserman,A Planar grouping for automatic detection of vanishing lines and points. Image and Vision Computing. Vol: 18, Issue: 9, June, 2000
    [128] Schenk T. Digital Photogrammetry. TerraScience, USA, 1999
    [129] Schuster.R, Ansari.N, Bani-Hashemi.A Steering a robot with vanishing points. Robotics and Automation IEEE Transactions on Rbotics and Automation,Vol.9,No. 4,august 1993
    [130] S Maybank, O D Faugeras. A theory of self-calibration of a moving camera [J]. International Journal of Computer Vision , 1992 ,8 (2) : 123 ~ 151
    [131] Van Gool, L., Proesmans, M. and Zisserman, A. Planar homologies as a basis for grouping and recognition. Image and Vision Computing (1998)
    [132] Wang Z. From Photogrammetry to Geomatics - a commemoration of accomplishment that is VirtuoZo, Volume 2, Number 1, VirtuoZo Manuscript, Brisbane, Australia, 1995.
    [133] Weiss,R.S. Nakatani,H. Riseman,E.M. An error analysis for surface orientation from vanishing points. Pattern Analysis and Machine Intelligence, IEEE Transactions on. Vol.12, Issue: 12,1990 p1179-1185
    [134] Weng J, P Cohen, M Hemious. Calibration of Stereo Cameras Using a Nonlinear Distortion Nodel (CCD Sensory) [C]. Proc. 10th Int. conf. Pattern Recognition, 1990. 246-253.
    [135] Wexler, Y., Fitzgibbon, A. and Zisserman, A. Learning epipolar geometry from image sequences. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2003)
    [136] Wu Qing, Xu Guangyou, Wang Lei. A Three-stage System for Camera Calibration. SPIE Conference Proceeding: Multispectral Image Processing and Pattern Recognition, 22-24 October 2001, Wuhan
    [137] Zhengyou Zhang. A Flexible New Technique for Camera Calibration.Technical Report, Microsoft Research, 1998
    [138] Zhengyou Zhang. Determining the Epipolar Geometry and its Uncertainty: A Review. International Journal of Computer Vision, Vol.27 No.2, pp.161-198, 1998
    [139] Zhengyou Zhang, Camera Calibration with One-Dimensional Objects. IEEE Transactions on pattern analysis and machine intelligence, vol. 26, No. 7, July 2004
    [140] Zisserman, A., Forsyth, D, Mundy, J. , Rothwell, C. , Liu, J. and Pillow, N. 3D Object Recognition Using Invariance. Artificial Intelligence (1995)
    [141] Zisserman, A., Liebowitz, D. and Armstrong, M. Resolving Ambiguities in Auto-Calibration. Philosophical Transactions of the Royal Society of London, Series A (1998)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700