新型车用悬架高度自动调中装置的设计验证及仿真优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用悬架高度(包括车高和座高)自动调中装置能改善悬架性能、延长机件寿命。此外,车高自动调中装置还可保持良好的车身姿态,兼具静态型前照灯自动调平装置的功用;座高自动调中装置还能保持相对稳定的座椅高度,提供良好的驾驶视野和操作条件。本文以上海市“青年科技启明星计划”资助项目(04QMX1474)为工程背景,针对传统座高和车高调节装置存在的各自不足,提出了一种具有高性价比的新型悬架高度自动调中方案,能通过全机械方式实现座高和车高的自动调中,而无须外界能量供给。为逐步、系统地考察该自动调中装置的性能特点,先后对座高和车高自动调中器进行了结构设计、实验验证、仿真分析和参数优化。全文共分五章:
     第一章(绪论)首先介绍了座椅悬架和车辆悬架的基本功用及性能要求;然后回顾了传统悬架高度调节装置的背景技术和研究现状,包括手动式和气动式座高调节装置、以及无源式和有源式车高自动调平装置;最后概述了本文的研究价值和研究内容。
     第二章(创新设计及实验验证)为弥补传统悬架高度调节装置的各自不足,提出了机械式悬架高度自动调中装置的创新设计方案。为验证该方案的可行性和有效性,先以某重型货车的驾驶员座椅悬架为研究对象,对座高自动调中悬架进行了结构设计和样机试制,并通过台架试验分析初步验证了该方案的可行性和有效性。针对座高自动调中悬架存在噪声和摩擦阻尼较大等问题,再以某轻型客车的非独立后悬架为研究对象,对车高自动调中器进行了改进设计和样机试制,并通过道路试验分析进一步验证了该方案的可行性和有效性;最后,还对原理样机的结构和性能缺陷进行了改进分析。
     第三章(数学建模及仿真分析)首先,按照多体动力学建模方法,建立了手动调中和自动调中座椅悬架的数学模型;为比较两种座椅悬架的性能差异,采用SimMechanics机构仿真工具,分别在扫频和正弦地板激励下对两种座椅悬架进行了时域和频域性能的仿真分析。其后,在考虑了不同载荷、非线性悬架刚度和阻尼的基础上,分别建立了普通和调中车辆悬架的单轮模型;为考察车身俯仰运动对车身姿态和前照灯照距的影响,进一步建立了两种车辆悬架的半车模型。最后,基于Simulink仿真环境,分别在随机和脉冲路面激励下对两种车辆悬架进行了时域和频域性能的仿真分析,从而得出了机械式车高自动调中悬架的主要特性。
     第四章(设计参数的多目标优化)根据最优化方法的基本理论,通过加权和法建立了车高自动调中器设计参数的多目标优化模型,并采用复合形法直接搜索求解出最优解;其后依据离散变量优化方法,推导出调中组件的选型设计参数,并对优化结果进行了检验和分析。从而在保证悬架性能的前提下,充分发挥了自动调中器的调中性能。
     第五章(全文总结)归纳了本文的主要研究结论和主要创新成果,并展望了本课题的后续研究任务。
The main benefits by adopting a suspension height self-centering device have been proved in practice for many years, i.e., suspension performances can be significantly improved and component lifespan can be prolonged. Besides, the self-centering device for vehicle body height can maintain proper body attitude along with the function of self-aligning for headlights,and the self-centering device for seat height can keep steady seat height and provide good visual scope and operating condition for driver. Taking the“Youth Technological Phosphor Project”of Shanghai City (04QMX1474) as engineering background, a novel suspension height self-centering device is researched and developed in this dissertation. By analyzing the defects of the conventional self-centering devices both for seat and body height adjustment, a novel pure-mechanical scheme with high performance-price ratio is proposed which can realize the self-centering of suspension height but without the need of hydraulic and electrical system hardware and corresponding energy supply.
     Respectively for vehicle suspension and seat suspension, the structure design, experimental validation, simulation analysis and parameter optimization of the mechanical self-centering devices are sequently performed. The dissertation includes five chapters as follows:
     In the first chapter (Introduction), the basic functions and performance requirements respectively for seat suspension and vehicle suspension are introduced firstly. Then technical background, including the practical application and characteristics for different conventional height adjustable devices, such as the manually/pneumatically adjustable devices for seat height and the passive/active self-leveling devices for body height are reviewed. Finally, the significance and content of the study in this dissertation are presented.
     In the second chapter (Novel Design and Experimental Validation), the design scheme of the proposed mechanical self-centering device for suspension height is described in detail. Firstly, taking the driver seat suspension of a particular heavy truck as a preliminary research example, a prototype of mechanical self-centering seat suspension is developed based on the novelly-designed structure. The first-round prototype tests show that this design scheme is feasible except some problems, e.g., relatively high level of noise and friction damping. Hence, an improved design for more significant design subject, i.e., the rear independent suspension of a light bus is proposed. Based on the re-designed mechanical self-centering device for vehicle suspension, a prototype is developed for experimental study. The real road tests proved the effectiveness of the vehicle height self-centering device, so the feasibility of the design scheme is further experimentally validated. Meanwhile, the shortcomings of the prototype in terms of structures and performances are analyzed.
     In the third chapter (Mathematical Modeling and Simulation Analysis), respectively using multi-body system dynamics modeling method, the mathematical models for both manual-centering and self-centering seat suspensions are built firstly. In order to examine the characteristics of mechanical self-centering seat suspension and make comparison, the performances of both types of seat suspensions in frequency and time domains are analyzed by simulations in SimMechanics software environment with the typical floor-board excitations, i.e., swept and sine wave, etc. Since the body pitch angle must be concerned for body attitude with significant influence on headlight performance, a half-vehicle model respectively with/without self-centering device is established in which both spring and damping nonlinearities have been considered. By using Simulink software, the performances of both configurations with the road excitations of random and pulse are analyzed by simulations, and the main characteristics of the mechanical self-centering vehicle suspension are presented.
     In the fourth chapter (Multi-object Optimization of Design Parameters), a multi-object parameter design optimization model for the vehicle suspension self-centering device is built by weighted sum approach, and optimal solution is obtained by adopting compound shape approach. Then, the relevant selecting-type parameters for self-centering device components are deduced by using discrete variable optimal method. Finally, the optimal results are verified and analyzed to examine performance potentials of the designed self-centering device in condition of ensuring overall suspension performances.
     In the fifth chapter (Summary), the research contributions and innovation achievements in this dissertation are summarized and the further work is prospected.
引文
[1]汽车工程手册编委.汽车工程手册[M].人民交通出版社,2001.5.
    [2] Robert Bosch GmbH. Bosch automotive handbook (7th edition)[M]. John Wiley & Sons, Nov 2007.
    [3]余志生.汽车理论(第四版)[M].机械工业出版社,2006.5.
    [4]王望予.汽车设计(第四版)[M].机械工业出版社,2006.1.
    [5]喻凡,林逸.汽车系统动力学[M].机械工业出版社,2005.9.
    [6]葛如海,刘志强,陈晓东.汽车安全工程[M].化学工业出版社,2005.9.
    [7]刘浩学.汽车使用安全技术(第二版)[M].人民交通出版社,2004.10.
    [8]袁晖.前大灯照距调节系统[J].汽车实用技术,2003(11):26-28.
    [9]朱卫江.车辆座椅结构和性能的评价与展望[J].拖拉机与农用运输车,2004,(3):3-8.
    [10]徐晓美,朱思洪.驾驶员座椅悬架系统研究综述[J].拖拉机与农用运输车,2005,(4):1-3.
    [11] Peter C. Karftfahrzeugsto?daempfer[M]. ZF Sachs Co., Ltd. 2002.1.
    [12] John P. ZF Sachs' self-leveling monotube shock is a proven and inexpensive way to improve vehicle stability[J]. Automotive Industries, Sep 2003.
    [13]翟维丽,杨兆升,张广世.汽车空气悬架高度控制阀动力学模型的研究[J].汽车技术,2006,(5):12-15.
    [14]刘波.客车电控空气悬架系统及其发展趋势[J].汽车与配件,2007,39:42-45.
    [15]李栓成,王天颖.现代轿车电控悬架的结构原理和检修[M].北京理工大学出版社,1998.
    [16] Porsche Cars Ins. Cayenne overview[OL]. www.porsche.co.nz/Models/Cayenne/cayenne_my06.pdf.
    [17] Citroen Cars Ins. Citroen's hydropneumatic suspension[OL]. www.citroen.mb.ca/citroenet/ miscellaneous/hydraulics/hydraulics-1.html.
    [18] Anon. Suspension Analysis and Self-levelling[J]. Automotive Engineer, 1984, 9 (2): 33-37.
    [19] Takahashi H. Motor vehicle with leveling mechanisms[P]. US4730838. Aug 19, 1986.
    [20] Hayashi Y, Abe S. Hydraulic type vehicle height adjusting device for attachment to vehicle shock absorber[P]. US5022501. Sep 19, 1989.
    [21] Sommer N. Self-pumping hydropneumatic shock absorbing strut[P]. US5062616. Apr 30, 1990.
    [22] Tang J S, Hall B B. Self-energizing, self-levelling controllable damper unit for a vehicle suspension[P]. US5476161. Dec 22, 1994.
    [23] Hayakawa Y, Nakahara K. Damper with vehicle height adjustment function[P]. US6247683. July 30, 1999.
    [24] Jensen E L, Kruckemeyer W C, Miller T A, et al. Pneumatic self leveling suspension damper[P]. US6547224. Apr 12, 2001.
    [25]周苗长.纯机械无能耗的自动悬架:中国,021582718[P].2002-12-20.
    [26] Oliver M L, Bishop T A. Self leveling vehicle suspension damper[P]. EP1396360. Aug 8, 2003.
    [27] Baba T. Self leveling vehicle suspension damper[P]. EP1502777. July 30, 2004.
    [28] Beck H. Self-pumping hydropneumatic suspension strut[P]. US7021434. July 2, 2004.
    [29] Nogami S, Baba T. Vehicle height adjusting device[P]. US20070227847. Mar 23, 2007.
    [30] Alirand M, Lachaize H, Lebrun M. Study and analysis of an active self levelling suspension[C]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, IEEE, 1993, 2: 222-227.
    [31] Burton A W, Truscott A J, Wellstead P E. analysis, modelling and control of an advanced automotive self-levelling suspension system[J]. Control Theory and Applications, 1995, 142 (2): 129-139.
    [32]陈志林,金达锋,马国新等.基于变结构与PID联合控制策略的车身高度控制仿真[J].清华大学学报(自然科学版),1999,39(8):72-75.
    [33] Kuhar M S. Truck ride height adjustment[J]. Pit & Quarry, 1999, 91 (9): 86-87.
    [34] Elia N, Brandin B. Verification of an automotive active leveler[C]. Proceedings of the American Control Conference, IEEE, 1999, 4: 2476-2480.
    [35]郭孔辉.汽车悬架多工位高度控制机构:中国,2005100171951[P].2005-10-17.
    [36]曹民.机械式悬架高度自动调中器:中国,200410015615.8[P].2004-1-2.
    [37]朱孝录主编.机械传动设计[M].江西科学技术出版社,2002.1.
    [38]机械设计手册(第三版)[M].机械工业出版社,2006.1.
    [39]田军委,王建华等.超精密驱动机构比较[J].西安工业学院学报,2002,22(1):62-66.
    [40]黄祖尧.精密高速滚珠丝杠副的最新发展及其应用[J].航空制造技术,2003(4):36-40.
    [41]曹民.机械式车高自动调中器:中国,200820125184.4 [P].2008-3-11.
    [42] Michael B, Damian H. The multibody systems approach to vehicle dynamics[M]. Butterworth-Heinemann, July 2004.
    [43]包继华,张建武,于岩.汽车整车多体系统动力学建模和仿真[J].计算机仿真,2004,21(1):53-56.
    [44]黄永安,马路,刘慧敏.MATLAB7.0/Simulink6.0建模仿真开发与高级工程应用[M].清华大学出版社,2005.12.
    [45]尚涛,石端伟等.工程计算可视化与MATLAB实现[M].武汉大学出版社,2002.1.
    [46]姚为明.汽车座椅结构安全性与空气悬挂式座椅减振性能研究:[博士学位论文].吉林大学,2005.10.
    [47]潘世荣,胡水华,张军.刚度-阻尼自动调节式汽车座椅悬架系统的研究[J].重型汽车,1996,32(1):26-28.
    [48]杨英,张国忠.工程车辆驾驶座椅悬架系统及其控制模型[J].矿山机械,2000,(2):26-28.
    [49] Thomas G. An investigation of suspension seat damping using a theoretical model[C]. the 35th meeting of the U.K. Group on Human Response to Vibration, 2000: 137-149.
    [50] Andrew R, EIT, BSME. CBM suspension seat vibration transfer test analysis[OL]. www.Americanergonomics.com.
    [51] T Gunston, M J Griffin. The isolation performance of a suspension seat over a range of vibration magnitudes tested with an anthropodynamic dummy and human subjects[C]. A Paper Presented to Inter-Noise’99, Florida, USA, 1999: 121-126.
    [52]罗卫东.汽车“人体-座椅”系统模型与动力学参数选择[J].山地农业生物学报,1999,18(6):402-412.
    [53]高爱云,徐锐良,付主木.非线性座椅悬架动态参数的研究[J].拖拉机与农用运输车,2004,(4):15-17.
    [54]徐晓美,朱思洪.基于MBS的剪式座椅垂向刚度特性比较分析[J].机械设计与制造,2006,(7):21-23.
    [55]徐晓美,朱思洪.基于MBS的剪式座椅静态和动态特性仿真研究[J].机械科学与技术,2006,25(6):684-686.
    [56]徐晓美,朱思洪.一种剪式座椅振动特性的理论分析[J].中国机械工程,2006,17(8):802-804.
    [57]张润生,赵铨,陈刚.座椅悬架非线性弹性特性的优化和实验验证[J].农业机械学报,2001,32(5):19-21.
    [58] Hill K, Dhingra A. Modeling, analysis and optimization of a scissors linkage seat suspension[J]. Engineering Optimization, 2003, 35 (4): 341-357.
    [59]陈南.汽车振动与噪声控制[M].人民交通出版社,2005.8.
    [60]檀润华,陈鹰,路甬祥.路面对汽车激励的时域模型建立及计算机仿真[J].中国公路学报,1998,11(3):96-102.
    [61]王其东,乔明侠,梅奋永.汽车随机路面输入平顺性的仿真分析[J].合肥工业大学学报(自然科学版),2005,28(4):346-350.
    [62]曹丽亚,覃文洁,谷中丽.汽车脉冲输入平顺性的仿真分析[J].计算机仿真,2002,19(4):79-82.
    [63]陈士安,何仁,陆森林.汽车平顺性评价体系[J].江苏大学学报(自然科学版),2006,27(3):229-233.
    [64]王明容,宋永增,甄子健等.汽车平顺性建模与仿真分析[J].汽车技术,2005(4):7-10.
    [65]丁能根,薄颖,冉晓凤等.基于协同仿真技术的车辆非线性平顺性分析[J].北京科技大学学报,2006,28(11):1047-1051.
    [66]过秀成.道路交通安全学[M].东南大学出版社,2001.8.
    [67]刘志强,葛如海,龚标.道路交通安全工程[M].化学工业出版社,2005.2.
    [68]汪建平,邓云塘,钱公权.道路照明[M].复旦大学出版社,2005.3.
    [69] Robert Bosch GmbH. Automotive electrics and automotive electronics (5th edition) [M]. John Wiley & Sons, Dec 2007.
    [70]王武宏,孙逢春,曹琦等.道路交通系统中驾驶行为理论与方法[M].科学出版社,2001.8.
    [71]刘哲义.对影响轮胎与路面间附着性能因素的分析[J].公路,2000(6):48-51.
    [72] Marc G.“How long does it take to stop?”Methodological analysis of driver perception-brake times[J]. Transportation Human Factors, 2000, 2 (3): 195-216.
    [73]曹民.多功能手/自动互补式前照灯变光器:中国,200710148653.4[P].2007-8-31.
    [74]田国红,李刚,齐艳.基于ANSYS的车用橡胶件刚度特性研究[J].应用力学学报,2003,20(2):182-185.
    [75]毕凤荣,沈学峰,郑祚馨等.悬挂系统阻尼非对称性对车身振动的影响[J].天津大学学报,1998,31(6):831-834.
    [76]王一兵,徐明龙,邱阳等.汽车液压阻尼器的四段线性化模型[J].辽宁工学院学报,2006,26(3):60-63.
    [77]庄继德.现代汽车轮胎技术[M].北京理工大学出版社,2001.3.
    [78] Pacejka, Hans B. Tire and vehicle dynamics (2nd edition)[M]. Society of Automotive Engineers, 2006.
    [79]俞德孚,马彪,李小雷.车辆随机振动与悬架控制原理[M].兵器工业出版社,1992.12.
    [80]高卫民,刘宵,李晓萌等.汽车悬架振动分析研究方法[J].同济大学学报,1997,25(5):537-541.
    [81]谢俊,郭晨海,刘军等.非线性悬架动力学数值模拟和性能评价[J].江苏大学学报(自然科学版),2004,25(3):216-219.
    [82]祝少春.扭杆式双横臂独立悬架车辆悬架状态与空车高度的控制[J].汽车技术,2003,(10):4-6.
    [83]万永革.数字信号处理的MATLAB实现[M].科学出版社,2007.4.
    [84]薛年喜.MATLAB在数字信号处理中的应用(第2版)[M].清华大学出版社,2008.1.
    [85]王科社.机械优化设计[M].国防工业出版社,2007.4.
    [86]解可新,韩健,林友联.最优化方法(修订版)[M].天津大学出版社,2004.8.
    [87]曹卫华,郭正.最优化技术方法及MATLAB的实现[M].化学工业出版社,2005.1.
    [88]褚洪生,杜增吉,阎金华等.MATLAB7.2优化设计实例指导教程[M].机械工业出版社,2007.3.
    [89]郭仁生.基于MATLAB和Pro/ENGINEER优化设计实例解析[M].机械工业出版社,2007.7.
    [90]孔令波,刘静,李慧等.基于MATLAB优化工具箱的五自由度汽车悬架系统设计[J].长春大学学报,2004,14(6):1-4.
    [91] Srinivas K, Jaroslaw S. Multidisciplinary design optimisation - some formal methods, framework requirements, and application to vehicle design[J]. International Journal of Vehicle Design, 2001, 25 (1-2): 3-22.
    [92] Fucheng W, Weijiun S. Impact of inerter nonlinearities on vehicle suspension control[J]. Vehicle System Dynamics, 2008, 46 (7): 575-595.
    [93] Georgiou G, Verros G, Natsiavas S. Multi-objective optimization of quarter-car models with a passive or semi-active suspension system[J]. Vehicle System Dynamics, 2007, 45 (1): 77-92.
    [94] Gobbi M, Mastinu G. Analytical description and optimization of the dynamic behaviour of passively suspended road vehicles[J]. Journal of Sound and Vibration, 2001, 245: 457-481.
    [95] Massimiliano G, Francesco L, Giampiero M. Multi-objective stochastic optimisation of the suspension system of road vehicles[J]. Journal of Sound and Vibration, 2006, 298 (4-5): 1055-1072.
    [96] Joao P C G, Jorge A C A. Optimization of vehicle suspension systems for improved comfort of road vehicles using flexible multibody dynamics[J]. Nonlinear Dynamics, 2003, 34: 113-131.
    [97] Yuping H, John M. Application of optimisation algorithms and multibody dynamics to ground vehicle suspension design[J]. International Journal of Heavy Vehicle Systems, 2007, 14 (2): 158-192.
    [98] H H Chun, S J Kwon, T Tak. Reliability-based design optimization of automotive suspension systems[J]. International Journal of Automotive Technology, 2007, 8 (6): 713-722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700