鸟撞飞机风挡动响应分析与仿真试验平台研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸟撞经常给飞机安全带来灾难性的后果。据美国空军1987年关于鸟撞事故中撞击部位的统计,鸟撞风挡/座舱盖的次数占总数的21.4%,位居首位,而且,研究表明撞击这个部位比撞击其它部位更为危险。目前,国内鸟撞风挡的研究主要依赖于鸟撞试验,并结合数值方法进行仿真分析,但现有模型仿真分析结果与鸟撞试验结果存有较大差距,很难满足工程上对虚拟数值试验的要求。因此,进一步对鸟撞试验和数值仿真建模关键技术开展深入研究,并在此基础上
     建立一个鸟撞风挡仿真虚拟试验平台,具有现实的工程意义和重要的学术价值。首先通过某型飞机全尺寸风挡鸟撞试验,采用高速摄像系统和数据测量采集系统详细研究了鸟撞风挡的动响应全过程,分析了风挡遭鸟撞击后的破坏模式,得到了风挡抗鸟撞击的临界速度及结构关键点的位移、应变时间曲线等重要数据。所获结果为建立合理的鸟撞风挡有限元模型提供了重要的试验依据及验证算例。
     选取鸟撞铝板模型为研究对象,详细研究了三种鸟体几何形状及多种鸟体本构关系对靶体撞击力和变形响应的影响,经与文献试验结果分析、对比,获得了与试验结果最为吻合的鸟体几何形状和鸟体本构关系,并基于优化方法反演求解出该鸟体本构关系的最优材料参数。采用非线性有限元方法,基于ABAQUS/Explicit软件平台及内嵌的材料用户定义子程序(VUMAT),建立了鸟撞飞机风挡的力学分析模型,详细模拟了鸟撞风挡时损伤产生及演化的全过程。通过与全尺寸风挡鸟撞试验结果的对比,验证了该有限元模型的有效性。分析比较了考虑与不考虑弧框和骨架作用的两种不同边界条件对风挡动响应分析结果的影响。分别探讨了玻璃骨架、橡胶垫片的厚度和弹性模量对风挡抗鸟撞能力的影响规律。经详细研究无机玻璃/PVB/有机玻璃层合结构整体式圆弧风挡的抗鸟撞性能,分析了胶层(PVB)厚度、无机玻璃层厚度、有机玻璃层厚度、不同层合结构对整体式圆弧层合风挡的抗鸟撞性能的影响规律。
     最后,详细研究了建立鸟撞风挡仿真试验平台的总体方案、关键技术、详细设计及其实现,并通过实例验证了该鸟撞风挡仿真试验平台的有效性和实用性。该鸟撞仿真平台可以为风挡设计和改型的工程应用提供便捷和帮助。
The bird impact against aircraft structures can cause catastrophic damages. The statistical data from U.S.Air Force in 1987 showed that the probability of windshield and cockpit impacted by birds was about 21.4%, the biggest probability comparing with the other components of the aircraft. The records also presented that the impacted windshield and cockpit was much more dangerous than the other components. At present, the common way to determine the windshield’s capabity against bird-stike is to carry out a full-scale bird-strike experiment. In the meantime, finite element (FE) analysis is taken as an important method to simulate the whole process of bird strike windshield. But numerical results of current models are not in good agreement with the experimental data. It is difficult for the numerical simulation of bird strike against windshield to meet the engineering requirement. Therefore, it is necessary to continue studying on the bird strike behavior of aircraft windshield by the means of both experiments and numerical analysis, and to build a virtual bird-strike test platform as well. The investigation has much more important academic value and practical engineering significance.
     Firstly, an experimental study was performed on bird impact against a full-scale aircraft windshield. The whole dynamic response process of bird impact on windshield was recorded with the high speed video cameras and the data acquisition system. A comprehensive discussion was presented on the deformation of bird and windshield, and the damage modes of the windshield. Experimental results, the history curves of the displacement and the strain of all the measure points on the windshield, were obtained. The experimental study provides an important physical basis and verification cases for establishing a reasonable finite element model of bird strike on the aircraft windshield.
     Secondly, the bird FE model was studied through the combination analysis of three kinds of geometry shapes and several constitutive equations. The impact force and displacement histories were calculated and compared with the experimental data of bird impact on a flat aluminum plates. A reasonable bird geometry shape and a constitutive model were obtained, of which the analysis results was the most agreeable with the experimental data. The parameters of the bird constitutive model were optimized by the optimization methods.
     Thirdly, based on the experiment investigation, a finite element model of bird impact on the windshield was established to predict the damage initiation and propagation of the windshield after bird impact via the nonlinear finite element method, combined with the user-defined materials subroutine (VUMAT) of the ABAQUS/Explicit software. By comparing the instantaneous deformation of bird and windshield, the damage modes of the windshield, displacement curves and strain curves of the measured points on the windshield, it was shown that the simulation results and the full-scale bird impact test results had a good agreement. The boundary conditions of the windshield FE model were discussed via two modeling strategies. One way was to simplify the supporting structures around the windshield glass as the fixed constraint boundary condition acting on the windshield glass directly. The other way was to take into account the surrounding structure of the windshield glass in the FE model. The sensitivities of the design parameters of aircraft windshield, including skin thickness, skin elastic modulus, rubber thickness, and rubber elastic modulus, were discussed to the windshield’s capability against bird-strike comprehensively. In addition, the capability of the layered windshield against bird-stike, composed of inorganic glass, PVB and organic glass, was discussed with the different adhesive film (PVB) thickness, inorganic glass thickness, organic glass thickness, as well as the different numbers of layer.
     Finally, based on the previous study, a virtual test platform of bird impact on aircraft windshield was studied and established for the engineering application. Presented in the paper were the general schematic of the platform, the key technology, the detail design of each function modules. An expample of the bird strike test of aircraft windshield showed the efficiency and practicability of the virtual test platform. It was shown that the virtual test platform could be helpful for designing and modifying an aircraft windshield.
引文
[1] Completeness and accuracy of birdstrike reporting in the UK: UK: Civil Aviation Authority. CAA Paper, 2006.
    [2] Thompson MM, Defusco RP, Will TJ. Bird strikes to U.S.Air force aircraft 1983-1985. ADF616058, 1986.
    [3] De Fusco RP. United States air force bird strike summary (1986-1987). ADF616023, 1988.
    [4] Merritt RL. Bird strikes to U.S.Air force aircraft 1988-1989. ADF616442, 1990.
    [5] Merritt RL. Bird strikes to U.S.Air force aircraft 1987-1991. ADF619872, 1992.
    [6] Driscoll AT. Birdstrike and the United States air force. ADA0321141, 1975.
    [7] Bivings B. The U.S. Navy's bird aircraft strike hazard (BASH) problem 1985-1989. ADF616441, 1990.
    [8] Thorpe J, Wessum R. Bird strikes during 1983 to European registered civil aircraft. ADF616066, 1986.
    [9] Turner CJ. Military aircraft bird strike analysis 1983-1984. ADF616074, 1986.
    [10] Thorpe J. Bird strikes during 1984 to European registered civil aircraft. ADF616079, 1986.
    [11] Thorpe J. Analysis of birdstrikes reported by European airlines 1981-1985. ADF616427, 1990.
    [12] Thorpe J. Serious birdsttikes to civil aircraft 1987-1989.ADF616428, 1990.
    [13] .
    [14] Speelman RJ, McCarty RC. Improving Birdstrike Resistance of aircraft windshilelds. ADF616405, 1990.
    [15] West BS. Design and testing of F-111 bird resistant windshield/support structure. AFFDL-TR-76101, 1976.
    [16] McCarty RE. Finite element analysis of F-16 aircraft canopy dynamic response to bird impact loads. AIAA-80-0804, 1980.
    [17]臧曙光.飞机风挡抗鸟撞设计研究.北京,中国建筑材料科学研究院, 1999.
    [18]张启桥,许宗庆.飞机圆弧风挡鸟撞动响应研究.航空学报. 1991, 12(2): B100-B105.
    [19]张志林,姚卫星.飞机风挡鸟撞动响应分析方法研究.航空学报. 2004, 25(6): 577-580.
    [20] Yang JL, Jie CX, Hao WC. Experiment and FEM study of windshield subjected to high speed bird impact. ACTA Mechanica Sinica. 2003, 19(6): 543-550.
    [21]姚小虎,韩强,张晓晴等.飞机圆弧风挡抗鸟撞试验研究.爆炸与冲击. 2005, 25(5): 417-412.
    [22] Swanson SR, Christensen LW. A constitutive formulation for high-elongation propellants. Journal of Spacecraft and rockets. 1983, 20(6): 559-566.
    [23] McCarty RE, Hart JL. Validation of the MAGAN computer program for nonlinear finite element analysis if aircraft transparency bird impact. AFWAL-TR-83-4154, 1983.
    [24] Brockman, Robert A. MAGNA: A finite element system for three-dimensional nonlinear static and dynamic structural analysis. computer & Structures. 1981(13): 415-423.
    [25] McCarty RE. MAGNA computer simulation of bird impact on the TF-15 aircrft canopy. ADA140701, 1983.
    [26] Barber JP, Boehman LI. The modeling of impact Loads. AD-A065049, 1978.
    [27]张志林,张启桥,李铭兴.飞机圆弧风挡鸟撞动响应分析.航空学报. 1992, 13(9): A538-A542.
    [28] McCarty RE. Finite element analysis of a bird-resistant monolithic stretched acrylic canopy design for the F-16A aircraft. AIAA-81-1640, 1981.
    [29] Boroughs RR. High speed bird impact analysis of the learjet 45 windshield using DYNA3D. AIAA-98-1705, 1998.
    [30] Huertas-Ortecho CA. Robust bird-strike modeling using LS-DYNA: Mechanichal Engineering, University Of Puerto Rico Mayagüez Campus, 2006.
    [31] Kirtil E, Pestal D, Kollofrath A. Simulating the impact behaviour of composite aircraft structures. 2003 ABAQUS User's conference, 2003.
    [32] Wang P, zhuang Z, Wang JY. Study for windshield against bird-impact by simulation and experiment.第一届工程科学与力学中的计算方法国际会议论文集, 2006:79-83.
    [33] Dobyns A. Bird strike analysis of S-92 vertical tail rotor using DYTRAN. The AHS affordable composite structures conference, 1998.
    [34] Rueda F, Beltrán F, Maderuelo C. Birdstrike analysis of the wing slats of EF-2000: WIT press, 2002.
    [35] Airoldi A, Cacchione B. Numerical analysis of bird impact on aircraft structures undergoing large deformations and localised failures. WIT Transactions on Engineering Sciences. 2005, 49, Impact loading of lightweight structures.
    [36] Airoldi A, Cacchione B. Modelling of impact forces and pressures in Lagrangian bird strike analyses. International journal of impact engineering. 2006(32): 1651-1677.
    [37] Nizampatnam LS. Models and methods for bird strike load predictions. Wichita: the department of aerospace engineering, Wichita state university, 2007.
    [38] Anghileri M, Castelletti LL, Mazza V. Birdstrike: approaches to the analysis of impacts with penetration. WIT Transactions on Engineering Sciences. 2005, 49, Impact loading of lightweight structures.
    [39] Dobyns A, Young R. Bird strike analysis and test of a spinning S-92 tail rotor. American helicopter society society 57th annual forum, 2001.
    [40]中华人民共和国国家军用标准. GJB 2462 - 95.飞机玻璃鸟撞试验方法, 1996.
    [41]臧曙光,马眷荣,秦海霞,等.无机/有机复合圆弧风挡抗鸟撞能力数值仿真分析.航空材料学报. 2003, 23(增刊): 183-185.
    [42] Brockman RA, Held TW. Explicit finite element method for transparency impact analysis. Dayton, OH: University of Dayton Research Institute. WL-TR-91-3006, 1991.
    [43] Frischbier J. Bird strike capability of a transonic fan blisk. In: Proceedings of the ASME Turboexpo 1997. Orlando, FL, 1997.
    [44] Langrand B, Bayart AS, Chauveau Y. Assessment of multi-physics FE methods for bird strike modelling—application to a metallic riveted airframe. International Journal of Crashworthiness 2002, 7(4): 415-428.
    [45] McCarthy MA, Xiao JR, McCarthy CT. Modelling of bird strike on an aircraft wing leading edge made from fiber metal laminates-part 2:Modeling of impact with SPH bird model. Applied Composite Materials. 2004, 11(5): 317-340.
    [46] Hanssen AG, Girard Y, Olovsson L. A numerical model for bird strike of aluminium foam-based sandwich panels. International Journal of Impact Engineering. 2006, 32: 1127-1144.
    [47] Johnson A, Holzapfel M. Modelling soft body impact on composite structures. Composite Structures. 2003, 61: 103-113.
    [48] Richard B. The development of a substitute artificial bird by the international Bird strike Research Group for use in aircraft component testing. International Bird Strike Committee ISBC25/WP-IE3. Amsterdam, 2000.
    [49]关玉璞,陈伟,黄志勇.一种鸟撞击叶片的切割模型.南京航空航天大学学报. 2004, 36(6): 784-786.
    [50] Airoldi A, Tagliapietra D. Bird impact simulation against a hybrid composite and metallic vertical stabilizer. 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, andMaterials Conference and Exhibit.AIAA-2001-1390. Seattle (WA-USA); 2001:1-10.
    [51] Georgiadis S, Gunnion AJ, Thomson RS. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge. Composite Structures. 2008: 1-12.
    [52]朱书华,童明波.鸟体形状对飞机风挡鸟撞动响应的影响.南京航空航天大学学报. 2008, 40(4): 551-555.
    [53] Meguid SA, Mao RH, Ng TY. FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade. International Journal of Impact Engineering 2008, 35: 487-498.
    [54] Mao RH, Meguid SA, Ng TY. Transient three dimensional finite element analysis of a bird striking a fan blade. International Journal of Mechanics and Materials in Design. 2008, 4: 79-96.
    [55] McCallum SC, Constantinou C. The influence of bird-shape in bird-strike analysis. 5th European LS-DYNA users conference Birmingham,UK, 2005.
    [56] Wilbeck J, Rand J. The development of substitute bird model. ASME Journal of Engineering for Power. 1981, 103: 725-730.
    [57] Peterson R, Barber JP. Bird impact force in aircraft windshield design. AFFDL-TR 75~150, 1976.
    [58] Bouchard MP. Advanced transparency development for USAF aircraft. AIAA-93-1391-CP, 1993.
    [59] Stoll F, Brockman RA. Finite element simulation of high-speed soft-body impacts. AIAA-97-1093, 1997.
    [60]王爱俊.层合透明结构抗冲击设计分析.南京,南京航空航天大学, 1998.
    [61] Li YL, Zhang YK, Xue P. Study of similarity law for bird impact on structure. Chinese Journal of Aeronautics. 2008, 21: 512-517.
    [62]武存浩.飞机圆弧风挡抗鸟撞试验与设计研究.北京,北京航空航天大学, 2002.
    [63] Zhu SH, Tong MB, Wang YQ. Experiment and Numerical Simulation of a Full-Scale Aircraft Windshield Subjected to Bird Impact. AIAA-2009-2575, 2009.
    [64]白金泽.基于神经网络方法的鸟撞飞机风挡反问题研究,西北工业大学博士学位论文, 2003.
    [65]白金泽,孙秦.飞机风挡结构抗鸟撞一体化设计技术研究.力学与实践. 2005, 27(1): 14-18.
    [66]万小朋,龚伦,赵美英等.基于ANSYS/ LS-DYNA的飞机机翼前缘抗鸟撞分析.西北工业大学学报. 2007, 25(2): 285-288.
    [67]王富生,李立州,王新军.鸟体材料参数的一种反演方法.航空学报. 2007, 28(2): 344-347.
    [68]王新军,邱珠峰,王富生等.飞机风挡抗鸟撞动响应数值模拟.强度与环境. 2007, 34(1): 28-32.
    [69] Wang XJ, Feng ZZ, Wang FS, Yue ZF. Dynamic Response Analysis of Bird Strike on Aircraft Windshield Based on Damage-modified Nonlinear Viscoelastic Constitutive Relation. Chinese Journal of Aeronautics. 2007, 20(511-517).
    [70]姚小虎.飞机圆弧风挡的抗鸟撞击问题研究.华南理工大学学报(自然科学版). 2007, 35(2): 6-12.
    [71]彭迎风,藤春明.飞机风挡鸟撞动响应分析方法研究.南昌航空工业学院学报(自然科学版). 2003, 17(4): 27-31.
    [72]臧曙光,武存浩,汪如海等.飞机前风挡鸟撞动力响应分析.航空材料学报. 2000, 20(4): 41-45.
    [73]文坚.鸟撞载荷下Y12飞机前风挡非线性动力响应分析.航空学报. 1990, 11(11): A573-A577.
    [74] McCarty RE. Nonlinear dynamic finite element analysis for the bird impact response of a preprototype T-38 aircraft windshield system, Report of air force wright aeronautical laboratory. 1985.
    [75]王爱俊,厉蕾.飞机风挡鸟撞击有限元数值模拟.航空计算技术. 1998, 28(3): 55-59.
    [76]王爱俊,乔新,厉蕾.飞机层合风挡鸟撞击有限元数值模拟.航空学报. 1998, 19(4): 446-450.
    [77]谢宗蕻,卞文杰,昂海松等.蜂窝夹芯结构雷达罩鸟撞有限元分析与模拟.爆炸与冲击. 1999, 19(3): 1127-1144.
    [78] Brockman RA. Explicit finite element menthod for transparency impact analysis. ADA243527, 91.
    [79]王爱俊.飞机座舱风挡层合玻璃弹穿有限元分析.南京航空航天大学学报. 1998, 30(4): 173-673.
    [80] Johnson G. Fracture characteristics of three metals subjected to various strains,strain rates, temperatures and pressures. Engineering Fracture Mechanics. 1985, 21(1): 31-485.
    [81]王礼立,朱锡雄,施绍裘,干苏,包合胜.鸟撞高速飞机风挡若干问题的冲击动力学研究.航空学报. 1991, 12(2): B27-B33.
    [82]谢兰生,孙良新,范绪箕.非线性粘弹性结构鸟撞击动响应分析.南京航空航天大学学报. 1995, 27(6): 738-743.
    [83]王富生.鸟撞飞机风挡的一体化数值模拟技术.振动与冲击. 2007, 26(5): 107-111.
    [84] Zhu SH, Liu F, Tong MB. Nonlinear Finite Element Analysis of Bird Impact on Aircraft Windshield. The 2nd International Conference on Advanced Materials and Structures (ICAMS-2). Nanjing, 2008:523-530.
    [85]冷国新.飞机风挡材料的选用.玻璃. 2001, 4: 45-46.
    [86]王爱俊.层合透明材料抗冲击有限元数值模拟.工程力学. 1999, 16(5): 58-64.
    [87]臧曙光,武存浩,汪如洋等.飞机前风挡鸟撞动力响应分析.航空材料学报. 2000, 20(4): 41-45.
    [88]张博平.鸟撞飞机风挡夹层结构数值分析.航空计算技术. 2008, 38(1): 6-8.
    [89] Centonze V, Schmoeker NM. Bird impact testing at AEDC's range S-3. AIAA86-9818, 1986.
    [90] Barber JP, Boehman LI. The modeling of bird impact loads. AD-A065049, 1978.
    [91]方宝瑞.飞机气动布局设计.北京:航空工业出版社, 1997.
    [92] Wilbeck J. Impact behavior of low strength projectiles. OH Wright-Patterson Air Force Base. AFML-TR-77-134, 1977.
    [93] Hibbit, Karlsson, Sorenson. ABAQUS User's Manual, version 6.7, 2007.
    [94]罗漳平,向锦武.结构动力学模型修正的一种参数型方法.北京航空航天大学学报. 2004, 30(7): 648-651.
    [95]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社, 1999.
    [96] Holland J. Adaptation in nature and artificial systems, MIT, 1992.
    [97]宋天霞.非线性结构有限元计算.武汉:华中理工大学出版社, 1996.
    [98]殷有泉.固体力学非线性有限元引论.北京:北京大学清华大学出版社, 1987.
    [99]匡振邦.非线性连续介质力学.西安:西安交通大学出版社, 1989.
    [100]庄茁译.连续体和结构的非线性有限元.北京:清华大学出版社, 2005.
    [101] Samuelson LA, Nisson F. Theoretical evaluation of the structure performance of swedish fighter aircraft windshield subjected to Impact. AD-P-003-235, 1983.
    [102] Zhong Z, Nilson. Finite element procedures for contact-impact problems. Oxford Oxford University Press, 1993.
    [103] Zhong ZH, Nilson. A contact searching algorithm for general 3-D contact-impact problems Computer & Structures. 1990: 327-335.
    [104]冯震宙,王新军,王富生,高行山,岳珠峰.朱-王-唐非线性粘弹性本构模型在有限元分析中的实现及其应用.材料科学与工程学报. 2007, 25(2): 269-272.
    [105] Jin ZZ, Man JR. Dynamic fracture and strength of glass. Collected papers X IV International congress on glass. 1986:78-83.
    [106]赵腾伦. ABAQUS 6.6在机械工程中的应用.北京:中国水利水电出版社, 2007.
    [107] Hibbit, Karlsson, Sorenson. Abaqus Analysis User's Manual. Version 6.7, 2007.
    [108] Michael K, Mehdi V, Mehmet I. Aeroelastic stability analysis of a bird-damaged aeroengine fan assembly. Aerospace Science Technology. 2001, (5): 469-482.
    [109] Jain R, Ramachandra K. Bird Impact Analysis of Pre-Stressed Fan Blades Using Explicit Finite Element Code. Paper presented at: Proceedings of the International Gas Turbine Congress 2003, Tokyo, 2003.
    [110] Audic S, Berthillier M, Bonini J. Prediction of bird impact in hollow fan blades AIAA 2000-3201, 2000.
    [111] Goyal VK, Huertas CA. Robust Bird-Strike Modeling Based On SPH Formulation Using LS-DYNA. AIAA 2006-1878, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700