串联型高增益Z源逆变器及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Z源逆变器是近几年提出的新型电路拓扑,因具有单级可实现升降压变换,逆变桥同桥臂可以直通等优点,在新能源领域得到了广泛的应用。但传统Z源逆变器应用于发电系统时,由于Z源网络本身升压能力有限,存在开关管电压应力大、输入电压范围要求过高等问题。针对上述问题,本文提出了一种高增益Z源逆变器拓扑,同时对调制策略、数学建模、直流侧控制策略及在光伏发电离网模式下的控制策略等方面进行了研究。
     为提高Z源网络的升压能力,提出了一类基于开关电感的高增益Z源逆变器拓扑族。通过研究开关电感在传统DC/DC电路中提高升压能力的机理,并结合Z源逆变器拓扑结构的特点,提出了一种串联型高增益Z源逆变器拓扑。通过调整Z源网络和逆变桥的位置,使之不但提高了升压能力,而且减小了电容电压应力,具有内在抑制启动冲击的能力。但该串联型高增益拓扑的输入电流是断续的,为了减小输入电流纹波,首先提出一种准开关电感型Z源拓扑,使其纹波电流减小一倍;随后采用级联技术将前级滤波电路变换为一级boost电路,与后级Z源逆变器串联,不但减小了输入电流纹波,而且进一步提高了升压能力,但仿真分析发现该拓扑Z源组件动态特性不一致,增加了建模和控制的难度。
     为提高Z源逆变器的整体升压能力,提出了基于SVPWM的最大恒定升压调制策略。以串联型高增益Z源逆变器为研究对象,分析了不同直通插入方式对开关管电流应力和Z源电感充放电频率的影响,以及在给定有效矢量条件下直通时间对逆变器的升压能力的影响规律,从提高综合性能角度出发,提出了一种基于SVPWM的最大恒定升压调制策略,给出了具体实施方法。该策略通过单桥臂直通实现升压,不但没有增加开关频率,还增加了Z源网络组件的充放电频率,有利于减小Z源网络组件体积。仿真和实验结果表明该策略能够有效提高Z源逆变器的整体升压能力,并且直通矢量与有效矢量交替变换有利于避免Z源二极管电流断续工作模式(DCM, Discontinuous ConductionMode)。
     为精确控制直流链电压,建立了串联型高增益Z源逆变器的交流小信号模型,利用小信号模型提出了直流链电压直接控制策略。综合考虑负载、Z源无功组件、直通占空比、调制比对逆变系统的影响,采用信号流图法建立了小信号数学模型,并利用时域和频域法分析以上各参数对系统的动态特性的影响,为Z源组件的优化设计提供指导。通过对直流链电压进一步分析,建立直流链电压小信号模型,依据该模型提出了直流链电压直接控制策略,构建了直流链电压外环和电感电流内环的双闭环控制器。仿真和实验结果表明直流链电压直接控制策略能够有效提高直流侧电压的控制精度及对输入扰动的响应速度,采用的软启动控制策略能够有效抑制逆变器的启动冲击。
     为降低光伏发电系统中开关器件的电压应力,对直流侧与交流侧协同控制的控制策略进行了研究。由于光伏电池在负载能力范围内输出电压波动缓慢,本文结合最大恒定调制策略作用下的直流链峰值电压与输入电压和输出交流电压的关系,提出了一种利用光伏电池输出电压前馈的直流链电压控制策略。该策略能够实时根据光伏输出电压调整直流链电压,充分利用了零矢量时间,有效降低了开关管电压应力。交流侧采用输出电压和电感电流双闭环控制器实时跟随直流链电压,保证了输出控制精度,提高了对负载扰动的抑制能力。
Z-Source Inverter (ZSI) has been proposed as a novel power conversiontopology in recent years. Due to the brand new circuit topology providing thefunctionality of single stage buck-boost power conversion and shoot-through statein the same leg, ZSI is especially suitable for renewable recourse. However, thetraditional ZSI applied in power generating system has the following drawbacks: therequired input voltage range and the voltage stress of the active devices is toohigher due to the limited boost inversion ability. In view of the issues above, afamily of high gain ZSIs will be proposed in this dissertation,and the improvedZSI topologies, modulation method, mathematical model, the control strategy in dcside and control strategy of the photovoltaic (PV) generating system in islandingoperation mode will be investigated.
     To improve the capability of DC boost inversion, a family of high gain ZSIs isproposed based on switched-inductor. The proposed series high gain ZSI topology isderived from investigating the mechanism of traditional DC/DC voltage boostcircuit, which performance is improved by the switched-inductor. The positions ofthe inverter bridge and the Z-source network are changed, as result, the capacitorvoltage stress can be reduced significantly and the inrush-current can be limited.But its input current is discontinues. To solve this problem, firstly the quasi-switched-inductor ZSI is proposed which input current ripple is half of the previousone. Subsequently, the input LC filter is transformed as a boost conversion circuit,and then a novel continues topology is proposed by cascading the boost circuit withthe series high gain ZSI. This continues input current topology can not onlydecrease the input current ripple but also further improve the boost conversioncapability. Unfortunately, the simulation results show that the dynamiccharacteristics of Z-source network components are inconsistent and this mayincrease the difficulty of the modeling and control.
     In order to improve the AC inversion capability of ZSI, a novel maximumconstant boost control method based on SVPWM is proposed. Based on the serieshigh boost gain topology, the novel method is the result of analyzing differentinserting effect on the current stress of active component, charging frequency of Z-source impedance components, as well as investigating shoot-through acting timeeffect on the boost inversion capability. In addition, the implementation method isgiven. The maximum ac gain is obtained without any extra switching stateintroduced, and the volume of the Z source can be lessened as a result of increasing charge-discharge frequency. What is more, this novel method avoids the Z-sourcediodes discontinuous conduction mode (DCM) by the active state and shoot-throughstate alternating. The simulation and experiment results verify the merits of theimproved module strategy.
     In order to control the dc-link voltage accurately, the ac small-signal model ofthe series high boost gain Z-Source inverter is set up in current continuous mode,and the dc-link voltage direct control strategy is proposed based on the small-signalmodel. Firstly, the equivalent circuit is obtained by the output filter and loadconverted, then the signal-flow-graph is utilized to set up the model taking intoaccount of shoot through state, active and null state. The effects of differentparameters on system dynamic performance are analyzed in frequency-domain andtime-domain. Results of the analysis would provide some basis to optimize the Z-source network. Secondly, the dc-link voltage is further analyzed and the small-signal model is obtained by state space averaged method, then the dc-link voltagecontrol method is derived based on this model, and the double closed loop controlleris built, including voltage loop control and current loop control. The simulation andexperimental results show that the accuracy of the dc-link voltage control and theinput disturbance rejection capability is improved, and the inrush surge issuppressed effectively.
     In order to decrease the voltage stress of the switch in PV power system whileimprove the conversion efficiency of the whole inversion system at the same time,the control strategy coordinating dc-side with ac-side is studied. Analysis of theoutput characteristics of PV module shows that PV module output voltage changesslowly. The PV module output voltage feedforward dc-link voltage control isproposed according to the relationship between dc-link voltage and input voltageunder the maximum constant boost control. The dc-link voltage setpoint can beadjusted real-time according to the output voltage of PV module, so the zero statetime can be utilized sufficiently and the voltage stress of the active component canbe decreased. In the ac-side, the outer voltage loop and inner current loopcontrollers are designed based on pole-assignment theory, then output steady-stateerror can be avoid by the outer loop and the load disturbance can be suppressed bythe inner loop.
引文
[1] Li Y W, Vilathgamuwa D M, Loh P C. A Grid-Interfacing Power QualityCompensator for Three-Phase Three-Wire Microgrid Applications[J]. IEEETrans. on Power Electronics,2006,21(4):1021-1031.
    [2] Marwali M N, Keyhani A. Control of Distributed Generation Systems-Part I:Voltages and Currents Control[J]. IEEE Trans. on Power Electronics,2004,19(6):1541-1550.
    [3] Blaabjerg F, Zhe Chen, Kjaer S B. Power Electronics as Efficient Interface inDispersed Power Generation Systems[J]. IEEE Trans. on Power Electronics,2004,19(5):1184-1194.
    [4] Marwali M N, Jin-Woo J, Keyhani A. Stability Analysis of Load SharingControl for Distributed Generation Systems[J]. IEEE Trans. on EnergyConversion,2007,22(3):737-745.
    [5] Marwali M N, Jin-Woo J, Keyhani A. Control of Distributed GenerationSystems-Part Ii: Load Sharing Control[J]. IEEE Trans. on Power Electronics,2004,19(6):1551-1561.
    [6] Santi E, Franzoni D, Monti A, et al. A Fuel Cell Based DomesticUninterruptible Power Supply[C]. IEEE7th Applied Power ElectronicsConference and Exposition, Dallas, America,2002:605-613.
    [7] Wang J, Peng F Z, Anderson J, et al. Low Cost Fuel Cell Converter System forResidential Power Generation[J]. IEEE Trans. on Power Electronics,2004,19(5):1315-1322.
    [8] Kjaer S B, Pedersen J K, Blaabjerg F. A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules[J]. IEEE Trans. on IndustryApplications,2005,41(5):1292-1306.
    [9] Yamamura N, Ishida M, Hori T. A Simple Wind Power Generating Systemwith Permanent Magnet Type Synchronous Generator[C]. IEEE Conference onthe Power Electronics and Drive Systems, Hong Kong,1999(2):849-854.
    [10] Blaabjerg F, Chen Z. Power Electronics for Modern Wind Turbines [M].USA:Morgan&Claypool,2006:3-7.
    [11] Chen Y, Smedley K M. A Cost-Effective Single-Stage Inverter with MaximumPower Point Tracking[J]. IEEE Trans. on Power Electronics,2004,19(5):1289-1294.
    [12] Wu T F, Chang C H, Chen Y K. A Multi-Function Photovoltaic Power SupplySystem with Grid-Connection and Power Factor Correction Features[C]. IEEE31st Power Electronics Specialists Conference, Galway, Ireland,2000,3:1185-1190.
    [13] Wu L b, Zhao Z M, Liu J Z. A Single-Stage Three-Phase Grid-ConnectedPhotovoltaic System with Modified Mppt Method and Reactive PowerCompensation[J]. IEEE Trans. on Energy Conversion,2007,22(4):881-886.
    [14] Axelrod B, Berkovich Y, Ioinovici A. Switched-Capacitor/Switched-InductorStructures for Getting Transformerless Hybrid DC/DC Pwm Converters[J].IEEE Trans. on Circuits and Systems I: Regular Papers,2008,55(2):687-696.
    [15] Klumpner C. A New Single-Stage Current Source Inverter for Photovoltaic andFuel Cell Applications Using Reverse Blocking Igbts[C]. IEEE PowerElectronics Specialists Conference,Orlando, Florida, USA,2007:1683-1689.
    [16] Botteron F, Pinheiro H, Hey H L, et al. A New Discrete-Time VoltageController Based on the Internal Model Principle for Thre...e-Phase VoltageSource Pwm Inverters with Δ/Y Output Transformer[C]. IEEE PowerElectronics Specialists Conference, Aachen, Germany,2004,(4):2508-2514
    [17] Botteron F, Pinheiro,H. Discrete-Time Internal Model Controller for Three-Phase Pwm Inverters with Insulator Transformer[J]. IEE Proc.-Electric PowerApplications,2006,153(1):57-67.
    [18] Xue Y S, Chang L C, Kjaer S B, et al. Topologies of Single-Phase Inverters forSmall Distributed Power Generators: An Overview[J]. IEEE Trans.on PowerElectronics,2004,19(5):1305-1314.
    [19] Peng F Z. Z-Source Inverter[J]. IEEE Trans. on Industry Applications,2003,39(2):504-510.
    [20] Huang Y, Shen M S,, Peng, F Z, et al. Z-Source Inverter for ResidentialPhotovoltaic Systems[J]. IEEE Trans. on Power Electronics,2006,21(6):1776-1782.
    [21] Peng F Z, Shen M S, Holland K. Application of Z-Source Inverter for TractionDrive of Fuel Cell-Mdash Battery Hybrid Electric Vehicles[J]. IEEE Trans. onPower Electronics,2007,22(3):1054-1061.
    [22] Ji J K, Kim J H,, Sui S K, et al. A Novel Three-Phase Line-Interactive UpsSystem with Parallel-Series Active Power-Line Conditioning CapabilitiesUsing Ac Line Reactor[C]. IEEE30th Conference on Industrial ElectronicsSociety, Busan, South Korea,2004,(2):1861-1866.
    [23] Li Y W, Loh P C, Blaabjerg F, et al. Investigation and Improvement ofTransient Response of Dvr at Medium Voltage Level[J]. IEEE Trans. onIndustry Applications,2007,43(5):1309-1319.
    [24] Lee W C, Lee T K, Hyun D S. A Three-Phase Parallel Active Power FilterOperating with Pcc Voltage Compensation with Consideration for anUnbalanced Load[J]. IEEE Trans. on Power Electronics,2002,17(5):807-814.
    [25] Casadei D, Grandi G, Rossi C. Single-Phase Single-Stage PhotovoltaicGeneration System Based on a Ripple Correlation Control Maximum PowerPoint Tracking[J]. IEEE Trans. on Energy Conversion,2006,21(2):562-568.
    [26] Anderson J, Peng F Z. Four Quasi-Z-Source Inverters[C]; IEEE the PowerElectronics Specialists Conference, Rhodes, Greece,2008:2743-2749.
    [27] Li Y, Anderson J, Peng F Z, et al. Quasi-Z-Source Inverter for PhotovoltaicPower Generation Systems[C]. IEEE24th Applied Power ElectronicsConference and Exposition, Washington,DC, USA,2009:918-924.
    [28] Shahparasti M, Larijani S A, Fatemi A, et al. Quasi Z-Source Inverter forPhotovoltaic System Connected to Single Phase Ac Grid[C]. IEEE1st thePower Electronic&Drive Systems&Technologies Conference, Tehran, Iran,2010:456-460.
    [29]汤雨,谢少军,张超华.改进型Z源逆变器[J].中国电机工程学报,2009,29(30):28-34.
    [30] Tang Y, Xie S J, Zhang C H, et al. Improved Z-Source Inverter with ReducedZ-Source Capacitor Voltage Stress and Soft-Start Capability[J]. IEEE Trans. onPower Electronics,2009,24(2):409-415.
    [31] Gajanayake C J, Luo F L, Beng G H, et al. Extended-Boost Z-SourceInverters[J]. IEEE Trans. on Power Electronics,2010,25(10):2642-2652.
    [32] Zhu M, Yu K, Luo F L. Switched Inductor Z-Source Inverter[J]. IEEE Trans.on Power Electronics,2010,25(8):2150-2158.
    [33] Tang Y, Xie, S J, Zhang C H. An Improved Z-Source Inverter[J]. IEEE Trans.on Power Electronics,2011,26(12):3865-3868.
    [34] Loh P C, Gao F, Blaabjerg F. Embedded Ez-Source Inverters[J]. IEEE Trans.on Industry Applications,2010,46(1):256-267.
    [35] Loh P C, Gao F, Blaabjerg F, et al. Pulsewidth-Modulated Z-Source Neutral-Point-Clamped Inverter[J]. IEEE Trans. on Industry Applications,2007,43(5):1295-1308.
    [36] Loh P C, Lim S W, Gao F, et al. Three-Level Z-Source Inverters Using aSingle Lc Impedance Network[J]. IEEE Trans. on Power Electronics,2007,22(2):706-711.
    [37] Qian W, Peng F Z, Cha H. Trans-Z-Source Inverters.[J] IEEE Trans. on PowerElectronics,2011,26(12):3453-3463.
    [38] Vinnikov D, Roasto I. Quasi-Z-Source-Based Isolated Dc/Dc Converters forDistributed Power Generation[J]. IEEE Trans. on Industrial Electronics,2011,58(1):192-201.
    [39] Vinnikov D, Roasto I, Strzelecki R, et al. Step-up Dc/Dc Converters withCascaded Quasi-Z-Source Network[J]. IEEE Trans. on Industrial Electronics,2012,59(10):3727-3736.
    [40] Galigekere V P, Kazimierczuk M K. Analysis of Pwm Z-Source Dc-DcConverter in CCM for Steady State[J]. IEEE Trans. on Circuits and Systems I:Regular Papers,2012,59(4):854-863.
    [41] Peng F Z, Shen M S, Qian Z M,. Maximum Boost Control of the Z-SourceInverter[J]. IEEE Trans. on Power Electronics,2005,20(4):833-838.
    [42] Shen M S, Wang J, Joseph A, et al. Constant Boost Control of the Z-SourceInverter to Minimize Current Ripple and Voltage Stress[J]. IEEE Trans. onIndustry Applications,2006,42(3):770-778.
    [43] Loh P C, Vilathgamuwa D M, Lai Y S, et al. Pulse-Width Modulation of Z-Source Inverters[J]. IEEE Trans. on Power Electronics,2005,20(6):1346-1355.
    [44]汤雨. Z源逆变器研究[D].南京:南京南京航空航天大学,2008:70-71.
    [45] Liu J B, Hu J G, Xu L Y. A Modified Space Vector Pwm for Z-Source Inverter-Modeling and Design[C]. International Conference on the Electrical Machinesand Systems,Nanjing, China,2005,(2):1242-1247.
    [46] Jung J W, Keyhani A. Control of a Fuel Cell Based Z-Source Converter[J].IEEE Trans. on Energy Conversion,2007,22(2):467-476.
    [47] Zimmermann M V, Lechler M, Piepenbreier B. Z-Source Drive Inverter UsingModified Svpwm for Low Output Voltage and Regenerating Operation[C].13th European Conference on the Power Electronics and Applications,Barcelona, Span,2009:1-10.
    [48] Chun T W, Tran Q V, Ahn J R, et al. Ac Output Voltage Control withMinimization of Voltage Stress across Devices in the Z-Source Inverter UsingModified Svpwm[C]. IEEE37th the Power Electronics Specialists Conference,Jeju, South, Korea,2006:1-5.
    [49] Ding J D, Xie S J, Tang Y. Optimal Design of the Inductor in Z-SourceInverter with Single Phase Shoot-through Svpwm Strategy[C]. IEEE EnergyConversion Congress and Exposition, Atlanta, Georgia,2010:2878-2882.
    [50]赵二刚,程如岐,郭天勇等. SVPWM技术在Z源逆变器中的应用[J].南开大学学报(自然科学版),2009,42(1):76-79.
    [51] Tenner S, Hofmann W. A Comparison of Z-Source Three-Level Npc InverterVersus Z-Source Two-Level Inverter[J].2010Emobility-Electrical PowerTrain, Leipzig, Germany,2010:1-7.
    [52]张瑾,齐铂金,张少如. Z源中点钳位逆变器的空间矢量调制方法[J].电工技术学报,2010,25(09):108-114.
    [53]张瑾,齐铂金. Z源三电平中点钳位逆变器中点电位平衡控制方法[J].中国电机工程学报,2010,30(12):7-13.
    [54] Bradaschia F, Cavalcanti M C, Ferraz P E P, et al. Modulation for Three-PhaseTransformerless Z-Source Inverter to Reduce Leakage Currents inPhotovoltaic Systems[J]. IEEE Trans. on Industrial Electronics,2011,58(12):5385-5395.
    [55] Loh P C, Vilathgamuwa D M, Gajanayake C J, et al. Transient Modeling andAnalysis of Pulse-Width Modulated Z-Source Inverter[C]. IEEE4th IndustryApplications Conference, HongKong,2005,(4):2782-2789.
    [56] Loh P C, Vilathgamuwa D M, Gajanayake C J, et al. Transient Modeling andAnalysis of Pulse-Width Modulated Z-Source Inverter[C]. IEEE Trans. onPower Electronics,2007,22(2):498-507.
    [57]李杰,王得利,陈国呈等.直驱式风力发电系统的三相z源并网逆变器建模与控制[J].电工技术学报,2009,24(02):114-119.
    [58]丁新平. Z-源变流器关键技术的研究[D].浙江:浙江大学,2007:17-20.
    [59]丁新平,钱照明,崔彬等.基于模糊PID的Z源逆变器直流链升压电路控制[J].中国电机工程学报,2008,28(24):31-38.
    [60] Gajanayake C J, Vilathgamuwa D M, Loh P C. Small-Signal and Signal-Flow-Graph Modeling of Switched Z-Source Impedance Network[J]. IEEE PowerElectronics Letters,2005,3(3):111-116.
    [61] Liu J B, Hu J G, Xu L Y. Dynamic Modeling and Analysis of Z SourceConverter-Derivation of Ac Small Signal Model and Design-OrientedAnalysis[J]. IEEE Trans. on Power Electronics,2007,22(5):1786-1796.
    [62] Shen M S, Tang Q S, Peng, F Z. Modeling and Controller Design of the Z-Source Inverter with Inductive Load[C]. IEEE Power Electronics SpecialistsConference, Orlando, Florida, America,2007:1804-1809.
    [63] Ding X P, Qian Z M, Yang S T, et al. A Pid Control Strategy for Dc-Link BoostVoltage in Z-Source Inverter[C]. IEEE22nd Applied Power ElectronicsConference, California, USA,2007:1145-1148.
    [64] Tran Q V, Chun T W, Ahn J R, et al. Algorithms for Controlling Both the DcBoost and Ac Output Voltage of Z-Source Inverter[J]. IEEE Trans. onIndustrial Electronics,2007,54(5):2745-2750.
    [65]赵耀,赵庚申,程如岐等. Z源型逆变器母线电PI控制策略的研究[J].南开大学学报(自然科学版),2011,(04):20-25.
    [66] Ding X P, Qian Z M, Yang S T, et al. A Direct Peak Dc-Link Boost VoltageControl Strategy in Z-Source Inverter[C]. IEEE Power Electronics SpecialistsConference, Orlando, Florida, America,2007:648-653.
    [67] Ding X P, Qian Z M, Yang S T, et al. A Direct Dc-Link Boost Voltage Pid-LikeFuzzy Control Strategy in Z-Source Inverter[C]. IEEE Power ElectronicsSpecialists Conference, Austin, Texas, America,,2008:405-411.
    [68] Gajanayake C J, Vilathgamuwa D M, Loh P C. Development of aComprehensive Model and a Multiloop Controller for Z-Source Inverter DgSystems[J]. IEEE Trans. on Industrial Electronics,2007,54(4):2352-2359.
    [69]陈宗祥,蒋赢,潘俊民等.基于滑模控制的Z源逆变器在单相光伏系统中的应用[J].中国电机工程学报,2008,28(21):33-39.
    [70] Rajaei A H, Kaboli S, Emadi A. Sliding-Mode Control of Z-Source Inverter[C].IEEE34th the Industrial Electronics Conference,Orlando, Florida, USA,2008:947-952.
    [71] Liu J F, Jiang S, Cao D, et al. Sliding-Mode Control of Quasi-Z-SourceInverter with Battery for Renewable Energy System[C]. IEEE the EnergyConversion Congress and Exposition, Phoenix, Arizona, USA,2011:3665-3671.
    [72] Rostami H, Khaburi D A. Neural Networks Controlling for Both the Dc Boostand Ac Output Voltage of Z-Source Inverter[C]. IEEE Power Electronic&Drive Systems&Technologies Conference, Tehran, Iran,2010:135-140.
    [73] Badin R, Huang Y, Peng F Z, et al. Grid Interconnected Z-Source PvSystem[C]. IEEE the Power Electronics Specialists Conference, Orlando,Florida, USA,2007:2328-2333.
    [74] Park J H, Kim H G, Nho E C, et al. Grid-Connected Pv System Using a Quasi-Z-Source Inverter[C]. IEEE24th Annual Electronics Conference andExposition, Washington, DC, USA,2009:925-929.
    [75] Sun D S, Ge B M, Abu R H, et al. Power Flow Control for Quasi-Z SourceInverter with Battery Based Pv Power Generation System[C]. IEEE the EnergyConversion Congress and Exposition, Phoenix, Arizona, USA,2011:1051-1056.
    [76] Shen M S, Joseph A, Wang J, et al. Comparison of Traditional Inverters and Z-Source Inverter for Fuel Cell Vehicles[J]. IEEE Trans. on Power Electronics,2007,22(4):1453-1463.
    [77] Wang J. Practical Design Considerations of Power Electronics in Hybrid andFuel Cell Vehicles[C]. IEEE Vehicle Power and Propulsion Conference,Harbin, China,2008:1-6.
    [78]许颇,张兴,张崇巍等.采用Z源变换器的小型风力并网逆变系统[J].电工技术学报,2008,(04):93-97.
    [79] Dehghan S M, Mohamadian M, Varjani A Y. A New Variable-Speed WindEnergy Conversion System Using Permanent-Magnet Synchronous Generatorand Z-Source Inverter[J]. IEEE Trans. on Energy Conversion,2009,24(3):714-724.
    [80]宋平岗,廖锦涛. Quasi-Z源光伏并网电流单周期控制研究[J].电气传动,2010,24(08):34-37.
    [81] Asha M A, Mathew J. Non Isolated Boost Converters with Switched InductorTechnique[C]. International Conference on Signal Processing, Communication,Computing and Networking Technologies, Thuckalay, Tamil Nadu, India,2011:757-761.
    [82] Axelrod B, Berkovich Y, Ioinovici A. Transformerless Dc-Dc Converters witha Very High Dc Line-to-Load Voltage Ratio[C]. International Symposium onCircuits and Systems, Bangkok, Thailand,2003,(3):435-438.
    [83]张超华,汤雨,谢少军.改进Z源逆变器的三次谐波注入控制策略[J].电工技术学报,2009,24(11):114-119.
    [84] Loh P C, Vilathgamuwa D M, Gajanayake C J, et al. Z-Source Current-TypeInverters: Digital Modulation and Logic Implementation[J]. IEEE Trans. onPower Electronics,2007,22(1):169-177.
    [85] Gitizadeh M, Nayeripour M, Akrami A. Maximum Constant Boost Control forQzsi in a Fuel Cell System[C].2nd Iranian Conference on Renewable Energyand Distributed Generation, Tehran, Iran,2012:7-11.
    [86] Zhou K L, Wang D W. Relationship between Space-Vector Modulation andThree-Phase Carrier-Based Pwm: A Comprehensive Analysis [Three-PhaseInverters][J]. IEEE Trans. on Industrial Electronics,2002,49(1):186-196.
    [87] Shen M S, Peng F Z. Operation Modes and Characteristics of the Z-SourceInverter with Small Inductance or Low Power Factor[J]. IEEE Trans. onIndustrial Electronics,2008,55(1):89-96.
    [88] Tang Y, Wei J K, Xie S J. A New Direct Peak Dc-Link Voltage ControlStrategy of Z-Source Inverters[C]. IEEE25th Applied Power ElectronicsConference and Exposition, Palm Spring, California, USA,2010:867-872.
    [89]谢文涛.新型光伏阵列模拟器的研究与[D].杭州:浙江大学,2007:9-12.
    [90]付朝雪.太阳能电池特性研究及独立光伏发电系统实现[D].太原:太原科技大学,2011:1-8.
    [91]任碧莹,钟彦儒,孙向东等.基于PSIM软件的光伏电池特性的仿真建模研究[J].西安理工大学学报,2007,23(03):257-260.
    [92]王厦楠.独立光伏发电系统及其MPPT的研究[D].南京:南京航空航天大学,2008:9-12.
    [93]张迪.光伏离网逆变器研制及其pwm控制方法[D].哈尔滨工业大学,2010:11-12.
    [94]杨水涛,丁新平,张帆等. Z-源逆变器在光伏发电系统中的应用[J].中国电机工程学报,2008,28(17):112-118.
    [95]周斌生,宋庆烁. Quasi-Z源逆变器电压电流双闭环控制系统研究[J].电源技术,2011,35(09):1146-1150.
    [96] Erickson R W, Maksimovic D. Fundamentals of Power Electronics [M].USA:Kluwer Academic Publishers,2001:213-221.
    [97]刘金云.三相应急电源系统研究[D].浙江:浙江大学,2006:22-26.
    [98] Dahono P A, Bahar Y R, Sato Y, et al. Damping of Transient Oscillations onthe Output Lc Filter of Pwm Inverters by Using a Virtual Resistor[C]. IEEE4th International Conference on Power Electronics and Drive Systems,Singapore2001,(1):403-407.
    [99]彭力.基于状态空间理论的PWM逆变电源控制技术研究[D].武汉:华中科技大学,2004:97-99.
    [100]胡媛媛.三相三线逆变器数字控制系统研究[D].武汉:华中科技大学,2008:11-16.
    [101]王淑惠,彭力,康勇等.基于状态空间的PWM逆变器的PI数字双环控制方法研究[J].电力电子,2008,(5):32-36.
    [102]张爱民.自动控制原理[M].北京:清华大学出版社,2003:128-129.
    [103]丁久东.具有无功补偿功能的串联型Z源并网逆变器研究[D].南京:南京航空航天大学,2011:11-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700