典型持久性有机污染物在城市污水处理过程中的迁移转化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
持久性有机污染物(POPs)作为具有高毒性、难降解性、生物蓄积性的有毒有害物质对生态环境、生物体及人类健康具有严重危害。随着现代石化产业的迅猛发展,石化产品的不完全燃烧、垃圾燃烧和塑料产品的大量使用,使POPs对环境的危害日益严重,而城市污水作为人们生活和生产过程中污染物排出(或排泄)的载体,集中了大量包括POPs在内的各类污染物质。在城市污水再生利用已成为必然趋势的情况下,回用水中可能残余的各种有毒有害物质尤其是POPs的健康和环境影响问题日益备受关注。因此,有必要系统性研究POPs在城市污水中POPs的存在水平以及在常规污水处理中的迁移转化规律。
     本课题是国家自然科学基金重点项目(50838005)的部分研究内容,选择4类POPs—多环芳烃(PAHs)、邻苯二甲酸酯(PAEs)、多氯联苯(PCBs)和有机氯农药(OCPs)作为研究对象,针对西安市某污水处理厂的氧化沟处理工艺,开展了污水厂各阶段出水的长期水质监测,结合实验室试验,研究了典型POPs在污水二级生化处理过程中的迁移转化规律,建立了典型POPs去除的数学模型,通过模拟计算和理论分析,论述了POPs的去除作用机理。论文的主要工作和成果如下:
     (1)优化了污水中PAHs、PAEs、PCBs、OCPs的分析检测方法,通过GC-MS对4类POPs的44种标准样品进行了定性分析,确立了每类POPs的最佳色谱分离和质谱检测条件:对于16种PAHs和6种PAEs,宜通过GC-FID检测进行外标法定量分析;对于6种PCBs和16种OCPs,宜通过GC-ECD检测进行外标法定量分析。优化的GC-FID和GC-ECD检测法具有检测时间短(34.47min和26.62min)、色谱图分离效果好的特点。通过各种试样前处理条件比较,确立了实现4类POPs同时回收的固相萃取法,在优化的条件下,4类POPs的回收率均可达到70%以上。
     (2)针对西安市某污水厂的氧化沟处理工艺,进行了为期1年的各工艺段出水的水质监测,结果表明,在进厂污水中主要监测到8种PAHs、5种PAEs、5种PCBs和5种OCPs,其中,PAEs浓度最高,为10~0~10~2μg/L量级,PAHs浓度次之,为100μg/L量级及以下,而PCBs和OCPs的浓度水平则在101ng/L量级及以下。氧化沟工艺对各种POPs均有明显的去除效果,多数POPs的去除率为50%~100%,且POPs的去除主要在生化处理单元完成,沉砂池和二沉池对POPs去除的作用不明显。
     (3)选择进厂污水中检出浓度较高的萘(NAPT)、菲(PHEN)、芘(PYR)等3种PAHs,邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二-(2-乙基己基)酯(DEHP)等2种PAEs作为典型POPs,通过实验室试验研究了石英砂、高岭土和黄土等3种无机颗粒和实验室培养的活性污泥对典型POPs的吸附去除过程。吸附试验结果表明,无机颗粒对5种典型POPs的吸附符合Langumuir吸附等温式,且具有放热过程的特点,但吸附能力有限;而活性污泥对典型POPs的吸附符合Freundlich吸附等温式,且具有吸热过程的特点,吸附能力较无机颗粒高出1个数量级以上。无机颗粒对POPs的吸附呈单层吸附的特征,比表面积是影响其吸附能力的重要因素;而活性污泥的网状絮体构造使其对POPs的吸附具有多层吸附的特征,从而吸附能力增大。对于作为吸附质的典型POPs而言,其辛醇-水分配系数(lgk_(ow))直接影响其在颗粒上的吸附,lgk_(ow)大的POPs易于被吸附去除。
     (4)根据污水二级生化处理的工艺特点,研究了污水厂中POPs去除的挥发作用、吸附作用和生物降解作用机理,建立了三种作用的定量计算方程式。各种典型POPs在三种作用下的去除均与其分子结构和物化参数有关,其中吸附作用下的去除取决于POPs在液固两相间的分配系数Kp,它与吸附等温式的参数密切相关,通过污水处理过程物料平衡关系分析,提出了基于上述三种作用的典型POPs去除量计算数学模型。以监测的污水厂为例确定了与污水处理工艺相关的计算参数,对三种作用去除的分析计算结果表明,挥发在各种POPs去除中的作用极小,可忽略不计;不同的POPs生化降解性不同,NAPT、DBP和PHEN的生化降解去除率分别为13.7%、3.5%和1.5%,而PYR和DEHP的生化降解去除率均在0.1%以下,说明吸附是POPs去除的主要作用机理。针对吸附作用建立了基于吸附分配系数Kp的POPs吸附去除率计算模型,在以氧化沟中活性污泥作为POPs吸附主体的条件下,计算结果表明POPs吸附去除率随K_p值增大而增大,且在较高K_p值时趋于一定值。污水厂的实测结果与计算结果具有良好的吻合性。
     论文的上述研究工作揭示了典型POPs在城市污水以及常规二级污水处理流程中的分布和迁移转化规律,具有重要的理论意义。
Persistent organic pollutants (POPs) constitute a class of man-made chemicals with pronounced highly toxic, persistence against chemical/biological degradation, tendency for bioaccumulation in human and animal tissues, and significant impacts on human health and the environment. With the wide development of modern petrifaction industry, impacts from POPs were seriously increased because of the incomplete and rubbish combustion of the petrifaction products and mass use for the plastic products. Thus, the domestic wastewater, as a carrier of pollutants discharge in life and production process, gathers much various pollutants including the POPs. So it is a necessary trend that the domestic wastewater would be reused as main supplement water. Further, it is paid more attention that all kinds of possible remained toxic and harmful materials, especially POPs, impact on the water environmental ecology in the reuse of domestic wastewater. And it appears essential to make sure the existence level in the municipal wastewater and the removal and transformed laws in the conventional wastewater treatment for the POPs.
     The study was part of the National Natural Science Foundation of China (Grant No. 50838005), it chose 4 classes POPs as the studied objects, namely Polycyclic aromatic hydrocarbons (PAHs), phthalic acid esters (PAEs), polychlorinated biphenyls (PCBs), organic chlorinate pesticides (OCPs). For investigating the wastewater treatment plant in Xi’an by an oxidation ditch process, a long-term the effluent detection of the each phase of the WWTP was done. In addition of the experimental study on the removal mechanism, we establish a removal POPs mathematical model for the conventional secondary treatment process on the municipal wastewater on the basis of the analysis of the mechanism and material equilibrium. The model was simulated to get the ideal results by using the experimental data, the operating parameters and the typical POPs characteristic parameters. The studied conclusions deepen the understanding on the removal and transform mechanism of the POPs in the conventional secondary treatment process. Mainly results and discussions included:
     (1) The detection analysis method of the PAHs, PAEs, PCBs and OCPs was optimized and perfected. The standard samples of 44 typical pollutions in the above 4 classes POPs were qualifier analyzed by using the GC-MS to optimize each GC conditions and MS conditions on the basis of the other references. Moreover, 16 PAHs and 6 PAEs using the GC-FID and 6 PCBs and 16 OCPs using the GC-ECD were quantified following the external standard calibration procedure, respectively to optimize GC and detection conditions of the 22 compounds detected on the GC-FID and GC-ECD, to get their chromatograph spectrum with the better isolation efficiency respectively in 34.47min and 26.62min. In last, through analyzing and comparing all kinds pretreatment methods for the different POPs in water, the SPE was adopted to pre-treat 4 classes POPs, and to optimize the best method condition by perfecting the recover rate in order to ensure more than 70% of the 4 class POPs.
     (2) The paper detected the occurrence of the 4 classes POPs and the conventional pollution index of the effluent in each processes in the wastewater treatment plant in Xi′an. The results showed that 8 PAHs, 5 PAEs, 5 PCBs and 5 OCPs were found; among them, PAEs changed from 10~0μg/L to 10~2μg/L with highest concentration, then the concentration of PAHs was below 10~0μg/L, while PCBs and OCPs had the lowest concentration with less than 10~1ng/L. The changes of typical POPs pollutions showed that PAHs、PAEs、PCBs and OCPs were mainly removed in biochemistry unit, but less in primary settler and secondary settle.
     (3) According to the wastewater level, NAPT, PHEN and PYR in NAPT, DBP and DEHP in PAEs were ensured as the typical POPs pollutions. Adopting lab-scale experiment, the study analyzed the main adsorbed removal mechanism of the typical POPs by inorganic particles quartz sands, kaolin and natural clay and activated sludge. The results indicated that the adsorption on 5 typical POPs from inorganic particles were monolayer adsorption and well followed the Langumuir equation, which was exothermic reaction. But the adsorption on 5 typical POPs from activated sludge was multilayer adsorption and may be simulated by the Freundlich equation, which was endothermic reaction. And the adsorption from activated sludge was bigger the ten orders, which was related to the adsorbents structure and physical and chemistrical features of the adsorbates; while the specific surface area of the adsorbents was one of the aspects to decide the adsorption ability, namely the adsorption would be stronger with the increase of the specific surface area. In addition, logK_(ow) of the adsorbates were direct contrasted to the adsorption, namely the adsorption would be stronger with the bigger of logK_(ow).
     (4) According to the characteristics of the wastewater secondary treatment process, the paper studied the POPs removal mechanism including volatilization, adsorption and biodegradation, and established the quantify equations of three removal mechanism. The removal of typical POPs by three mechanism was related to the POPs structure and physical and chemistrical features, and the difference level of adsorption was due to the equilibrium partitioning coefficient K_p of POPs, and the K_p values could be obtained from the adsorption equations, and established the typical POPs removal mathematics model based on the three removal mechanism.The model parameters about wastewater treatment process were confirmed --take, for instance, the WWTP of Xi′an. The result showed that the POPs removal by volatilization very small, the removal can be neglected, and difference POPs had difference removal by biodegraded, the NAPT, PHEN, and PHEN removal by biodegraded respectively were 13.7%, 3.5%, and 1.5%, and PYR and DEHP with less than 0.1% removal ratio. So the adsorption became the main removal mechanism. In according to the obvious adsorption, the removal rate calculation model of POPs was established on the basis of the equilibrium partitioning coefficient K_p. Under the condition of activated sludge of the oxidation ditch as the adsorption subject, the reasonable results were obtained. The results presented that the adsorption rate of POPs increased with the K_p, and approached to a definite value at high K_p values.
     The above study of paper announced the removal and transform mechanism of the typical POPs in domestic wastewater and the conventional secondary treatment process. It is very important for further study.
引文
[1]余刚,牛军峰,黄军,等.持久性有机污染物——新的全球性环境问题.北京.科学出版社. 2005: 1.
    [2]姜安玺.我国POPs的污染和控制.黑龙江大学自然科学学报,2004,21(2):98.
    [3] Keith L.H., Telliard W.A.. Priority pollutants I-A perspective view. Environ. Sci. Technol., 1979, 13: 416-423.
    [4]中国环境优先控制课题组.环境优先控制污染物.北京:中国环境科学出版社. 1989.
    [5] Wang X.C., Jin P.K. Water shortage and needs for wastewater re-use in the north China. Water Science & Technology, 2006, 53(9): 35-44.
    [6] Wang X.C. Application of concept of decentralization and reuse for designing a sustainable urban water system in water deficient area. In Huber GH (Ed.). Water Supply and Sanitation for all. Hans Huber AG, 2007, 253-264.
    [7] Asano T. Urban water recycling. Water Science & Technology, 2005, 51(8): 83-89.
    [8]谢重阁等.环境中的苯并[a]芘及其分析技术.北京.中国环境科学出版社.1991.
    [9] Grote M, Schuurmann G, Altenburger R. Modeling photoinduced algal toxicity of PAHs. Environ Sci Technol, 2005, 39(11): 4141-4149.
    [10]周开胜,吕超田,杨刚,等.水体中酞酸类环境激素污染及生物降解研究进展.环境科技,2009,22(4): 56-59.
    [11]王连生.有机污染化学.高等教育出版社,北京. 2004:800-809.
    [12] Okona-Mensah K.B., Batterishill J., Boobis A., Fielder R. An approach to investigating the importance of high potency polycyclic aromatic hydrocarbons in the induction of hung cancer by air pollution. Food and Chemical Toxicology, 2005, 43(7):1103-1116.
    [13]戴乾圜.化学致癌剂及化学致癌机理的研究—多环芳烃致癌性能的定量分子轨道模型—“双区理论”.中国科学,1979:64.
    [14] Tyler CR, Jobling S, Sumpter JP. Endocrine disruption in wildlife:a critical review of the evidence. Crit. Rev. Toxicol. 1998, 7(28):4319~4361.
    [15]魏泽兰.阿尔茨海默病与雌激素的作用.国外医学(分子生物学分册). 2000, 27(2):65~68.
    [16] Pesatori AC et al. Dioxin exposure and non-malignant health effects:a mortality study.Occup Environ Med. 1998, 55(2):126.
    [17] Jones, K.C., Devoogt P.. Persistent organic pollutants(POPs): State of the science. Environmental pollution. 1999, 100:209-221.
    [18]薛建华,王近中,辛佩珠,等.氯仿、氯苯和PCBs对染毒家兔红细胞脂质过氧化和膜流动性的影响.中华预防医学杂志, 1994, 28 (5): 294-296.
    [19] Carpenter D.O. Polychlorinated biphenyls and terphenyls and human health. International Journal of Occupational and Environmental health, 1998, 11:291-303.
    [20] Brouwer A, Reijinders P.J.H., Koeman J.H. Polychlorinated blphenyl(PCB)-contaminated fish induce vitamin A and thyroid hormone deficiency in the common seal. Aquat. Toxicol., 1989, 15: 99-106.
    [21] Haedel L., Van B.B., Lindstrom G., et al. concentration of polychloridinated biphenyls in blood and the risk for testieular cancer. Hat J Androl. 2004, 27(5):282-290.
    [22] Naka, K., Suzuk, K., Oka T. et al. The Tohoku Study of Child Development A eohoa study of effects of perinatal exposures to methylmercury and environmentally persistent organicpolutants on neurobenhavioral development in Japaneses children. Tohoku J Exp Med. 2004, 202(3):227-237
    [23]刘维立,朱先磊,卢妍妍.大气中多环芳烃的来源及采样方式的研究.城市环境与环境生态,1999,12(5):58-60.
    [24]张蕴晖,陈秉衡,郑力行,等.人体生物样品中邻苯二甲酸酯类的含量.中华预防医学杂志,2003,37(6):429-434.
    [25] Cai Q.Y., Mo C.H., Wu Q.T., et al. Polycyclic aromatic hydrocarbon and phthalic acid esters in the soil-radish(Raphanus sativus) system with sewage sludge and compost application. Bioresource Technology, 99: 1830-1836.
    [26]黄俊,余刚,钱易.我国的持久性有机污染问题与研究对策.环境保护,2001,29(1):36.
    [27]王伟,李兴,陆海,等.银川城市土壤中OCPs残留于其潜在风险.温州大学学报,2008,29(2):32-37.
    [28] U.S. National Research Council. A risk management strategy for PCB-contaminated sediments. The National Academmies Press. Washington D.C., 2001: 452-462.
    [29] Carpenter D.O., Polychlorinated biphenyls and terphenyls and human health. International Journal of Occupational and Environmental Health, 1998, 11: 291-303.
    [30] Huang J., YU G., Qian Y. The problems of persistent organic pullutants in china and theirresearch countermeasures. Environmental Protect, 2001, 29(11):3-6.
    [31] Arrison, R.M., Smith, D.J.T., Lu, H. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birminghan U.K.. Environ. Sci. & Technol., 1996, 30:825-832.
    [32] Wania, F., Shen, L., Lei, Y.D., et al. Development and calibration of aresin based passive sampling system form onitoring persistent organic pollutants in the atmosphere . Environ. Sci. Technol. 2003, 37(7): 1352-1359.
    [33]于国光,王铁冠,吴大鹏,等.北京市大气气溶胶中多环芳烃的研究.中国矿业大学学报, 2008,37(1): 72-78.
    [34]金晓辉,胡建英,万炜,等.多环芳烃在饮用水处理中的行为研究.中国给水排水, 2005, 21(7): 14-16.
    [35]朱利中,陈宝梁,沈红心,等.杭州市地表水中多环芳烃污染现状及风险.中国环境科学,2003,23(5): 485-489.
    [36] US EPA. Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons, EPA/600/R-93/089[R]. Washinton: Office of Reasearch and Development, 1993.
    [37] Kose, T., Yamamoto, T., Anegawa, A., et al. Source Analysis for Polycyclic Aromatic Hydrocarbon in Road Dust and Urban Runoff Using Marker Compounds. Desalination, 2008,226:151-159.
    [38] Motelay-Massei A., Ollivon D., Garban B., et al. Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere, 2004, 55:555-565.
    [39] Chung, M.K., Hu, R., Cheung, K.C., et al. Pollutants in Hong Kong soils: Polycyclic aromatic hydrocarbons. Chemoshere, 2007, 67: 464-473.
    [40] Li X.H., Ma, L.L., Liu X.F., et al. Polycyclic aromatic hydrocarbon in urban soil from Beijing. Journal of Environmental Sciences, 2006, 18(5): 944-950.
    [41]段永红,陶澍,王学军,等.天津表土中多环芳烃含量的空间分布与来源.土壤学报,2005,42(6):942-947.
    [42]王小萍,姚檀栋,丛志远,等.珠穆朗玛峰地区土壤和植被中多环芳烃的含量及海拔梯度分布.科学通报,2006,51(21):2517-2525.
    [43]孙娜,陆晨刚,高翔,等.青藏高原东部土壤中多环芳烃的污染特征及来源解析.环境科学,2007,28(3):664-668.
    [44] Watanabe T. Detemination of Dialkyl Phthalates in High Altitude Atmosphere for validation of Sampling Mrthod Using a Helicopter. Bull Environ. Contan. Toxicol. 2001, 66(4): 456-463.
    [45] Cadogan D.F., Papez M., Poppe A.C. et al. An assessment of the release, occurrence and possible effect of plasticizers in the environment. Prog. Rubber Plast Technol. 1993,10:1-19.
    [46]蔡全英,莫测辉,李云辉,等.广州、深圳地区蔬菜生产基地土壤中邻苯二甲酸酯(PAEs)研究.生态学报,2005,25(2):283-288.
    [47]朱媛媛,田靖,王伟,等.土壤中15种酞酸酯类化合物测定.中国环境监测, 2009, 25(2):79-84.
    [48] New York State Department of Environmental Conservation TAGM4046 Table 2-Semi-Volatile Organic. http://accreditedanalytical.com/forms/NY-SVOG-Semi-Volatile-Organic-Contaminants.pdf, 2009.1.8
    [49]沙玉娟,夏星辉.黄河中下游水体中邻苯二甲酸酯的分布特征.中国环境科学, 2006, 26(1):120-124..
    [50] Matto V., Maurizia G., Giannetto M., et al. Phthalate esters in freshwaters as markers of contam ination sources- a site study in Italy. Environment International, 1997, 23(3): 337-347.
    [51] Gledhilt W.E. Screening test for assessment of ultimate biodegradability: linear alkylbenzene sulfonates. Appl. Microbiol. 1975, 30(5): 922-929.
    [52] Giam G.S., Chan H.S., Neff G.S., et al. Phthalate ester plasticizers a new class of arine pollutant. Science, 1978, 199: 419-421.
    [53] Morita M., Nakamura H., Minura S. Phthalic acid esters in water. Water Research, 1974, 8:781-788.
    [54] Schwartz C.M., Anzion C.M. Vanvlier H.P.M. Analysis of phthalates esters in sedinents from Dutch Rivers by means of high liguid chromatography. Intern Envirn. Anal Chem, 1979, 6:134-144.
    [55] Yuan S.Y., Liu C., et al. Occurrence and microbial degradation of phthalates with Specia Emphasis on Endocrine Disruptive Properties. Ecotoxicology and Environmental Safty, 2002, 46:305-321.
    [56] Kelly T.J., Mukund R., Spicer C.W., et al. Concentrations and transformations of hazardousair pollutants. Environ. Sci. Technol., 1994, 28: 378A-387A.
    [57]吴水平,曹军,李本纲,等.城市大气颗粒物中OCPs的含量与分布.环境科学研究, 2003, 16(4): 36-39.
    [58] Terry F.B., Ulla W., Jansson B., et al. Organochlorine pesticides and polychlorinated biphenyls in the atmosphere of Southern Sweden. Atmos. Environ., 1987, 21(3):641-654.
    [59]成玉,盛国英,邵波,等.气溶胶和餐厅烟尘中OCPs特征和来源.中国环境科学, 2000,20(1):18-22.
    [60] Hao H.T., Sun B., Zhao Z.H. Effect of land use changed from paddy to vegetable field on the residues of organochlorine pesticides in soils. Environ. Pollution, 2008: 1-7.
    [61]杨国义,万开,张天彬,等.广东生典型区域农业土壤中六六六和滴滴涕的残留及其分布特征.环境科学研究, 2008, 21(1): 113-117.
    [62]廖凤蓉,唐跃刚,吴明远,等.唐山市土壤中OCPs的初步研究.中国农业科学, 2006, 39(7): 1403-1410.
    [63]张伟玲,张干,祁士华,等.西藏错鄂湖和羊卓雍湖水体及沉积物中OCPs的初步研究.地球化学, 2003, 32(4): 363-367.
    [64]万译文,康天放,周忠亮,等.北京官厅水库中有机氯类农药的分布和来源.生态与农村环境学报, 2009, 25(1): 53-56.
    [65]张祖麟,陈伟琪,哈里德,等.九龙江口水体中OCPs分布特征及归宿.环境科学, 2001, 22(3): 88-92.
    [66] Leong K.H., Benjamirr T.L.L., Mustafa A.M. Contamination levels of seleted organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere, 2007, 66: 1153-1159.
    [67] Turgut C. The contamination with organochlorine pesticides and heavy metals in surface water in Kucuk Menders River in Turkey, 2000-2002. Environ. Intern. 2003, 29:29-32.
    [68]戴树桂.环境化学进展.北京.化学工业出版社, 2005: 312.
    [69] Lohmann R., Northcott G.L., Jones K.C., Assessing the contribution of diffuse domestic burning as a source of PCDD/Fs, PCBs and PAHs to the U.K. Atmosphere. Environ. Sci. Technol., 2000, 34:2892-2899.
    [70] Ogura I., Masunaga S., Nakanishi J. Quantitative source identification of dioxin-like PCBs in Yokohama, Japan, by temperature dependence of their atmospheric concentration. Environ. Sci. Technol., 2004, 38: 3279-3285.
    [71]孙俊玲,刘大锰,张庆华,等.北京市冬季大气PM215中PCBs的污染水平和分布.现代地质, 2009, 23(2): 378-384.
    [72]王春雷,张建清,杨大成,等.深圳市大气中PCBs污染水平.环境化学, 2010, 29(5): 892-897.
    [73]蒋煜峰,王学彤,吴明红,等.上海农村及郊区土壤中PCBs污染特征及来源研究.农业环境科学学报, 2010, 29(5): 899-903.
    [74]耿存珍,李明伦,杨永亮,等.青岛地区土壤中OCPs和PCBs污染现状研究.青岛大学学报(工程技术版). 2006, 21(2): 42-46.
    [75]储少岗,杨春,徐晓白,等.典型污染地区底泥和土壤中残留PCBs(PCBs)的情况调查.中国环境科学, 1995, 15(3): 199-203。
    [76] Harner T., Machay D., Jones K.C. Model of Long-Term Exchange of PCBs Between Soil and Atmosohere in the Southern U.K.. Environ. Sci. Technol., 1995, 29(5): 1200-1209.
    [77] Motelay M.A., Ollivon D., Garban B., et al. Distribution and Spatial Trends of PAHs and PCBs in Soils in the Seine River Basin, France. Chemosphere, 2004, 55(4): 555-565.
    [78] UNEP. Regional Assessment of Persistent Toxic Substance. Central and Northeast Asia Regional Report. Geneva: UNEP Chemicals, 2002d. 115.
    [79]谭培功,赵仕兰,曾宪杰,等.莱州湾海域水体中OCPs和PCBs的浓度水平和分布特征.中国海洋大学学报, 2006, 36(3): 439-446.
    [80]张祖麟,陈伟琪,哈里德,等.九龙江口水体中PCBs的研究.云南环境科学, 2009, 19(S1): 124-129.
    [81] Jens C.H. Environmental Contaminants and Human Health in the Arctic. Toxicology Letters, 2000, 112-113:119.
    [82] Weber K., Goerk H. Organochlorine Compounds in Fish off the Antarctic Peninsula. Chemosphere, 1996, 33: 404-410
    [83] Cendrine Dargnat , Marie-Jeanne Teil, Marc Chevreuil, Martine Blanchard. Phthalate removal throughout wastewater treatment plant Case study of Marne Aval station (France). SCIENCE OF THE TOTAL ENVIRONMENT. 2009, 407: 1235-1244
    [84] Tan BLL, Hawker DW, Müller JF, et al.. Stir bar sorptive extraction and trace analysis of selected endocrine disruptors in water, biosolids and sludge samples by thermal desorption with gas chromatography-mass spectrometry. Water Res. 2008, 42: 404-412
    [85]徐艳玲,程永清,秦华宇,等.有机微污染物在污水处理过程中的变化研究.环境污染与防治, 2008, 26(5): 804-817.
    [86] Blanchard M, Teil M J, Ollivon D, et al. Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France). Environmental Research, 2004, 95: 184-197.
    [87] Busetti F, Heitz A, Cuomo M, et al. Determination of sixteen polycyclic aromatic hydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant. Journal of Chromatography A, 2006, 1102: 104–115.
    [88] Juan Sánchez-Avila, Jordi Bonet, Gemma Velasco, et al. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant. Science of the Total Environment, 2009, 407: 4157-4167.
    [89] Christian Vogelsang, Merete Grung, Tor Gunnar Jantsch, et al. Occurrence and removal of selected organic micropollutants at mechanical, chemical and advanced wastewater treatment plants in Norway. Water Research, 2006, 40: 3559-3570.
    [90] Manoli E, Samara C. Occurrence and mass balance of polycyclic aromatic hydrocarbons in the Thessaloniki sewage treatment plant. Environmental Quality, 1999, 28(1): 176-186.
    [91] Farah Al Nasir, Mufeed I. Batarseh. Agricultural reuse of reclaimed water and uptake of organic compounds: Pilot study at Mutah University wastewater treatment plant, Jordan. Chemosphere, 2008, 72: 1203-1214.
    [92]孔祥吉,李冬,张杰,张雪梅,等.SPE-GC-MS方法分析城市生活污水中PCBs的研究.北京工业大学学报,2009,35(8):1084-1089.
    [93]谢武鸣,胡勇有,刘焕彬,等.城市污水中PCBs的分析及其QA/QC研究。中国环境监测,2005,21(3):35-39.
    [94] M. Blanchard, M. J. Teil, D. Ollivon, et al. Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France). Environmental Research, 2004, 95(2) 184-197.
    [95] Christian Vogelsang, Merete Grung, Tor Gunnar Jantsch,et al. Occurrence and removal of selected organic micropollutants at mechanical, chemical and advanced wastewater treatment plant in Norway. WATER RESEARCH, 2006,40(19):3559-3570
    [96] Juan Sanchez-Avila, Jordi Bonet, Gemma Velasco, et al. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs, and PAHs in an industrial sewage griddischarging to a Municipal Wastewater Treatment Plant. Science of theTotal Environmental, 2009,407(13): 4157-4167.
    [97] Athanasios Katsoyiannis, Anastastios Zouboulis, Constantini Samara. Persistent organic pollutants (POPs) in the conventional activated sludge treatment process: Model predictions against experiment values. Chemosphere 2006,65(9):1634-1641.
    [98]柳丽丽,王子健,任仁,等,刘励超.城市污水处理厂不同工艺段中OCPs残留.环境污染治理技术与设备,2003,4(10):32-35.
    [99]徐艳玲,程永清,秦华宇,等.有机微污染物在污水处理过程中的变化研究.环境污染与防治. 2006,28(11):804-807.
    [100]陈明,任仁,王子健等.北京工业废水和城市污水中OCPs残留分析.中国环境监测,2007,23(4):29-32.
    [101] Jennings W., Mittlefehldt E., Stremple P. Analytical Gas Chromatography. Folsom, California, J&W Scientific, Second Edition, 1997.
    [102]吴烈钧.气相色谱检测方法.北京.化学工业出版社, 2001.1
    [103] US EPA Method Validation Study 20, Method 610 (Polynuclear Aromatic Hydrocarbons). Report for EPA Contract 68-03-2624(in preparation ).
    [104]国家环保局,水和废水监测分析方法编委会编.水和废水监测分析方法(第四版).北京,中国环境科学出版社, 2002..
    [105]江桂斌.环境样品前处理技术.化学工业出版社, 2004.
    [106] Busetti F, Heitz A, Cuomo M, et al. Determination of sixteen polycyclic aromatic hydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant. Journal of Chromatography A, 2006, 1102: 104–115.
    [107]郑海涛,刘菲,刘永刚.固相萃取-气相色谱法测定水中多环芳烃.岩矿测定, 2004, 23(2): 148-152.
    [108]罗世霞,朱淮武,张笑一.固相微萃取-气相色谱法联用分析饮用水源水中的16种多环芳烃.农业环境科学学报, 2008, 27(1): 395-400.
    [109] Li, X.J., Lin, X.,Li, P.J., Liu, et. al. Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. Journal of Hazardous Materials. 172: 601-605.
    [110] Carlo M. D., Pepe A., Sacchetti G., et al. Determination of phthalate esters in wine using solid-phase extraction and gas chromatography-mass spectrometry. Food Chemistry.111:771-777.
    [111] Glam C.S., Chan H.S., Hammargren T.F., Neff, G.S.. Confitmation of Phthalate Easters from Environmental Samples by Dervatization. Analytical Chemistry, 1976, 48(1): 78-80.
    [112] Brossa L., Marce R.M., Borrull F. et al. Application of on-line solid-phase extraction-gas chromatography-mass spectrometry to the determination of endocrine disruptors in water samples. Journal of Chromatography A, 2002, 963: 287-294.
    [113] Jara S., Lysebo C., Greibrokk T., et al.. Determination of phthalates in water samples using polystyrene solid-phase extraction and liquid chromatography quantification. Analytical Chimica Acta, 2000, 407: 165-171.
    [114]金朝晖,黄国兰,李红亮等.水中邻苯二甲酸酯类化合物的预富集.环境科学, 1998, 1: 31-33.
    [115]胡振元,施梅儿.痕量环境有机污染物分析中的样品前处理技术.化学世界.1999, (1): 563-567.
    [116]邱耀文,周俊良, Maskaoui K.等.大亚湾海域PCBs及OCPs研究.海洋环境科学. 2002, 21(1): 46-51.
    [117]杨清书,雷亚平,欧素英,等.珠江虎门河口水体OCPs的垂向分布及二次污染初步研究.地理科学. 2008, 28(6): 820-825.
    [118]张秀芳,全燮,陈景文等.辽河中下游水体中多氯有机物的残留调查.中国环境科学. 2000, 20(1): 31-35.
    [119]郑明麒,周绪高,王初丹.气相色谱-质谱法测定城市自来水中OCPs的残留.化学工程与装备. 2009,4: 120-122.
    [120]黄苏宁,刘丽萍.固相萃取与液液萃取在气相色谱法测定有机物六六六、滴滴涕的试验比较.净水技术. 1999, 17(4): 26-28.
    [121] Vassilakis I., Tsipi D., Scoullos M. Determination of a variety of chemical classes of pesticides in surface and ground waters by off-line solid-phase extraction, gas chromatography with election-capture and nitrogen-phosphorus detection, and high-performance liquid chromatography with post-column derivation and fluorescence detection. Journal of Chromatography A. 1998, 823: 49-58.
    [122]常爱敏,宗栋良,梁栋,等.水中PCBs的检测方法研究.中国给水排水. 2009. 25(16): 84-87.
    [123]曾北危,姜平.环境激素.北京.化学工业出版社. 2005, 143.
    [124]杨柳燕,肖琳,蒋丽娟. POPs的微生物降解进展. POPs论坛2006暨第一届POPs全国学术研讨会论文集, 2006: 245-249.
    [125] Chang B.V., Wang T.H., Yuan S.Y. Biodegradation of four phthalate esters in sludge. Chemosphere 69(2007): 1116-1123.
    [126]王建龙,吴立波,施汉昌.驯化活性污泥降解邻苯二甲酸酯类化合物的研究.环境科学. 1998, 1(1):18-20.
    [127]夏风毅,郑平,周琪.邻苯二甲酸酯的摇床生物降解规律研究.环境科学学报. 2002, 22(3): 379-384.
    [128]曾峰,傅家谟,盛国英.邻苯二甲酸酯类有机污染物生物降解性研究.环境科学进展. 1999, 7(4): 1-13.
    [129]丁鹏,赵晓松,刘建峰.酚酞酯类化合物(PAEs)研究新进展.吉林农业大学学报. 1999, 21(3): 119-123.
    [130]聂麦茜,吴曼莉,王晓昌等.一株黄杆菌及其粗酶液对芘降解的动力学特征研究.环境科学学报, 2006, 26(2): 181-185.
    [131]吴曼莉,聂麦茜,王晓昌等.蒽和菲的酶促降解条件及动力学特征.环境化学, 2007, 26(3): 314-317.
    [132]吴曼莉,聂麦茜,王晓昌等.金属离子对多环芳烃酶促降解的影响作用.水处理技术, 2008,8 : 13-16.
    [133] Wu M.L., Nie M.Q., Wang X.C., et al. Analysis of phenathrene biodegradation by using FTIR, UV and GC-MSS. Pectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 75(3): 1047-1050.
    [134] Traczewska T.M. Changes of toxicological properies of biodegradation products of anthracene and phenanthrene. Water Sci. Technol., 2000, 41: 31-39.
    [135] Jahan K., Ahmed T., Maier W. J. Modeling the influence of nonionic surfactants on biodegradation of phenanthrene. Water Research, 1999, 33(9): 2181-2193.
    [136] Morgan P., Lee S.A., Lewis S.T., et al. Growth and biodegradation by white-rot fungi inoculated into soil. Soil Biology and Biochemisty, 1993, 25(2): 297-287.
    [137] Wang L., Nie M.Q., Wang Z.Y., et al. Screening of PAH-Degrading bacteria and studies on their degradation characters. Proceedings of the International Conference on Adances in Chemical Technologies for Water and Wastewater Treatment. Xi’an, China, 15-18 May, 2008, 573-581.
    [138] Coates J.D., Chakraborty R., O’Connor S.M., et al. The geochemical effects of microbialhumic substances reduction. Acta Hydrochim. Hydrobiol. 2000, 28, 420-427.
    [139] Prevecek T.L., Christman R.F., et al. Impact of imposed aromatic conditions and microbial activity on aqueous phase solubility of polycylic aromatic hydrocarbons from soil. Environ. Toxicol. Chem. 2005, 24, 286-293.
    [140] Kim H.S., Faender F.P. Effect of Microbially Mediated Redox Conditions on PAH-Soil Interaction, Environ. Sci. Technol. 2005, 39, 9189-9196.
    [141] Torrens K.D. Getting dioxin out of groundwater/wastewater. Pollut. Eng., 2000, 32: 31-33.
    [142] Burrows H.D., Canle L.M., Santaballa J.A., et al. Reaction pathways and mechanisms of photo-degradation of pesticides. J. Photochem. Photobiol. B, Biol., 2002,67:71-108.
    [143] Hilmi A., Luong J.H., Nguyen A.L. Applicability of micellar electrokinetic chromatography to kinetic studies of photocatalytic oxidation of dibenzo-p-dioxin. Chemosphere, 1998, 36: 3113-3117.
    [144] Bandala E.R., Gelover S., Leal M.T., et al. Solar photocatalytic degradation of Aldrin. Catal. Today, 2002, 76: 189-199.
    [145]冯玉杰,崔玉虹,孙俪欣,等.电化学废水处理技术及高效电催化电极的研究与进展.哈尔滨工业大学学报, 2004, 36(4): 450-455.
    [146] Halappa G. Colour and organic removal of biologically treated coffee curing wastewater by electrochemical oxidation method. Journal of Environmental Sciences, 2003, 15(3): 323-327.
    [147] Treimer S.E., Feng J., Johnson D.C. Photoassisted electrochemical incineration of selected organic compounds. Electrochem. Soc., 2001, 148(7): 321-325.
    [148]夏志新,朱又春.吸附电解氧化法对印染助剂JFC废水的研究.广东工业大学学报,2001,18(3): 72-76.
    [149] Monnguchi Y. Synthetic oligorhamnans related to the most common O-chain backbone from phytopathogenic bacteria. Tetrahedron, 2006, 62: 8384-8392.
    [150] Delmas H. Anodic oxidation of 2, 4-dihydroxy benzoic acid for wastewater treatment: study of ultrasound activation. Chemical Engineering Science, 2002, 57: 767-778.
    [151]马承愚,彭英利.高浓度难降解有机废水的治理与控制.北京.化学工业出版社, 2007. 38.
    [152]国家污染物控制技术.国务院.节能减排综合性工作方案.国发(2007)15号.2007 7 23
    [153] Katsoyiannis A., Samara C. Persistent organic pollutants (POPs) in the sewage treatmentplant of Thessaloniki, northern Greece: occurrence and removal. Water Research. 38(2004): 2685-2698.
    [154] Barnabe S., Barar S.K., Tyagi R.D., et al. Pre-treatment and bioconversion of wastewater sludge to value-added products-Fate of endocrine disrupting compounds. Science of the total environment. 407(2009): 1471-1488.
    [155]杜兵,张彭义,张祖麟,等.北京市某典型污水处理厂中内分泌干扰物的初步调查.环境科学, 2004, 25(1): 114-116.
    [156] Francesco Fatone, David Bolzonella, Paolo Battistoni. et al. Removal of nutrients and micropollutants treating low loaded wastewaters in a membrane bioreactor operating the automatic alternate-cycles process. Desalination, 2005, 183: 395-405.
    [157] Manoli E, Samara C. The removal of Polycyclic Aromatic Hydrocarbons in the wastewater treatment process: Experimental calculations and model predictions. Environmental Pollution, 2008, 151: 477-485.
    [158] Mackay D., Fraser A. Bioaccumulation of persistent organic chemicals: mechanisms and models. Environmental Pollution 110(2000):375-391.
    [159] Seth R., Webster E., Donald M. Continued development of a mass balance model of chemical fate in a sewage treatment plant. Water Research. 42(2008): 595-604.
    [160] Katsoyiannis A., Samara C. Persistent organic pollutants (POPs) in the sewage treatment plant of Thessaloniki, north Greece: occurrence and removal. Water Research. 38(2004): 2685-2698.
    [161] Mamoli E., Samara C. The removal of polycyclic aromatic hydrocarbons (PAHs) in the wastewater treatment prcoss: Experimental calculation and model predictions. Environmental Pollution. 151(2008): 477-485.
    [162]郑琴,陈利平,卫东,等.西安第三污水处理厂工程可行性研究的思路.中国市政工程. 2004. 6(112): 39-41.
    [163]张兰英,饶竹,刘娜,等.环境样品前处理技术.北京.清华大学出版社, 2008:Ⅰ-Ⅱ.
    [164]王夏霞,庄婉娥,姚文松,等.河口及近岸海水中20种农药的固相萃取小柱富集—气相色谱测定方法研究.分析仪器, 2010, 6: 64-71.
    [165]王旭东,宋姚,王磊,等.固相萃取气质联用测定水中痕量OCPs.中国给水排水, 2009, 25(12): 79-82.
    [166] Busetti F., Heitz A., Cuomo M. et al. Determination of sixteen polycyclic aromatichydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant. Journal of Chromatography A. 1102(2006): 104-115.
    [167]李杰,韦桂欢,席骁,等.固相萃取—气相色谱法测定水中OCPs.舰船科学技术. 2010, 32(12): 107-110.
    [168]龙庆云,张洪彬,韦桂欢,等.固相萃取—气质联用测定水中半挥发性有机物研究.舰船科学技术. 2010, 32(12):102-106.
    [169] Paraíba L.C., Queiroz S.C.N., Maia A.D.H., et al. Bioconcentration factor estimates of polycyclic aromatic hydrocarbons in grains of corn plants cultivated in soils treated with sewage sludge. Sci. Toal. Environ. (2010), doi: 10.1016/j.scitotenv, 2010. 04. 026.
    [170] Bamford, H.A., Poster, D.L., Baker, J.E. Temperature dependence of henry’s law constants of thirteen polycyclic aromatic hydrocarbons between 4℃and 31℃. Environmental toxicology and chemistry, 1999, 18(9), 1905-1912.
    [171] Alaee, M., Whittal, R.M., Strachan, W.M.J.,. The effect of water temperature and compostion on henry’s law constant for various PAH’s. Chemosphere, 1996, 32 (6). 1153-1164.
    [172] Peters, C.A., Knightes, C.D., Brown, D.G. Long-term composition dynamics of PAH-Containing NAPLs and implications for risk assessment. Environ. Sci. Technol. 1999, 33(24), 4499-4507.
    [173] Tan, B.L.L., Hawker, D.W., Mülle,r J.L., Leusch F.D.L., Tremblay L.A., Chapman H.F. Modelling of the fate of selected endocrine disruptors in a municipal wastewater treatment plant in South East Queensland, Australia. Chemosphere. 2007, 69, 644-654.
    [174] Chang, B.V., Wang, T.H., Yuan, S.Y., Biodegradation of four phthalate esters in sludge. Chemosphere. 2007, 69: 1116-1123.
    [175] Andersen H.R. Assessment of the importance of sorption for steroid estrogens removal during activated sludge treatment. Chemosphere. 61(2005): 139-146.
    [176] Oleszczuk P. Sorption of phenanthrene by sewage sludge during compositing in relation to potentially bioavailable contaminant content. Journal of Hazardous Materials. 161 (2009): 1330-1337.
    [177] Li Yungui, Chen Baoliang, Zhu Lizhong. Enhanced sorption of polycyclic aromatic hydrocarbons from aqueous solution by modified pink bark. Bioresource technology, 2010, 101(19):7307~7313.
    [178] Mittal M., Rockne K.J. Naphthalene and phenanthrene sorption to very low organic content diatomaceous earth: Modeling implication for microbial bioavailability. Chemosphere 74(2009): 1134-1144.
    [179] Xing B. Sorption of naphthalene and phenanthrene by soil humic acids. Environmental Pollution 111(2001): 303-309.
    [180] Gupta S.S. Bhattacharyya K. Adsorption of Ni(Ⅱ) on clays. Journal of Colloid and Interface Science 295(2006): 21-32.
    [181] Oleszczuk P. Sorption of phenanthrene by sewage sludge during compositing in relation to potentially bioavailable contaminant content. Journal of Hazardous Materials. 161 (2009): 1330-1337
    [182] Hild A. Séquaris J.M., Narres H.D. et al. Adsorption of polyvinylpyrrolidone on kaolinte. Colloids and Surfaces A: Physicochemical and Engineering Aspects 123-124(1997): 515-522.
    [183] Christian V., Merete G., Tor G.J., et al. Occurrence and removal of selected organic micropollutants at mechanical, chemical and advanced wastewater treatment plants in Norway. Water Research. 2006, 40: 3559-3570.
    [184] Aguayo S., Munoz M.J., et al. Identification of organic compounds and ecotoxicological assessment of sewage treatment plants(STP) effluents. Sci. Tot. Environ. 2004, 328(1-3): 69-81.
    [185] Eljarat E., Barcelo D.. Priority lists for persistent organic pollutants and emerging contaminants based on their relative toxic potency in environmental samples. Trends Anal. Chem. 2003, 22(10):655-665.
    [186] Water quality-sapling-Part 3: Guidance on the preservation and handling of samples, ISO. 2003: 5667-5673.
    [187]孔祥吉,李冬,张杰,等. SPE-GC-MS方法分析城市生活污水中PCBs的研究.北京工业大学学报. 2009,35(8): 1084-1089.
    [188]高旭,郭劲松,熊毅;等.常规水处理工艺多环芳烃和邻苯二甲酸酯变化分布.给水排水. 2007, 33(25): 25-29.
    [189]周益奇,王子健.污水中6种邻苯二甲酸酯的测定.分析测试学报. 2009, 28(12): 1419-1423.
    [190] Oliver R, May E, Williams J. The occurrence and removal of phthalates in a trickle filterSTW. Water Res. 2005, 39: 4436-4444.
    [191] BarnabéS, Beauchesne I, Cooper DG, Nicell JA. Plasticizers and their degradation products in the process streams of a large urban physicochemical sewage treatment plant. Water Res. 2008, 42: 153-162.
    [192] Tan BLL, Hawker DW, Müller JF, Leush FDL, Tremblay LA,Chapman HF. Stir bar sorptive extraction and trace analysis of selected endocrine disruptors in water, biosolids and sludge samples by thermal desorption with gas chromatography-mass spectrometry. Water Res. 2008, 42: 404-412.
    [193] Vethaak AD, Lahr J, Schrap SM, Belfroid AG, Rijs GBJ, Gerritsen A, et al. An integrated assessment of oestrogenic contamination and biological effects in the aquatic environment of the Netherlands. Chemosphere. 2005, 59: 511–524.
    [194] Marttinen S, Kettunen R, Rintala J. Occurrence and removal of organic pollutants in sewages and landfill leachates. Sci Tot Environ. 2003a, 301: 1–12.
    [195]林兴桃,陈明,王小逸,张淑芬,武少华,陈莎,王桂华,任仁.污水处理厂中邻苯二甲酸酯类环境激素分析.环境科学与技术. 2004.11, 27(6): 79-81.
    [196]王郁.水污染控制工程.北京.化工工业出版社, 2007. 147.
    [197]李圭白,张杰.水质工程学.北京.中国建筑工业出版社, 2005. 365-367.
    [198] Chen B.L., Wang Y.S., Hu D.F. Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of whit-rot fungi. Journal of Hazardous Materials. 179(2010): 845-851.
    [199] Wang J., McPhedran K.N., Seth R. et al. Evaluation of the STP model: Comparison of modeled and experimental results for ten polycyclic aromatic hydrocarbons(PAHs). Chemosphere 69(2007): 1802-1806.
    [200] Kottler B D, Alexander M. Relationship of properties of polycyclic aromatic hydrocarbons to sequestration in soil[J]. Environ Pollut, 2001, 113(3):293~298
    [201] Byrns, G., 2001. The fate of xenobiotic organic compounds in wastewater treatment plants. Water Research 35(10), 2523-2533.
    [202]王郁,林逢凯.水污染控制工程.北京.化学工业出版社. 2007:225.
    [203]戴树桂.环境化学.北京.高等教育出版社. 1996. 141.
    [204] Namkung E., Rittmann E. B. Estimating volatile organic compound emissions from publicy owned treatment works. Journal WPCF, 1987, 59(7):670-678.
    [205]戴树桂.环境化学.北京.高等教育出版社. 1996. 153.
    [206]王郁.水污染控制工程.北京.化工工业出版社.2007. 258.
    [207]陶俊杰,于军亭,陈振选,等.城市污水处理技术与工程实例.北京:化工工业出版社, 2005.5:49.
    [208]高廷耀.水污染控制工程(第二版).北京.高等教育出版社. 2004. 28.
    [209]冯蕊,李亚新. Orbal氧化沟理论与设计计算.科技情报开发与经济, 2005,15(19):163-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700