三唑酮对斑马鱼的胚胎发育和内分泌—生殖毒性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三唑酮是甾醇脱甲基抑制剂(DMI),对植物体内麦角甾醇合成具有抑制作用。本论文以斑马鱼为受试对象,评价了三唑酮对斑马鱼胚胎-幼鱼阶段暴露产生的胚胎发育毒性。胚胎急性毒性结果表示三唑酮对斑马鱼胚胎毒性为低毒,2μg/mL和4μg/mL暴露后斑马鱼胚胎呈现出致畸效应,主要表现为躯干弯曲、游囊关闭等畸形现象。通过窗口试验及运动行为等综合指标的检测,进一步对致畸机制进行了初步的探讨,推测自主运动减缓从而影响孵化是导致畸形现象产生的可能机制,是否还存在其他方面的潜在机制还需通过其他实验进一步进行研究。另外,通过检测斑马鱼运动行为评价其可能具有的潜在神经毒性效应,主要包括24 hpf的自主运动和120 hpf游动能力,初步证实了三唑酮对斑马鱼胚胎发育具有神经毒性效应,方法具有一定的新颖性。
     从下丘脑-垂体-甲状腺轴出发探讨三唑酮对斑马鱼内分泌-生殖系统造成的影响。研究了三唑酮对斑马鱼胚胎甲状腺激素T3、T4的影响,进一步从下丘脑-垂体-甲状腺轴角度出发,主要包括促甲状腺激素(TSHβ)、甲状腺激素核受体(TRα和TRβ)、脱碘酶(D1和D2)的基因表达量水平进行了测定,解释其可能存在的干扰机制。结果显示三唑酮对斑马鱼早期胚胎具有一定的甲状腺激素干扰效应。主要表现为诱导促甲状腺激素TSHβ基因表达量升高,从而促进甲状腺激素合成和分泌,导致体内T4水平升高。同时抑制了脱碘酶D1,使得T4到T3之间的脱碘转化受到抑制,导致T3水平降低。T3在体内只有进入靶细胞后,与甲状腺激素核受体TRp结合后才能发挥作用。试验结果显示相应的甲状腺激素受体TRp的基因表达量也受到抑制。T3的生物活性是T4的3-5倍,另外它与甲状腺激素核受体TRp结合后才能发挥作用。因此,三唑酮暴露后降低了斑马鱼体内甲状腺的生物活性。
     从性腺发育和生殖功能出发探讨三唑酮对斑马鱼内分泌-生殖系统造成的影响。将斑马鱼亲代FO代整个生命周期长时间暴露于三唑酮,为三唑酮的生态毒理学和生态环境风险评价研究提供了一定的科学依据和理论基础。对斑马鱼亲代F0代的内分泌-生殖系统相关的生理生化指标进行了检测。实验结果三唑酮对斑马鱼种群数量、体重体长等生长指标具有一定的抑制作用。另外,通过性腺组织学观察,发现三唑酮对卵巢、精巢的重量没有影响,但是三唑酮处理组雌鱼卵巢处于相对幼稚的阶段,发育不成熟。从性别比例的统计数据可以发现三唑酮处理后,斑马鱼种群出现雄性化的现象,结合Vtg基因表达量也受到抑制,推测三唑酮暴露后斑马鱼种群出现雄性表现型增多的现象主要是由于三唑酮具有芳香酶抑制剂的特性,使其干扰了斑马鱼的性别发育,导致种群中雄性表现型增多的现象。
     斑马鱼整个生命周期暴露于三唑酮后又进行了配对产卵试验,从整体角度研究了三唑酮对斑马鱼繁殖的影响效应并作了初步的判断,三唑酮处理组雌鱼产卵次数减少,表明抑制了交配行为,导致产卵数量降低。雌鱼产卵降低还与卵巢发育不成熟相关,另一方面,雄鱼的精子密度和精子活力降低等因素也影响了配对产卵试验。
     另外,本论文通过三唑酮亲代F0整个生命周期期暴露后对子代F1代胚胎的受精率、孵化率和死亡率三个指标的观察,从亲代和子代二世代角度深入研究三唑酮对斑马鱼的内分泌-生殖毒性。结果显示亲代处于0.5μg/mL浓度三唑酮暴露后对子代F1胚胎的受精率显著降低,进一步影响孵化,最终导致死亡。结合雄鱼精子质量的试验,表明亲代雄鱼精子质量显著降低,包括精子活力和精子密度,导致了子代胚胎受精率降低。0.125μg/mL和0.25μg/mL浓度三唑酮亲代F0处理后对子代F1胚胎受精率、孵化率、畸形率未发现任何影响,但其是否具有其他毒性效应有待进一步研究。
Triadimefon, a triazole fungicide, has been widely detected in the environment, but few studies have assessed its effect on aquatic organisms. The present study evaluated the effect of triadimefon in embryo-larval stages of zebrafish. Zebrafish embryos exhibited teratogenic evidence of bent spine, uninflated swim bladder and other malformations after being exposed to various triadimefon concentrations (2-4μg/mL) from 6 to 120 h post-fertilization (hpf). Locomotor activities namely spontaneous movement in embryos and swimming activity in larvae were detected to assess the neurotoxicity. This was the first study to detection the neurotoxicity and teratogenic of triadimefon in zebrafish. It seemed that the spontaneous movement was related to the hatching rate and the potential course of the uninflated swim bladder. The results suggested that the need for additional research to identify the mode of triadimefon toxicity.
     The study evaluated thyroid hormone levels and the expression of related genes in the hypothalamic-pituitary-thyroid (HPT) axis, including thyroid-stimulating hormone (TSHP), deiodinases (D1 and D2) and the thyroid hormone receptor (TRαand TRβ). After triadimefon exposure, increased T4 but decreased T3 were found. It seemed that increased TSHβcould result in increasing T4. The conversion of T4 to T3 occurred by the deiodinases. Decreased T3 could be explained by decreasing deiodinase type I (D1). The action of thyroid hormones was mediated by their binding to nuclear receptors that acted directly on target genes. TRP mRNA levels were significantly down-regulated, possibly as a response to the decreased T3 levels. The overall results indicated that triadimefon exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by triadimefon could occur at several steps in the synthesis, regulation, and action of thyroid hormones.
     Impact of triadimefon on endocrine reproductive system in zebrafish, including vitellogenin (Vtg) mRNA, mortality rate, growth, sex ratio, gonad histology and sperm parameters was evaluated in this study by using full life cycle test. Zebrafish of 24 hours post fertilization (24 hpf) were exposed to various concentration of triadimefon (0.125,0.25,0.5μg/mL) until 120 days. Increased mortality rate were observed in fish exposed to 0.5μg/mL triadimefon. At 40 dpf, Vtg mRNA expression was decreased in fish exposed to 0.25 and 0.5μg/mL triadimefon. Histological assessment revealed that the female fish in the treated by 0.5μg/mL triadimefon had immature ovaries. The sex ratio had a significantly increased in terms of males. These effects were consistent with aromatase inhibition. Armatase inhibitor could block the balance of estrogens and androgens so as to increase proportion of males in populations.
     F0 Breeding studies revealed significant reproductive dysfunctions in 0.25 and 0.5μg/mL triadimefon-treated groups. This was a report about fish with reduced reproductive capacity following exposure to triadimefon, had not been published yet. Reproductive success was a very complicated process and it might be influenced by multiple factors. The sperm examination revealed that triadimefon decreased the sperm mobility and sperm concentration, which could partially explain why the triadimefon-treated males were almost infertile. Then some parameters of the offspring F1 were tested, including embryo fertility, mortality, hatching rate and teratogenic effects. It suggested that triadimefon could adversely affect the fertility rate, the hatching and mortality. Decreaed fertily could be explained by decreasing sperm concentration and motility.0.125μg/mL and 0.25μg/mL triadimefon had no significantly influences on the fertility, hatching and mortality. Whether these concentrations had any other toxic effects needed to be illustrated in further study.
引文
[1]Polard T, Jean S, Gauthier L, et al. Mutagenic impact on fish of runoff events in agricultural areas in south-west France[J]. Aquatic Toxicology.2011,101(1):126-134.
    [2]Vryzas Z, Alexoudis C, Vassiliou G, et al. Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece[J]. Ecotoxicology and Environmental Safety.2011,74(2):174-181.
    [3]Anasco N, Uno S, Koyama J, et al. Assessment of pesticide residues in freshwater areas affected by rice paddy effluents in Southern Japan[J]. Environmental Monitoring and Assessment. 2010,160(1-4):371-383.
    [4]万译文,康天放,周忠亮,等.北京官厅水库有机氯农药分布特征及健康风险评价[J].农业环境科学学报.2009,28(4):803-807.
    [5]黄群腾.水环境中36种农药残留的同时分析方法及其应用[D].厦门大学,2008.
    [6]Ozmen M, Ayas Z, Gungordu A, et al. Ecotoxicological assessment of water pollution in Sariyar Dam Lake, Turkey[J]. Ecotoxicology and Environmental Safety.2008,70(1):163-173.
    [7]Schriever C A, von der Ohe P C, Liess M. Estimating pesticide runoff in small streams[J]. Chemosphere.2007,68(11):2161-2171.
    [8]吴玲玲.长江口水体中典型有机污染物的分布及其对鱼类的毒性效应[D].同济大学,2007.
    [9]王英辉,祁士华,王伟.汈汊湖水体和表层沉积物中有机氯农药分布特征[J].环境污染与防治.2007,29(6):415-418.
    [10]Abdel-Halim K Y, Salama A K, El-Khateeb E N, et al. Organophosphorus pollutants (OPP) in aquatic environment at Damietta Governorate, Egypt:Implications for monitoring and biomarker responses[J]. Chemosphere.2006,63(9):1491-1498.
    [11]张菲娜,祁士华,苏秋克,等.福建兴化湾水体有机氯农药污染状况[J].地质科技情报.2006,25(4):86-91.
    [12]李永玉,洪华生,王新红,等.厦门海域有机磷农药污染现状与来源分析[J].环境科学学报.2005,25(8):1071-1077.
    [13]Rebich R A, Coupe R H, Thurman E M. Herbicide concentrations in the Mississippi River Basin-the importance of chloroacetanilide herbicide degradates[J]. Science of the Total Environment.2004,321(1-3):189-199.
    [14]张秀芳,全燮.辽河中下游水体中多氯有机物的残留调查[J].中国环境科学.2000,20(1):31-35.
    [15]Fernandez M A, Alonso C, Gonzalez M J, et al. Occurrence of organochlorine insecticides, PCBs and PCB congeners in waters and sediments of the Ebro River (Spain)[J]. Chemosphere. 1999,38(1):33-43.
    [16]Liess M, Schulz R, Liess M H D, et al. Determination of insecticide contamination in agricultural headwater streams[J]. Water Research.1999,33(1):239-247.
    [17]窦薇,赵忠宪.白洋淀水生食物链BHC,DDT生物浓缩分析[J].环境科学.1997,18(5):41-43.
    [18]史双昕,周丽,邵丁丁,等.长江下游表层沉积物中有机氯农药的残留状况及风险评价[J].环境科学研究.2010(1):7-13.
    [19]曾凡刚.我国南海海鱼中有机氯农药残留分析[J].岩矿测试.2010(3):241-244.
    [20]单正军,陈祖义.农药对水生生物的污染影响及污染控制技术[J].农药科学与管理.2007,28(10):18-20.
    [21]Delorenzo M E, Scott G I, Ross P E. Toxicity of pesticides to aquatic microorganisms:A review[J]. Environmental Toxicology and Chemistry.2001,20(1):84-98.
    [22]Sabater C, Carrasco J M. Effects of pyridaphenthion on growth of five freshwater species of phytoplankton. A laboratory study[J]. Chemosphere.2001,44(8):1775-1781.
    [23]Sabater C, Carrasco J M. Effects of the organophosphorus insecticide fenitrothion on growth in five freshwater species of phytoplankton[J]. Environmental Toxicology.2001,16(4):314-320.
    [24]Widenfalk A, Svensson J M, Goedkoop W. Effects of the pesticides captan, deltamethrin, isoproturon, and pirimicarb on the microbial community of a freshwater sediment[J]. Environmental Toxicology and Chemistry.2004,23(8):1920-1927.
    [25]Moore M T, Huggett D B, Gillespie W B, et al. Comparative toxicity of chlordane, chlorpyrifos, and aldicarb to four aquatic testing organisms[J]. Archives of Environmental Contamination and Toxicology.1998,34(2):152-157.
    [26]Hassold E, Backhaus T. Chronic Toxicity of Five Structurally Diverse Demethylase-Inhibiting Fungicides to the Crustacean Daphnia Magna:A Comparative Assessment[J]. Environmental Toxicology and Chemistry.2009,28(6):1218-1226.
    [27]Kikuchi M, Sasaki Y, Wakabayashi M. Screening of organophosphate insecticide pollution in water by using Daphnia magna[J]. Ecotoxicology and Environmental Safety.2000,47(3): 239-245.
    [28]Rebich R A, Coupe R H, Thurman E M. Herbicide concentrations in the Mississippi River Basin-the importance of chloroacetanilide herbicide degradates[J]. Science of the Total Environment.2004,321(1-3):189-199.
    [29]Hirthe G, Fisher T C, Crane M, et al. Short-term exposure to sub-lethal doses of lindane affects developmental parameters in Chironomus riparius Meigen, but has no effect on larval glutathione-S-transferase activity[J]. Chemosphere.2001,44(4):583-589.
    [30]Stuart S N, Chanson J S, Cox N A, et al. Status and trends of amphibian declines and extinctions worldwide[J]. Science.2004,306(5702):1783-1786.
    [31]Taylor B, Skelly D, Demarchis L K, et al. Proximity to pollution sources and risk of amphibian limb malformation[J]. Environmental Health Perspectives.2005,113(11):1497-1501.
    [32]Kang H S, Gye M C, Kim M K. Effects of endosulfan on survival and development of Bombina orientalis (Boulenger) embryos[J]. Bull Environ Contam Toxicol.2008,81(3):262-265.
    [33]Harris M L, Chora L, Bishop C A, et al. Species- and age-related differences in susceptibility to pesticide exposure for two amphibians, Rana pipiens, and Bufo americanus[J]. Bull Environ Contam Toxicol.2000,64(2):263-270.
    [34]Kennedy I J, Sampath K. Short-term and long-term survival studies in Rana tigrina tadpoles with reference to methyl parathion toxicity[J]. J Environ Biol.2001,22(4):267-271.
    [35]Widder P D, Bidwell J R. Tadpole size, cholinesterase activity, and swim speed in four frog species after exposure to sub-lethal concentrations of chlorpyrifos[J], Aquatic Toxicology.2008, 88(1):9-18.
    [36]Greulich K, Pflugmacher S. Differences in susceptibility of various life stages of amphibians to pesticide exposure[J]. Aquatic Toxicology.2003,65(3):329-336.
    [37]Vanwezel A P, Opperhuizen A. Narcosis Due to Environmental-Pollutants in Aquatic Organisms-Residue-Based Toxicity, Mechanisms, and Membrane Burdens[J]. Critical Reviews in Toxicology.1995,25(3):255-279.
    [38]Crump D, Werry K, Veldhoen N, et al. Exposure to the herbicide acetochlor alters thyroid hormone-dependent gene expression and metamorphosis in Xenopus Laevis[J]. Environ Health Perspect.2002,110(12):1199-1205.
    [39]石志猛.鱼类多样性丧失和保护的经济分析[J].淡水渔业.2005(z1):76-78.
    [40]周伟,李明会.鮡科鱼类多样性与栖境的关系[J].云南农业大学学报.2006,21(6):811-815.
    [41]林玉锁,龚瑞忠,忠林.农药与生态环境保护[J].北京化学工业出版社.2000:61.
    [42]明玺,吴玲玲,陈玲,等.林丹短期暴露下的斑马鱼(Brachydanio rerio)组织学变化[J].生态毒理学报.2006,1(3):243-248.
    [43]董军,栾天罡,邹世春,等.珠江三角洲淡水养殖沉积物及鱼体中DDTs和PAHs的残留与风险分析[J].生态环境.2006,15(4):693-696.
    [44]Saglio P, Trijasse S. Behavioral responses to atrazine and diuron in goldfish[J]. Arch Environ Contam Toxicol.1998,35(3):484-491.
    [45]邱东茹,吴振斌,等.内分泌扰乱化学品活性筛选和测试方法[J].环境科学研究.2001,14(1):57-58.
    [46]World Health Organization. Environmental Health Criteria 222. Biomarker in risk assessment validity and validation.2001.
    [47]孟昭璐,刘皓慈,戎奕,等.阿特拉津对斑马鱼影响的研究[J].职业与健康.2008,24(3):205-208.
    [48]孙竹筠,周忠良,李康,等.苯并(a)芘对鲫鱼肝脏EROD活性的影响[J].生态学杂志.2005,24(11):1295-1298.
    [49]Oost R V D, Beyer J, Vermeulen N P E. Fish bioaccumulation and biomarkers in environmental risk assessment:a review[J]. Environmental Toxicology and Pharmacology. 2003(13):57-149.
    [50]Egaas E, Sandvik M, Fjeld E, et al. Some effects of the fungicide propiconazole on cytochrome P450 and glutathione S-transferase in brown trout (Salmo trutta)[J]. Comparative Biochemistry and Physiology C-Pharmacology Toxicology & Endocrinology.1999,122(3): 337-344.
    [51]Teraoka H, Dong W, Tsujimoto Y, et al. Induction of cytochrome P450 1A is required for circulation failure and edema by 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish[J]. Biochemical and Biophysical Research Communications.2003,304(2):223-228.
    [52]尹晓晖,赵震宇,姜辉,等.亚致死剂量溴氰菊酯对麦穗鱼谷胱甘肽s-转移酶活性的影响[J].安全与环境学报.2005,5(4):58-60.
    [53]赵于丁.5种稻田常用杀虫剂对斑马鱼的毒性及亚致死效应[D].福建农林大学,2007.
    [54]Winston G W, Giulio R T D. Prooxidant and antioxidant mechanisms in aquatic organisms[J]. Aquatic Toxicology.1991(2):137-161.
    [55]Kavitha P, Venkateswara Rao J. Sub-lethal effects of profenofos on tissue-specific antioxidative responses in a Euryhyaline fish, Oreochromis mossambicus[J]. Ecotoxicol Environ Saf.2009,72(6):1727-1733.
    [56]方展强,张凤君,郑文彪,等.多氯联苯对剑尾鱼超氧化物岐化酶活性的影响[J].中国实验动物学报.2004,12(2):96-99.
    [57]Sayeed I, Parvez S, Pandey S, et al. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch[J]. Ecotoxicology and Environmental Safety.2003, 56(2):295-301.
    [58]Galgani F, Bocquene G, Cadiou Y. Evidence of variationi in cholinesterase activity in fish along a pollution gradient in the North Sea[J]. Mar. Ecol. Prog. Ser.1992(13):77-89.
    [59]Sturm A, Wogram J, Segner H, et al. Different sensitivity to organophosphates of acetylcholinesterase and butyrylcholinesterase from three-spined stickleback (Gasterosteus aculeatus ):application in biomonitoring.[J]. Toxicol. Chem.2000(19):1607-1615.
    [60]Maul J D, Farris J L. Monitoring exposure of northern cardinals, Cardinalis cardinalis, to cholinesterase-inhibiting pesticides:enzyme activity, reactivations, and indicators of environmental stress[J]. Environ Toxicol Chem.2005,24(7):1721-1730.
    [61]楼建晴.三唑磷、氟虫腈、Cd2+、Pb2+对麦穗鱼的联合作用与毒理学机制研究[D].浙江大学,2004.
    [62]Sturm A, Wogram J, Segner H, et al. A novel butyrylcholinesterase from serum of Leporinus macrocephalus, a Neotropical fish[J]. Biochimie.2006,88(1):59-68.
    [63]耿宝荣,姚丹,薛清清.杀虫剂敌敌畏和除草剂丁草胺对斑腿树蛙蝌蚪的遗传毒性[J].动物学报.2005,51(3):447-454.
    [64]Hoff P T, Van Dongen W, Esmans E L, et al. Evaluation of the toxicological effects of perfluorooctane sulfonic acid in the common carp (Cyprinus carpio)[J]. Aquatic Toxicology.2003, 62(4):349-359.
    [65]邵华,师以康.紫外光谱法测定混配农药的DNA加合作用[J].中国公共卫生.2003,19(1):81-82.
    [66]Grunwald D J, Eisen J S. Timeline-Headwaters of the zebrafish emergence of a new model vertebrate[J]. Nature Reviews Genetics.2002,3(9):717-724.
    [67]Nagel R. DarT:The embryo test with the Zebrafish Danio rerio--a general model in ecotoxicology and toxicology[J]. ALTEX.2002,19 Suppl 1:38-48.
    [68]Haffter P, Granato M, Brand M, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio[J]. Development.1996,123:1-36.
    [69]Vittozzi L, Deangelis G. A Critical-Review of Comparative Acute Toxicity Data on Fresh-Water Fish[J]. Aquatic Toxicology.1991,19(3):167-204.
    [70]Ensenbach U, Nagel R. Toxicity of Complex Chemical-Mixtures-Acute and Long-Term Effects on Different Life Stages of Zebrafish (Brachydanio-Rerio)[J]. Ecotoxicology and Environmental Safety.1995,30(2):151-157.
    [71]Watanabe H, Suzuki A, Goto M, et al. Tissue-specific estrogenic and non-estrogenic effects of a xenoestrogen, nonylphenol[J]. Journal of Molecular Endocrinology.2004,33(1):243-252.
    [72]A catalogue of lists of pesticides identifying those associated with particularly harmful health or environmental impacts[J]. Pesticide Action Network UK.2006.
    [73]Lohr H, Hammerschmidt M. Zebrafish in endocrine systems:recent advances and implications for human disease[J]. Annu Rev Physiol.2011,73:183-211.
    [74]史清毅.久效磷对斑马鱼(Danio rerio)2世代繁殖的影响[D].中国海洋大学,2007.
    [75]Powell J F F, Krueckl S I, Collins P M, et al. Molecular forms of GnRH in three model fishes:Rockfish, medaka and zebrafish[J]. Journal of Endocrinology.1996,150(1):17-23.
    [76]Steven C, Lehnen N, Kight K, et al. Molecular characterization of the GnRH system in zebrafish (Danio rerio):cloning of chicken GnRH-Ⅱ, adult brain expression patterns and pituitary content of salmon GnRH and chicken GnRH-Ⅱ[J]. General and Comparative Endocrinology.2003, 133(1):27-37.
    [77]Dubois E A, Zandbergen M A, Peute J, et al. Evolutionary development of three gonadotropin-releasing hormone (GnRH) systems in vertebrates[J]. Brain Research Bulletin.2002, 57(3-4):413-418.
    [78]Ankley G T, Johnson R D. Small fish models for identifying and assessing the effects of endocrine-disrupting chemicals[J]. Ilar Journal.2004,45(4):469-483.
    [79]伊雄海.农药类环境激素低剂量暴露对鲫鱼内分泌干扰效应及生物标志物研究[D].上海交通大学,2008.
    [80]李洁斐,李卫华,杨健,等.17α-炔雌醇对雌激素反应基因表达的影响[J].环境与职业医学.2006(2):127-130.
    [81]陈勇.鱼类营养与甲状腺激素、皮质醇之间关系研究综述[J].安徽农学通报.2007,13(22):20-21.
    [82]Patino R, Mukhi S, Torres L. Effects of larval-juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios[J], General and Comparative Endocrinology. 2007,150(3):486-494.
    [83]Hamilton J W, Davey J C, Nomikos A P, et al. Arsenic as an endocrine disruptor:Arsenic disrupts retinoic acid receptor- and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis[J]. Environmental Health Perspectives. 2008,116(2):165-172.
    [84]瞿璟琰,施华宏,刘青坡,等.污染物对鱼类的甲状腺激素干扰效应及其作用机制[J].生态毒理学报.2007,2(4):375-380.
    [85]Uchida D, Yamashita M, Kitano T, et al. Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish[J]. Journal of Experimental Biology.2002,205(6):711-718.
    [86]Maack G, Segner H. Morphological development of the gonads in zebrafish[J]. Journal of Fish Biology.2003,62(4):895-906.
    [87]Brion F, Tyler C R, Palazzi X, et al. Impacts of 17 beta-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile- and adult-life stages in zebrafish (Danio rerio)[J]. Aquatic Toxicology.2004,68(3):193-217.
    [88]Maack G, Segner H. Life-stage-dependent sensitivity of zebrafish (Danio rerio) to estrogen exposure[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology.2004, 139(1-3):47-55.
    [89]Zha J M, Wang Z J, Schlenk D. Effects of pentachlorophenol on the reproduction of Japanese medaka (Oryzias latipes)[J]. Chemico-Biological Interactions.2006,161(1):26-36.
    [90]Jin M Q, Zhang X F, Wang L J, et al, Developmental toxicity of bifenthrin in embryo-larval stages of zebrafish[J]. Aquatic Toxicology.2009,95(4):347-354.
    [91]Santos M M, Micael J, Carvalho A P, et al. Estrogens counteract the masculinizing effect of tributyltin in zebrafish[J]. Comp Biochem Physiol C Toxicol Pharmacol.2006,142(1-2):151-155.
    [92]Hiramatsu N, Cheek A O, Sullivan C V, et al. Vitellogenesis and endocrine disruption [J]. Biochemistry and Molecular Biology of Fishes.2005,6:431-471.
    [93]Copeland P A, Sumpter J P, Walker T K, et al. Vitellogenin Levels in Male and Female Rainbow-Trout (Salmo-Gairdneri Richardson) at Various Stages of the Reproductive-Cycle[J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology.1986,83(2): 487-493.
    [94]Xu H, Yang J, Wang Y X, et al. Exposure to 17 alpha-ethynylestradiol impairs reproductive functions of both male and female zebrafish (Danio rerio)[J]. Aquatic Toxicology.2008,88(1): 1-8.
    [95]Janz D M, Lin L L. Effects of binary mixtures of xenoestrogens on gonadal development and reproduction in zebrafish[J]. Aquatic Toxicology.2006,80(4):382-395.
    [96]van der Ven L T M, van den Brandhof E J, Vos J H, et al. Effects of the estrogen agonist 17 beta-estradiol and antagonist tamoxifen in a partial life-cycle assay with zebrafish (Danio rerio)[J]. Environmental Toxicology and Chemistry.2007,26(1):92-99.
    [97]Kallivretaki E, Eggen R, Neuhauss S, et al. Aromatase in zebrafish:A potential target for endocrine disrupting chemicals[J]. Marine Environmental Research.2006,62:S187-S190.
    [98]Kinnberg K, Holbech H, Petersen G I, et al. Effects of the fungicide prochloraz on the sexual development of zebrafish (Danio rerio)[J]. Comp Biochem Physiol C Toxicol Pharmacol. 2007,145(2):165-170.
    [99]Fenske M, Segner H. Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio)[J]. Aquatic Toxicology.2004,67(2):105-126.
    [100]Mcgrath P, Li C Q. Zebrafish:a predictive model for assessing drug-induced toxicity[J]. Drug Discovery Today.2008,13(9-10):394-401.
    [101]邹苏琪,殷梧,杨昱鹏,等.斑马鱼行为学实验在神经科学中的应用[J].生物化学与生物物理进展.2009,36(1):5-12.
    [102]Bretaud S, Lee S, Guo S. Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease[J]. Neurotoxicol Teratol.2004,26(6):857-864.
    [103]Lam C S, Korzh V, Strahle U. Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP[J]. Eur J Neurosci.2005,21(6):1758-1762.
    [104]Lohr J L, Yost J. Vertebrate model systems in the study of early heart development: Xenopus and zebrafish[J]. American Journal of Medical Genetics.2000,97(4):248-257.
    [105]Milan D J, Peterson T A, Ruskin J N, et al. Drugs that induce repolarization abnormalities cause bradycardia in zebrafish[J]. Circulation.2003,107(10):1355-1358.
    [106]Antkiewicz D S, Burns C G, Carney S A, et al. Heart malformation is an early response to TCDD in embryonic zebrafish[J]. Toxicol Sci.2005,84(2):368-377.
    [107]Incardona J P, Collier T K, Scholz N L. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons[J]. Toxicol Appl Pharmacol.2004,196(2):191-205.
    [108]张一宾.世界农药新进展[Z].200687-88.
    [109]周子燕,李昌春,高同春,等.三唑类杀菌剂的研究进展[J].安徽农业科学.2008,36(27):11842-11844.
    [110]Kingsland G C. Triadimefon for Control of Powdery Mildew of Wheat[J]. Plant Disease. 1982,66(2):139-141.
    [111]刘广胜,张琳.三唑酮在水稻病害上应用技术[J].安徽农学通报.2004(5):61.
    [112]陈娟,马国胜,毛安元,等.园林生态保护常用杀菌剂及应用技术[J].现代农业科技.2010(8):207-208.
    [113]Reregistration Eligibility Decision:Triadimefon and Tolerance Reassessment for Traidmimenol.[J]. U.S. EPA.2006.
    [114]Menegola E, Broccia M L, Di Renzo F, et al. In vitro teratogenic potential of two antifungal triazoles:Triadimefon and triadimenol[J]. In Vitro Cellular & Developmental Biology-Animal. 2000,36(2):88-95.
    [115]Di Renzo F, Broccia M L, Giavini E, et al. Antifungal triazole derivative triadimefon induces ectopic maxillary cartilage by altering the morphogenesis of the first branchial arch[J]. Birth Defects Research Part B-Developmental and Reproductive Toxicology.2007,80(1):2-11.
    [116]Menegola E, Broccia M L, Di Renzo F, et al. Craniofacial and axial skeletal defects induced by the fungicide triadimefon in the mouse[J]. Birth Defects Research Part B-Developmental and Reproductive Toxicology.2005,74(2):185-195.
    [117]Menegola E, Broccia M L, Di Renzo F, et al. Study on the common teratogenic pathway elicited by the fungicides triazole-derivatives[J]. Toxicol In Vitro.2005,19(6):737-748.
    [118]Menegola E, Di Renzo F, Broccia M L. Cleft palate and exposure to an azole derivative: triadimefon.[J]. Reprod Toxicol.2009,28:13.
    [119]Wolf D C, Allen J W, George M H, et al. Toxicity profiles in rats treated with tumorigenic and nontumorigenic triazole conazole fungicides:Propiconazole, triadimefon, and myclobutanil[J]. Toxicologic Pathology.2006,34(7):895-902.
    [120]Papis E, Bernardini G, Gornati R, et al. Triadimefon causes branchial arch malformations in Xenopus laevis embryos[J]. Environmental Science and Pollution Research.2006,13(4):251-255.
    [121]Lenkowski J R, Sanchez-Bravo G, Mclaughlin K A. Low concentrations of atrazine, glyphosate,2,4-dichlorophenoxyacetic acid, and triadimefon exposures have diverse effects on Xenopus laevis organ morphogenesis[J]. Journal of Environmental Sciences-China.2010,22(9): 1305-1308.
    [122]Groppelli S, Pennati R, De Bernardi F, et al. Teratogenic effects of two antifungal triazoles, triadimefon and triadimenol, on Xenopus laevis development:Craniofacial defects[J]. Aquatic Toxicology.2005,73(4):370-381.
    [123]Giavini E, Menegola E. Are azole fungicides a teratogenic risk for human conceptus?[J]. Toxicology Letters.2010,198(2):106-111.
    [124]Giknis M L A, Damjanov I. The transplacental effects of ethanol and metronidazole in Swiss Webster mice.[J]. Toxicol Lett.1983,19:37-42.
    [125]Tiboni G M, Marotta F, Castigliego A P. Teratogenic effects in mouse fetuses subjected to the concurrent in utero exposure to miconazole and metronidazole[J]. Reproductive Toxicology. 2008,26(3-4):254-261.
    [126]Zarn J A, Bruschweiler B J, Schlatter J R. Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase[J]. Environmental Health Perspectives.2003,111(3):255-261.
    [127]FAO/WHO (Food and Agriculture Organization/World Health Organization).1986. Triadimefon. In:Pesticide Residues in Food-1985 Evaluations. Part Ⅱ-Toxicology.FAO Plant Production and Protection Paper 72/2. Rome:FAO,199-202[Z].
    [128]Rockett J C, Narotsky M G, Thompson K E, et al. Effect of conazole fungicides on reproductive development in the female rat[J]. Reprod Toxicol.2006,22(4):647-658.
    [129]Goetz A K, Ren H Z, Schmid J E, et al. Disruption of testosterone homeostasis as a mode of action for the reproductive toxicity of triazole fungicides in the male rat[J]. Toxicological Sciences. 2007,95(1):227-239.
    [130]Walker Q D, Mailman R B. Triadimefon and triadimenol:Effects on monoamine uptake and release[J]. Toxicology and Applied Pharmacology.1996,139(2):227-233.
    [131]Reeves R, Thiruchelvam M, Baggs R B, et al. Interactions of paraquat and triadimefon: Behavioral and neurochemical effects[J]. Neurotoxicology.2003,24(6):839-850.
    [132]Watschke T L, Mumma R O, Linde D T, et al. Surface runoff of selected pesticides applied to turfgrasses[J]. Fate and Management of Turfgrass Chemicals.2000,743:94-105.
    [133]Vincelli P. Simulations of fungicide runoff following applications for turfgrass disease control[J]. Plant Disease.2004,88(4):391-396.
    [134]Augustine-Rauch K, Zhang C X, Panzica-Kelly J M. In Vitro Developmental Toxicology Assays:A Review of the State of the Science of Rodent and Zebrafish Whole Embryo Culture and Embryonic Stem Cell Assays[J]. Birth Defects Research Part C-Embryo Today-Reviews.2010, 90(2):87-98.
    [135]Hallare A, Nagel K, Kohler H R, et al. Comparative embryotoxicity and proteotoxicity of three carrier solvents to zebrafish (Danio rerio) embryos[J]. Ecotoxicology and Environmental Safety.2006,63(3):378-388.
    [136]王菊.丙烯酰胺对斑马鱼胚胎致畸作用的研究[D].中国协和医科大学,2007.
    [137]Andersen H R, Nielsen J B, Grandjean P. Toxicologic evidence of developmental neurotoxicity of environmental chemicals[J]. Toxicology.2000,144(1-3):121-127.
    [138]Bretaud S, Lee S, Guo S. Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease[J]. Neurotoxicology and Teratology.2004,26(6):857-864.
    [139]Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo[J]. Journal of Neurobiology.1998,37(4):622-632.
    [140]Huang H H, Huang C J, Wang L J, et al. Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS)[J], Aquatic Toxicology.2010,98(2):139-147.
    [141]Selderslaghs I W T, Hooyberghs J, De Coen W, et al. Locomotor activity in zebrafish embryos:A new method to assess developmental neurotoxicity[J]. Neurotoxicology and Teratology.2010,32(4):460-471.
    [142]Drapeau P, Saint-Amant L, Buss R R, et al. Development of the locomotor network in zebrafish[J]. Progress in Neurobiology.2002,68(2):85-111.
    [143]Lam C S, Korzh V, Strahle U. Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP[J]. European Journal of Neuroscience.2005,21(6):1758-1762.
    [144]Baraban S C, Taylor M R, Castro P A, et al. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression[J]. Neuroscience.2005,131(3):759-768.
    [145]Goolish E M, Okutake K. Lack of gas bladder inflation by the larvae of zebrafish in the absence of an air-water interface[J]. Journal of Fish Biology.1999,55(5):1054-1063.
    [146]Powers C M, Yen J, Linney E A, et al. Silver exposure in developing zebrafish (Danio rerio): Persistent effects on larval behavior and survival[J]. Neurotoxicology and Teratology.2010,32(3): 391-397.
    [147]Sano K, Inohaya K, Kawaguchi M, et al. Purification and characterization of zebrafish hatching enzyme-an evolutionary aspect of the mechanism of egg envelope digestion[J]. Febs Journal.2008,275(23):5934-5946.
    [148]Eaton R C, Nissanov J. A Review of Mauthner-Initiated Escape Behavior and Its Possible Role in Hatching in the Immature Zebrafish, Brachydanio-Rerio[J]. Environmental Biology of Fishes.1985,12(4):265-279.
    [149]Riley B B, Moorman S J. Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish[J]. Journal of Neurobiology.2000, 43(4):329-337.
    [150]Scholz S, Mayer I. Molecular biomarkers of endocrine disruption in small model fish[J]. Molecular and Cellular Endocrinology.2008,293(1-2):57-70.
    [151]Li W, Zha J M, Spear P A, et al. Changes of thyroid hormone levels and related gene expression in Chinese rare minnow (Gobiocypris rarus) during 3-amino-1,2,4-triazole exposure and recovery[J]. Aquatic Toxicology.2009,92(1):50-57.
    [152]Martin M T, Brennan R J, Hu W Y, et al. Toxicogenomic study of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity[J]. Toxicological Sciences.2007,97(2):595-613.
    [153]van der Ven L T M, van den Brandhof E J, Vos J H, et al. Effects of the antithyroid agent propylthiouracil in a partial life cycle assay with zebrafish[J]. Environmental Science & Technology.2006,40(1):74-81.
    [154]Boas M, Feldt-Rasmussen U, Skakkebaek N E, et al. Environmental chemicals and thyroid function[J]. European Journal of Endocrinology.2006,154(5):599-611.
    [155]Stoker T E, Cooper R L, Lambright C S, et al. In vivo and in vitro anti-androgenic effects of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture[J]. Toxicology and Applied Pharmacology.2005,207(1):78-88.
    [156]Hurley P M, Hill R N, Whiting R J. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents[J]. Environmental Health Perspectives.1998,106(8): 437-445.
    [157]Hester S D, Nesnow S. Transcriptional responses in thyroid tissues from rats treated with a tumorigenic and a non-tumorigenic triazole conazole fungicide[J]. Toxicology and Applied Pharmacology.2008,227(3):357-369.
    [158]Eales J G, Brown S B. Measurement and Regulation of Thyroidal Status in Teleost Fish[J]. Reviews in Fish Biology and Fisheries.1993,3(4):299-347.
    [159]Orozco A, Valverde-R C. Thyroid hormone deiodination in fish[J]. Thyroid.2005,15(8): 799-813.
    [160]Liu Y W, Chan W K. Thyroid hormones are important for embryonic to larval transitory phase in zebrafish[J]. Differentiation.2002,70(1):36-45.
    [161]Walpita C N, Van der Geyten S, Rurangwa E, et al. The effect of 3,5,3'-triiodothyronine supplementation on zebrafish (Danio rerio) embryonic development and expression of iodothyronine deiodinases and thyroid hormone receptors[J]. General and Comparative Endocrinology.2007,152(2-3):206-214.
    [162]Shi X J, Liu C S, Wu G Q, et al. Waterborne exposure to PFOS causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae[J]. Chemosphere.2009,77(7):1010-1018.
    [163]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method[J]. Methods.2001,25(4):402-408.
    [164]Jugan M L, Levi Y, Blondeau J P. Endocrine disruptors and thyroid hormone physiology[J]. Biochemical Pharmacology.2010,79(7):939-947.
    [165]Hsieh Y L, Chatterjee A, Lee G, et al. Molecular cloning and sequence analysis of the cDNA for thyroid-stimulating hormone beta subunit of Muscovy duck[J]. General and Comparative Endocrinology.2000,120(3):336-344.
    [166]Chiamolera M I, Wondisford F E. Minireview:Thyrotropin-Releasing Hormone and the Thyroid Hormone Feedback Mechanism[J]. Endocrinology.2009,150(3):1091-1096.
    [167]Mackenzie D S, Jones R A, Miller T C. Thyrotropin in teleost fish[J]. General and Comparative Endocrinology.2009,161(1):83-89.
    [168]Yadav A K, Singh T P. Effect of Pesticide on Circulating Thyroid-Hormone Levels in the Fresh-Water Catfish, Heteropneustes-Fossilis (Bloch)[J]. Environmental Research.1986,39(1): 136-142.
    [169]Sinha N, Lal B, Singh T P. Effect of Endosulfan on Thyroid Physiology in the Fresh-Water Catfish, Clarias-Batrachus[J]. Toxicology.1991,67(2):187-197.
    [170]Brown S B, Eales J G, Evans R E, et al. Interrenal, Thyroidal, and Carbohydrate Responses of Rainbow-Trout (Salmo-Gairdneri) to Environmental Acidification[J]. Canadian Journal of Fisheries and Aquatic Sciences.1984,41(1):36-45.
    [171]Sinha N, Lal B, Singh T P. Thyroid Physiology Impairment by Malathion in the Fresh-Water Catfish Clarias-Batrachus[J]. Ecotoxicology and Environmental Safety.1992,24(1): 17-25.
    [172]Yu L Q, Deng J, Shi X J, et al. Exposure to DE-71 alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis of zebrafish larvae[J]. Aquatic Toxicology. 2010,97(3):226-233.
    [173]Wei Y H, Liu Y, Wang H S, et al. Toxicogenomic analysis of the hepatic effects of perfluorooctanoic acid on rare minnows (Gobiocypris rarus)[J]. Toxicology and Applied Pharmacology.2008,226(3):285-297.
    [174]Janosek J, Hilscherova K, Blaha L, et al. Environmental xenobiotics and nuclear receptors-Interactions, effects and in vitro assessment J]. Toxicology in Vitro.2006,20(1):18-37.
    [175]郑捷.化学物质对甲状腺功能的影响[J].国外医学(卫生学分册).2001(6):333-336.
    [176]Shi H H, Wang X R, Luo Y, et al. Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in Carassius auratus[J]. Aquatic Toxicology.2005,74(4):365-371.
    [177]Tabb M M, Blumberg B. New modes of action for endocrine-disrupting chemicals [J]. Molecular Endocrinology.2006,20(3):475-482.
    [178]Power D M, Llewellyn L, Faustino M, et al. Thyroid hormones in growth and development of fish[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology.2001, 130(4):447-459.
    [179]Liu Y W, Lo L J, Chan W K. Temporal expression and T3 induction of thyroid hormone receptors alpha 1 and beta 1 during early embryonic and larval development in zebrafish, Danio rerio[J]. Molecular and Cellular Endocrinology.2000,159(1-2):187-195.
    [180]Jing R Y, Huang C J, Bai C L, et al. Optimization of activation, collection, dilution, and storage methods for zebrafish sperm[J]. Aquaculture.2009,290(1-2):165-171.
    [181]Martyniuk C J, Gerrie E R, Popesku J T, et al. Microarray analysis in the zebrafish (Danio rerio) liver and telencephalon after exposure to low concentration of 17alpha-ethinylestradiol[J]. Aquatic Toxicology.2007,84(1):38-49.
    [182]Liu C S, Deng J, Yu L Q, et al. Endocrine disruption and reproductive impairment in zebrafish by exposure to 8:2 fluorotelomer alcohol[J]. Aquatic Toxicology.2010,96(1):70-76.
    [183]Andersen L, Kinnberg K, Holbech H, et al. Evaluation of a 40 day assay for testing endocrine disrupters:Effects of an anti-estrogen and an aromatase inhibitor on sex ratio and vitellogenin concentrations in juvenile zebrafish (Danio rerio)[J]. Fish Physiology and Biochemistry.2004,30(3-4):257-266.
    [184]Hill R L, Janz D M. Developmental estrogenic exposure in zebrafish (Danio rerio):I. Effects on sex ratio and breeding success[J]. Aquatic Toxicology.2003,63(4):417-429.
    [185]Bogers R, Mutsaerds E, Druke J, et al. Estrogenic endpoints in fish early life-stage tests: Luciferase and vitellogenin induction in estrogen-responsive transgenic zebrafish[J]. Environmental Toxicology and Chemistry.2006,25(1):241-247.
    [186]Tong Y, Shan T, Poh Y K, et al. Molecular cloning of zebrafish and medaka vitellogenin genes and comparison of their expression in response to 17 beta-estradiol[J]. Gene.2004,328: 25-36.
    [187]Hara Y, Strussmann C A, Hashimoto S. Assessment of short-term exposure to nonylphenol in Japanese medaka using sperm velocity and frequency of motile sperm[J]. Archives of Environmental Contamination and Toxicology.2007,53(3):406-410.
    [188]夏继刚,牛翠娟,高颖,等.壬基酚长期暴露对斑马鱼雄鱼第二性征、精子活力的影响[J].生态毒理学报.2010,5(1):44-49.
    [189]Kinnberg K, Korsgaard B, Bjerregaard P, et al. Effects of nonylphenol and 17beta-estradiol on vitellogenin synthesis and testis morphology in male platyfish Xiphophorus maculatus[J]. J Exp Biol.2000,203(Pt 2):171-181.
    [190]Mcallister B G, Kime D E. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio)[J]. Aquatic Toxicology.2003,65(3):309-316.
    [191]Nash J P, Kime D E, Van der Ven L T M, et al. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish[J]. Environmental Health Perspectives.2004,112(17):1725-1733.
    [192]Rurangwa E, Biegniewska A, Slominska E, et al. Effect of tributyltin on adenylate content and enzyme activities of teleost sperm:a biochemical approach to study the mechanisms of toxicant reduced spermatozoa motility[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology.2002,131(3):335-344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700