基于卟啉及其阵列对农药残留传感检测的新方法及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药作为目前最有效、最方便和最经济的防治农作物病虫害的手段,在农业增产中发挥着巨大的作用。然而,农药的大量使用也严重威胁着生态环境、人类健康甚至社会安全。经典检测技术虽然具有高灵敏性和准确定量等优点,但检测步骤冗繁,耗时过长,且需要昂贵的大型仪器和专业技术人员,不适于现场检测使用。因此,农药残留检测亟需一种同时兼具灵敏度和便携性、可以大规模使用的检测方法,实现农药残留快速而灵敏的检测,才能真正保障环境、人身和社会的和谐统一。因此,本论文不仅着重研究了卟啉可视化阵列传感芯片的制备及其检测效果,研究了卟啉与农药的相互作用机理,还探索了纳米化卟啉材料的制备条件及其对农药的检测效果,为最终构建出一种新型的基于纳米卟啉材料的阵列传感器,实现对农药残留的定性和定量检测奠定了基础。具体研究工作如下:
     (1)以毒死蜱(有机磷类农药)、三唑酮和林丹(有机氯类)、多菌灵(氨基甲酸酯类)和溴氰菊酯(拟除虫菊酯类)等五种典型农药为检测对象,利用紫外-可见吸收光谱,筛选出了具有敏感响应性的卟啉材料。结果表明,ZnTPP对林丹、多菌灵和溴氰菊酯具有敏感性,而对毒死蜱和三唑酮无响应;CoTPP只对毒死蜱无响应,对其余四种农药均具有敏感性;MnTPPCl对毒死蜱、三唑酮和溴氰菊酯有响应。基于阵列交叉敏感性的考虑,ZnTPP、CoTPP和MnTPPCl可作为构成可视化阵列的敏感材料。
     (2)利用筛选出的光学敏感卟啉材料,辅以极性指示剂等光敏材料,制备成6×6的可视化阵列传感芯片,并对毒死蜱、三唑酮、林丹、多菌灵和溴氰菊酯进行了检测。结果表明,与待测农药作用后,阵列传感芯片上的大部分敏感单元的颜色会发生明显变化。将阵列传感芯片与农药反应前后的图像相减,可得到农药的特征性指纹图谱。将差谱RGB数据采用主成分分析、聚类分析和判别分析等模式识别分析方法进行分析和处理后,发现该传感阵列对五种待测农药有显著的识别和鉴定能力,稳定性和重现性良好,可用于农药残留的定性检测。
     (3)为阐明卟啉材料对农药分子的检测机理,结合分子对接法、动力学、热力学等研究手段,进一步研究了卟啉-农药相互作用关系。分子对接计算结果表明,卟啉大环以及大环上的苯环取代基同农药分子上的苯环结构之间的π-π作用明显提高了其对农药分子的亲和作用。对比三种金属卟啉与五种农药相互作用的结合常数及分子对接计算所得的打分结果,可知与毒死蜱、三唑酮、林丹、多菌灵和溴氰菊酯五种农药结合作用最强的卟啉依次为:MnTPPCl、MnTPPCl、CoTPP、ZnTPP和MnTPPCl,作用体系的结合常数分别为:5.73×108、8.51×107、3.04×108、8.02×107和1.53×108。结果与单体卟啉对农药的检测效果相一致。
     (4)依据自组装的原理,通过混合溶剂方法制备出MnTPPCl纳米材料和CoTPP纳米材料,通过表面活性剂辅助自组装法利用表面活性剂聚乙二醇制备出了ZnTPP纳米材料。利用FE-SEM对三种卟啉纳米材料的形貌进行了表征:MnTPPCl纳米材料是圆盘状纳米颗粒,纳米颗粒的平均粒径约为150nm,颗粒大小较均匀;CoTPP纳米材料是棒状纳米颗粒,CoTPP纳米颗粒的平均宽度为100nm,长度为700nm;ZnTPP纳米材料是不规则纳米颗粒,ZnTPP纳米颗粒的平均粒径为300nm。由于纳米颗粒的纳米效应,MnTPPCl、CoTPP和ZnTPP纳米化后,荧光效应均强于单体,其荧光强度分别提高了2.37、2.13和5.22倍。
     (5)利用紫外-可见吸收光谱,结合荧光光谱,研究了纳米卟啉材料对毒死蜱、多菌灵、三唑酮、林丹和溴氰菊酯的敏感响应性。结果表明,纳米CoTPP只对毒死蜱和多菌灵有响应,对其余三种农药无响应。而纳米MnTPPCl和纳米ZnTPP对五种农药均具有良好响应。不仅如此,除了纳米MnTPPCl-三唑酮和纳米ZnTPP-溴氰菊酯体系外,其余检测体系中,荧光强度的变化值与农药浓度均呈现良好的线性关系,为实现农药残留的定量检测奠定了基础。
As the most effective, convenient and economical control, pesticides play key rolesin agriculture. However, large-scale use of pesticides seriously threaten ecologicalenvironment, personal health and even social security. Although traditional detectiontechniques show the advantages of high sensitivity and reliability, they requiretime-consuming analysis, expensive instruments and highly trained personnel, which isunsuitable for field analysis. Therefore, rapid and sensitive detection methods ofpesticides become more and more important. In this thesis, the study was not onlyfocused on the selection of porphyrins and the interaction of porphyrins with pesticides,but the preparation and application in the detection of pesticides of nano-porphyrinswere also explored to prepare a novel array sensor based on nano-porphyrins array andrealize the qualitative and quantitative detection of pesticides finally. Researches werecarried out as follows:
     (1) The responses of porphyrins for five common pesticides were investigated withUV-Vis absorption spectroscopy. As the results showed, ZnTPP was sensitive tolindane, carbendazim, and deltamethrin. CoTPP was sensitive to triadimefon, lindane,carbendazim, and deltamethrin. But there was not any apparent response in theCoTPP-chlopyrifos system. MnTPPCl was sensitive to chlopyrifos, carbendazim, anddeltamethrin. Considering the cross reactivity of sensor array, ZnTPP, CoTPP andMnTPPCl could be used as sensing material for the preparation of visualized sensorarray.
     (2) According to the optical properties of porphyrins, the colorimetric array sensorwas created. Cross-reactivity of multiple sensing elements can improve the ability todiscriminte several different pesticides. The6×6sensor array was prepared byhandiwork spotting to detect pesticides. Owing to the obvious colour changes of thesensor arrays, the characteristic difference maps of every analyte were gained. RGBdata from the sensor array was analyzed with pattern recognition methods, includingprinciple component, hierarchical cluster and discriminant analysis. As a result, that thedetection of pesticides with the sensor array showed good repeatability, and the fivepesticides can be completely distinguished. Qualitative detection of pesticides could beobtained with this sensor array.
     (3) To evaluate the detection mechanism with porphyrins, the interaction ofporphyrins with peticides were investigated with molecular docking method andUV-Vis absorption spectroscopy. Computational simulation demonstrated that π-πinteraction, which resulted from the macro-structure as well as the substituted benzenering in the porphyrin systems with the benzene structures of the pesticides, contributed alot to their affinity. In addition, it was found that the strongest binding occurred in thesystems of MnTPPCl-chlopyrifos, MnTPPCl-triadimefon, CoTPP-lindane,ZnTPP-carbendazim, and MnTPPCl-deltamethrin. The binding constant was5.73×108,8.51×107,3.04×108,8.02×107and1.53×108, respectively. These results were consistentwith the detection results.
     (4) Based on the principle of self-assembly, nano-MnTPPCl and nano-CoTPP weresuccessfully prepared by the mixed-solvent method, and nano-ZnTPP was prepared bysurfactant-assisted self-assembly method using poly (ethylene glycol) as surfactant.Three porphyrin nanomaterials were characterized using FE-SEM. Nano-MnTPPCl wasdisc-shaped nanoparticles, and the average particle size was150nm. Nano-CoTPP wasrod-like nanoparticles, with the average width of100nm and the length of700nm.Nano-ZnTPP was irregular nanoparticles, and the average diameter was300nm.Because of the nanometer effect of nanoparticles, the fluorescence intensity of threenano-porphyrins (MnTPPCl, CoTPP and ZnTPP) was stronger than that of porphyrinmonomer with2.37,2.13and5.22times, respectively.
     (5) The sensitivity of nano-porphyrins for five common pesticides, were studiedwith UV-Vis absorption and fluorescence spectroscopies. The results indicated thatnano-CoTPP was sensitive to triadimefon and carbendazim. But there were not anyapparent responses in the CoTPP-three other pesticides systems. Nano-MnTPPCl andnano-ZnTPP showed good sensitivity to all the five pesticides. Expect the systems ofnano-MnTPPCl-triadimefon and nano-ZnTPP-deltamethrin, there were good linearrelationship in other nano-porphyrins-pesiticides systems. Therefore, nano-porphyrinswere considered to be sensing material for quantitative detection of pesticides.
引文
[1]王彦娟,靳烨,云战友.牛乳中农药残留的安全性检测[J].食品工程,2007,(1),7-10.
    [2]王大宁,董益阳,邹明强.农药残留检测与监控技术[M].北京:化学工业出版社,2006:5.
    [3] R.M. Garcinuno, L. Ramos, P. Fernández-Hernando, C. Camara. Optimization of a matrixsolid-phase dispersion method with subsequent clean-up for the determination of ethylenebisdithiocarbamate residues in almond samples[J]. Journal of Chromatography A,2004,1041(1-2):35-41.
    [4]杨勇,郭迎卫.气相色谱法测定蔬菜中残留有机磷农药[J].淮阴工学院学报,2005,14(3):80-82.
    [5]王建华,张艺兵,汤志旭.微波处理一气相色谱法测定含硫蔬菜中的多类农药残留[J].分析测试学报,2005,24(1):100-102.
    [6]赵卫星,龚道新,杨仁斌.大米中有机磷和有机氮类农药的多残留分析技术[J].食品科学,2005,26(1):183-186.
    [7] C.M. Torres, Y. Pico, J. Manes. Determination of pesticide residues in fruits andvegetables[J]. Journal of Chromatography A,1996,75(4):301-331.
    [8] Steven J. Lehotay, André de Kok, Maurice Hiemstra, Peter van Bodegraven. Validation of afast and easy method for the determination of residues from229pestieides in fruits andvegetables using gas and liquid chromatography and mass spectrometric detection[J]. Journalof AOAC International,2005,88(2):595-614.
    [9]戴华.稻谷中毗虫琳农药残留量的固相萃取高效液相色谱测定[J].分析测试学报,2002,1(21):70-72.
    [10]段文仲.高效液相色谱法同时测定水果中多种农药残留量的方法研究[J].农药,1998,37(8):20-22.
    [11] Antonio Gelsomino. Multi-residue analysis of pestieides in fruits and vegetables by gelpermeation chromatography followed by gas chromatography with electron-capture and massspectrometric detection[J]. Joumal of Chomatograpy A,1997,782:105-122.
    [12] Julie Fillion. Multiresidue method for the determination of residues of251pesticides in fruitsand vegetables by gas chromatography/mass spectrometry and liquid chromatography withfluorescence detection[J]. Journal of AOAC International,2000,83(3):698-713.
    [13] Frank J. Schenck, Patrick Callery, Peter M. Gannett, J.R. Daft, Steven J. Lehotay.Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticideextracts of foods[J]. Journal of AOAC International,2002,85(5):1177-1180.
    [14] Steven J. Lehotay, Katerina Mastovslá, Seon Jong Yus. Evaluation of two fast and easymethods for pesticide residue analysis in fatty food matrixes[J]. Journal of AOACInternational,2005,88(2):630-638.
    [15] Yukio Saito, Shuji Kodama, Akinobu Matsunaga, A. Yamamoto. Multiresidue determinationof pesticides in agricultural products by gas chromatography/mass spectrometry with largevolume injection[J]. Journal of AOAC International,2004,87(6):1356-1367.
    [16]张兵,周向阳,胡祥娜,林润昌,王瑞,禹绍周.气相色谱-质谱联用仪测定蔬菜中十五种农药残留量[J].食品科学,2003,24(8):124-126.
    [17]奉夏平,陈卫国,王志元.基质固相分散-气相色谱法同时测定蔬菜水果中多种农药残留[J].食品科学,2005,7(26):194-197.
    [18] S. Lacorte, J.J. Vreuls, J.S. Salau, F. Ventura, D. Barceló. Monitoring of pesticides in riverwater using fully automated on-line solid-pase extraction and liquid chromatography withdiode array detection with a novel filtration device[J]. Journal of Chromatography A,1998,795(1):71-82.
    [19] C. Blaco, Y. Plcó, J. Ma es, G. Font. Determination of fungicide residues in fruits andvegetables by liquid chromatog·raphy-atmospheric pressure chemical ionization massspectrometry [J]. Journal of Chromatography A,2002,947(2):227-235.
    [20] Watesr公司北京实验室.利用waetsr ZMD LC/MS液质联用系统分析氨基甲酸酯类农药.环境科学,2000,19(1):93-94.
    [21] M. Femnadez, Y. Picó, J. Ma es. Detemrination of carbamate residues in fruits andvegetables by matrix solid-phase dispersion and liquid chromatography-mass spectrometry[J].Journal of Chromatography A,2000,871(1-2):43-56
    [22] J.P. Rawat, M. Bhardwaj. Thin Layer chromatographic behavior of organophosphatepesticides on hydrated stannic layers[J]. Journal of Agricultural and Food Chemistry,2000,465:520-534.
    [23] Koujiro Futagami, Chie Narazaki, Yasufumi Kataoka, Hideki Shuto, Ryozo Oishi.Application of high-performance thin-layer chromatography for the detection oforganophosphorus insecticides in human serum after acute poisoning[J]. Journal ofChromatography B,1997,704(1-2):53-58.
    [24] Funk Werner, Luise Cleres, Hoiger Pitzer, Gerhild Donnevert. Organophosphorusinsecticides-quantitative HPTLC determination and charaeterization[J]. Journal of PlannerChromatography.1989,641:285-288.
    [25] J.P. Rawat, M. Bhardwaj. Thin layer chromatographic behavior of organophosphatepesticides on hydrated stnnic oxide layers[J]. Oriental Journal of Chemistry,2000,16(1):53-58.
    [26] S.J. Lehotay. Supercritical fluid extraction of pesticides in foods[J]. Journal ofChromatography A,1997,785(1):289-312.
    [27]王建华,徐强,焦奎,程刚.蔬菜中有机氯农药残留的超临界流体提取和气相色谱法测定[J].色谱,1998,16(6):506-507.
    [28]苟中坤.有机磷农药的匈曼反应.分析化学,1994,22(1):41-43.[29]董文庚,邓晓丽,刘长春,王欢,李永辉.草甘膦与共存有机膦酸的对甲基苯磺酰氯衍生物反相高效液相色谱分离[J].理化检验-化学分册,2001,37(11):481-483.
    [30]赵永福,张志,黄志强. β-环糊精增敏荧光法快速测定蔬菜中有机磷农药残留[J].分析测试技术与仪器,2009,15(4):433-437.
    [31]李文秀,徐可欣.蔬菜农药残留检测的红外光谱法研究[J].光谱学与光谱分析,2004,24(10):1202-1205.
    [32]肖怡琳,张鹏翔,钱晓凡.几种农药的显微拉曼光谱和荧光光谱[J].光谱学与光谱分析,2004,24(5):579-581.
    [33] Aviad Hai, Deborah Ben-Haim, Nina Korbakov, Ariel Cohen, Joseph Shappir, Ruthi Oren.Acetylcholinesterase-ISFET based system for the detection of acetylcholine andacetylcholinesterase inhibitors[J]. Biosensors and Bioelectronics,2006,22(5):605-612.
    [34] C. Ristori, C. Del Carlo, M. Martin, A. Barbaro, A. Ancarani. Potentiometric detection ofpesticides in water samples[J]. Analytica Chimica Acta,1996,325(3):151-160.
    [35] John C. Fernando, Kim R. Rogers, Nabil A. Anis, James J. Valdes, Roy G. Thompson, AmiraT. Eldefrawi, et al. Rapid detection of anticholinesterase insecticides by a reusable lightaddressable potentiometric biosensor[J]. Journal of Agricultural and Food Chemistry,1993,41(3):511-516.
    [36] Kim R. Rogers, Marlene Foley, Stephen Alter, Philip Koga, Mohyee Eldefrawi. Lightaddressable potentiometric biosensor for the detection of anticholinesterases[J]. AnalyticalLetters,1991,24(2):191-198.
    [37] Michael Waibel, Holger Schulze, Norbert Huber, Till T. Bachmann, Screen-printedbienzymatic sensor based on sol-gel immobilized Nippostrongylus brqasiliensisacetylcholinesterase and a cytochrome P450BM-3(CYP102-A1) mutant, Biosens.Bioelectron.21(2006)1132-1140.
    [38] Francis C. M. Wong, Musa Ahmad, Lee Yook Heng, Lim Boon Peng, An optical biosensorfor dichlovos using stacked sol-gel films containing acetylcholinesterase and a lipophilicchromoionophore, Talanta69(2006)888-893.
    [39] Madalina P. Bucur, Andrei F. Danet, Jean-Louis Marty. Improvement of detection limits ofacetylcholinesterase based biosensors using an enzyme extract of drosophila melanogaster[J].Revista de Chime,2006,57(8):785-789.
    [40] F. Ricci, G. Palleschi. Sensor and biosensor preparation, optimization and applications ofPrussian Blue modified electrodes[J]. Biosensors and Bioelectronics,2005,21(3):389-407.
    [41]刘润,郝玉翠,康天放.基于碳纳米管修饰电极检测有机磷农药的生物传感器[J].分析试验室,2007,26(9):9-12.
    [42] Haode Chen, Xiaolei Zuo, Shao Su, Zhuzhao Tang, Aibo Wu, Shiping Song, Dabing Zhang,Chunhai Fan. An electrochemical sensor for pesticide assays based on carbonnanotube-enhanced acetylcholinesterase activity[J]. Analyst,2008,133(9):1182-1186.
    [43] Subramanian Viswanathan, Hanna Radecka, Jerzy Radecki. Electrochemical biosensor forpesticides based on acetylcholinesterase immobilized on polyaniline deposited on verticallyassembled carbon nanotubes wrapped with ssDNA[J]. Biosensors and Bioelectronics,2009,(24):2772-2777.
    [44] Karamala Prasad, Krishnapillai Padmajakumari Prathish, Joseph Mary Gladis, GurijalaRamakrishna Naidu, Talasila Prasada Rao. Design and development of imprinted polymerinclusion membrane-based field monitoring device for trace determination ofPhorate(O,O-Diethyl S-Ethyl Thiomethyl Phophorodithioate) in natural water[J].Electroanalysis,2007,19(11):1195-1200.
    [45] V. Vishnuvardhan, K.P. Prathish, G.R.K. Naidu, T. Parasada Rao. Fabrication andtopographical analysis of non-covalently imprinted polymer inclusion membranes for theselective sensing of pinacolyl methylphosphonate-A simulant of soman[J]. ElectrochimicaActa,2007,52(24):6922-6928.
    [46] K.P. Prathish, K. Prasad, T. Parasada Rao, M.V.S. Suryanarayana. Molecularly imprintedpolymer-based potentiometric sensor for degradation product of chemical warfare agents:Part I. Methylphosphonic acid[J]. Talanta,2007,71(5):1976-1980.
    [47] A.L. Graham, C.A. Carlson, P.L. Edmistonp. Development and charaeterization ofmolecularly imprinted sol-gel materials for the selective detection of DDT. AnalyticalChemistry,2002,74(2):458-467.
    [48] Sharon Marx, Amalya Zaltsman, Iva Turyanl, Daniel Mandler. Parathion sensor based onmolecularly imprinted sol-gel films. Analytical Chemistry,2004,76(1):120-126.
    [49]刘育,尤长城.超分子化学[M].天津:南开大学出版社,2001,12:131-131.
    [50]李忠芳,王素文,王纪孝,王亚权,王宇新.过渡金属离子为模板的卟啉过渡金属配合物的合成研究.无机化学学报,2003,19(7):691-698.
    [51] Yun Zhao, Tingxiu Ye, Haixu Chen, Dapeng Huang, Tingyao Zhou, Chunyan He, Xi Chen. Adissolved oxygen sensor based on composite fluorinated xerogel doped with platinumporphyrin dye[J]. Luminescence,2011,26(1):29-34.
    [52] Yoshiteru Itagaki, Satoru Yamanaka, Yoshihiko Sadaoka. HCl Detection Using114-117Polymer-Porphyrin Composite Coated Optical Fiber Sensor[J]. Sensor Letters,2011,9(1):114-117.
    [53] Jiyeon Kim, Si-Hyung Lim, Yeoil Yoon, T. Daniel hangadurai, Sungho Yoon. A fluorescentammonia sensor based on a porphyrin cobalt(II)-dansyl complex[J]. Tetrahedron Letters,2011,52(21):2645-2648.
    [54] Manuel Cano, pedro Castillero, Javier Roales, Jose M. Pedrosa, Stuart Brittle, TimRichardson, Agustin R. Gonzalez-Elipe, Angel Barranco. A transparent TMPyP/TiO(2)composite thin film as an HCl sensitive optochemical gas sensor[J]. Sensors and ActuatorsB-Chemical,2010,150(2):764-769.
    [55] Kavita Garg, A. Singh, A. K. Debnath, S. K. Nayak, S. Chattopadhyay, D. K. Aswal, Y.Hayakawa, S. K. Gupta, J. V. Yakhmi. Bis-porphyrin films as ppb level chemiresistivesensors[J].Chemical Physics Letters,2010,488(1-3):27-31.
    [56]王涛,郝晓玲,常旭,韩士田,刘彦钦.卟啉分光光度法测定豆类微量Cu(Ⅱ)含量[J].中国粮油学报,2009,24(10):131-134.
    [57] Yu Yang, Jianhui Jiang, Guoli Shen, Ruqin Yu. An optical sensor for mercury ion based onthe fluorescence quenching of tetra(p-dimethylaminophenyl)porphyrin[J]. Analytica ChimicaActa,2009,636(1):83-88.
    [58] Serap Seyhan Bozkurt, Sevda Ayata, Ipek Kaynak. Fluorescence-based sensor for Pb(II)using tetra-(3-bromo-4-hydroxyphenyl)porphyrin in liquid and immobilized medium[J].Spectrocheimica Acta Part A-Molecular and Biomolecular,2008,72(4):880-883.
    [59] Huantian Cao, Jinhee Nam, H. James Harmon, Donna H. Branson. Spectrophotometricdetection of organophosphate diazinon by porphyrin solution and porphyrin dyed cottonfabric[J]. Dyes and Pigments,2007,74(1):176-180.
    [60] A. Mufeed Awawdeh, H. James Harmon. Spectrophotometric detection of pentachlorophenol(PCP) in water using immobilized and water-soluble porphyrins[J]. Biosensors andBioelectronics,2005,20(8):1595-1601.
    [61] Zhongchun Wang. Self-Assembly and Self-metallization of porphyrin nanosheets[J]. Journalof the American Chemical Society,2007,129(9):2440-2441.
    [62] Arun Kumar Perepogu, Prakritri Ranjan Bangbl. Preparation and characterization offree-standing pure porphyrin nanoparticles[J]. Journal of Chemical Sciences,2008,120(5):485-491.
    [63] Rahmatollah Rahimi, Marziye Javaheri Kachousangi, Mohamad Mehdi Kashani-Motlagh.Ultrasonic method for the preparation of organic porphyrin nanoparticles[J]. Molecules,2009,15(1):280-287.
    [64] Amporn Sane, Mark C. Thies. The formation of fluorinated tetraphenylporphyrinnanoparticles via rapid expansion processes: RESS vs RESOLV[J]. Jouranl of PhysicalChemistry,2005,109(42):19688-19695.
    [65] Suk Joong Lee, Hupp Joseph T. Growth of narrowly dispersed porphyrin nanowires and theirhierarchical assembly into macroscopic columns[J]. Journal of the American ChemicalSociety,2008,130(30):9632.
    [66] Suk Joong Lee, Malliakas Christos D, Kanatzidis Mercouri G. Amphiphilic porphyrinnanocrystals: morphology tuning and hierarchical assembly[J]. Advanced Materials,2008,20(18):3543.
    [67] Jin-Song Hu. Three-dimensional self-organization of supramolecular self-assembledporphyrin hollow hexagonal nanoprisms[J]. Journal of the American Chemical Society,2005,127:17090-17095.
    [68] Xianchang Gong, Milic T. Preparation and characterization of porphyrin nanoparticles[J].Journal of the American Chemical Society,2002,124(48):14290-14291.
    [69] Atula S. D. Sandanayaka, Araki Yasuyuki, Wada Takehiko. Structural and PhotophysicalProperties of self-assembled porphyrin nanoassemblies organized by ethylene glycolderivatives[J]. American Chemical Society,2008,112(49):19209-19216.
    [70] Yunfeng Qiu, Chen Penglei, Liu Minghua. Evolution of various porphyrin nanostructures viaan oil/aqueous medium: controlled self-assembly, further organization, and supramolecularchirality[J]. Journal of the American Chemical Society,2010,132(28):9644-9652.
    [71] Atula S. D. Sandanayaka, Murakami Tatsuya, Hasobe Taku. Preparation and photophysicaland photoelectrochemical properties of supramolecular porphyrin nanorods structurallycontrolled by encapsulated fullerene derivatives[J]. Jouranl of Physical Chemistry,2009,113(42):18269-18378.
    [72] Zhongchun Wang, Craig J. Medforth, John A. Shelnutt. Porphyrin nanotubes by ionicself-assembly[J]. Journal of the American Chemical Society,2004,126(49):15954-15955.
    [73] Zhongchun Wang, Kuangchiu J. Ho, Craig J. Medforth, John A. Shelnutt. Porphyrinnanofiber bundles from phase-transfer ionic self-assembly and their photocatalyticself-metallization[J]. Advanced Materials,2006,18(19):2557.
    [74] Zhongchun Wang, Craig J. Medforth, John A. Shelnutt. Self-metallization of photocatalyticporphyrin nanotubes[J]. Journal of the American Chemical Society,2004,28(13):3422-3426.
    [75] Xiangqing Li, Line Zhang, Jin Mu. Formation of new types of porphyrin H-andJ-aggregates[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,311:187-190.
    [76] S. M. Vlaming, R. Augulis, M. C. A. Stuart, J. Knoester, P. H. M. van Loosdrecht. Excitonspectra and the microscopic structure of self-assembled porphyrin nanotubes[J]. Jouranl ofPhysical Chemistry,2009:2273-2283.
    [77] Seok Min Yoon, In-Chul Hwang, Kwang S. Kim, Hee Cheul Choi. Synthesis of single-crystaltetra(4-pyridyl) porphyrin rectangular nanotubes in the vapor phase[J]. IinterScience,2009:48(14):2506-2509.
    [78] Ana Borras, Myriam Aguirre, Oliver Groening, Carlos Lopez-Cartes, Pierangelo Groening.Synthesis of supported single-crystalline organic nanowires by physical vapor deposition[J].Chemistry Materials,2008,20(24):7371-7371.
    [79] Esther Barrena, XueNa Zhang, Marion Kelsch, Helmut Dosch. Selective Growth of organic1-D structures on Au nanoparticle arrays[J]. American Chemical Society,2006,6(12):2852-2855.
    [80] Min Wei, Yun Lu. Templating fabrication of polypyrrole nanorods/nanofibers[J]. SyntheticMetals,2009,14(755-758):1061-1066.
    [81] Liane M. Rossi, Paulo R. Silva, Lucas L. R. Vono, Adjaci U. Fernandes, Dayane B. Tada,Maur cio S. Baptista. Protoporphyrin IX nanoparticle carrier: preparation, optical properties,and singlet oxygen generation[J]. Langmuir,2008,24(21):12534-12538.
    [82] Greg Nelson, Jayaram Chandrashekar, Mark A. Hoon, Luxin Feng, Grace Zhao, Nicholas J.P.Ryba, Charles S. Zuker. An amino-acid taste receptor[J]. Nature,2002,416,199-202.
    [83]陈冬梅,周媛.电子舌技术及其在食品工业中的应用[J].现代农业科技,2010,(7):26-31.
    [84] Jayaram Chandrashekar, Mark A. Hoon, Nicholas J.P. Ryba, Charles S. Zuker. The receptorsand cells for mammalian taste[J]. Nature,2006,444,288-294.
    [85] Luis Gil, Jose M. Barat, Diana Baigts, Ramon Martinez-Manez, Juan Soto, EduardoGarcia-Breijo, M-Concepcion Aristory, Fidel Toldra, Eduard Llobet. Monitoring ofphysical-chemical and microbiological changes in fresh fork meat under cold storage bymeans of a potentiometric electronic tongue[J]. Food Chemistry,2011,126(3):1261-1268.
    [86] Zhenbo Wei, Jun Wang, Linshuang Ye. Classification and prediction of rice wines withdifferent marked ages by using a voltammetric electronic tongue[J]. Biosensors&Bioelectronics,2011,26(12):4767-4673.
    [87] Katharina Woertz, Corinna Tissen, Peter Kleinebudde, Joerg Breitkreutz. Taste sensingsystems (electronic tongues) for pharmaceutical applications[J]. International Journal ofPharmaceutics,2011,417(1-2):256-271.
    [88] Neal A. Rakow, Kenneth S. Suslick. A colorimetric sensor array for odour visualization[J].Nature,2000,406(17):710-713.
    [89] Chen Zhang, Kenneth S. Suslick. A colorimetric sensor array for organics in water[J].Journal of the American Chemical Society,2005,127(33):11548-11549.
    [90] Kenneth S. Suslick, Neal A.Rakow, Avijit Sen. Colorimetric sensor arrays for molecularrecognition[J]. Tetrahedron,2004,60(49):11133-11138.
    [91] Chen Zhang, Kenneth S. Suslick. Colorimetric Sensor Array for Soft Drink Analysis[J].Journal of Agricultural and Food Chemistry,2007,55(2):237-242.
    [92] Chen Zhang, Daniel P. Bailey, Kenneth S. Suslick. Colorimetric sensor arrays for theanalysis of beers: A feasibility study[J]. Journal of Agricultural and Food Chemistry,2006,54(14):4925-4931.
    [93] Changjun Hou, Jiale Dong, Guoping Zhang, Mei Yang, Yuchan Zhang, Zhen Liu.Colorimetric artificial tongue for protein identification. Biosensors and Bioelectronics,2011,26:3981-4262.
    [94] Volker Thomsen, Debbie Schatzlein, David Mercuro. Limits of detection in spectroscopy[J].Spectroscopy,2003,18,112-114.
    [95] Gschwend D A, Good A C, Kuntz I D. Molecular docking towards drug discovery[J].Journal of Molecular Recognition,1996,9(2):175-186.
    [96] Shoichet B K, Kuntz I D, Bodian D L. Molecular docking using shape descriptors[J]. Journalof Computational Chemistry,1992,13(3):380-397.
    [97] Jain A N. Surflex:Fully Automatic Flexible Molecular Docking Using a MolecularSimilarity-Based Search Engine[J]. Journal of Medicinal Chemistry,2003,46(4):499-511.
    [98] Eldridge M D, Murray C W, Auton T R, et al. Empirical scoring functions: I. Thedevelopment of a fast empirical scoring function to estimate the binding affinity of ligands inreceptor complexes[J]. Journal of Computer-Aided Molecular Design,1997,11:425-445.
    [99] Sun J, Cai S, Mei H, et al. Molecular Docking and QSAR Studies on SubstitutedAcyl(thio)urea and Thiadiazolo [2,3-a] Pyrimidine Derivatives as Potent Inhibitors ofInfluenza Virus Neuraminidase[J]. Chem Biol Drug Des,2010,76:245-254.
    [100] Muegge I, Martin Y C. A General and Fast Scoring Function for Protein/ligandInteractions:A Simplified Potential Approach[J]. Journal of Medicinal Chemistry,1999,42(5):791-804.
    [101] Feher M. Consensus scoring for protein–ligand interactions[J]. Drug Discovery Today,2006,11(9-10):421-428.
    [102] Wenqi Zheng, Ning Shan, Lianxiang Yu, Xingqiao Wang. UV-visibel, fluorescence and EPRproperties of porphyrins and metalloporphyrins[J]. Dyes and Pigments,2008,77(1):153-157.
    [103] Chuan Zhong Wang, Zhi Ang Zhu, Ying Li, Yun Ti Chen, Xin Wen, Fang Ming Miao, WingLai Chan, Albert S.C. Chan. Chiral recognition of amino acid esters by zinc porphyrinderivatives[J]. New Journal of Chemistry,2001,25(6):801-806.
    [104] Deborah Leckband. Measuring the forces that control protein interactions[J]. Annual Reviewof Biophysics and Biomolecular Structure,2000,29:1-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700